JPS60161341A - Preparation of hexagonal ferrite - Google Patents

Preparation of hexagonal ferrite

Info

Publication number
JPS60161341A
JPS60161341A JP59012008A JP1200884A JPS60161341A JP S60161341 A JPS60161341 A JP S60161341A JP 59012008 A JP59012008 A JP 59012008A JP 1200884 A JP1200884 A JP 1200884A JP S60161341 A JPS60161341 A JP S60161341A
Authority
JP
Japan
Prior art keywords
hexagonal ferrite
ferrite
melt
single roll
contg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59012008A
Other languages
Japanese (ja)
Inventor
Kyoji Odan
恭二 大段
Morihito Yasumura
安村 守人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP59012008A priority Critical patent/JPS60161341A/en
Publication of JPS60161341A publication Critical patent/JPS60161341A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prepare hexagonal ferrite having small particle size and sharp crystal size distribution by dissolving fundamental components of hexagonal ferrite and cooling quickly the soln. on a single roll and treating obtd. amorphous product with heat and weak acid. CONSTITUTION:Components for hexagonal ferrite such as Fe, Ba, Sr, etc., substitutable components for reducing coercive force such as Co, Ti, etc., and glass forming substances such as H3BO3, BaO, etc., are mixed in the form of, if necessary, oxides, or carbonates, etc. The mixture is charged in a Pt vessel 3 provided with a nozzle 1 and melted by heating at ca. 1,350 deg.C with a high frequency heater 2 in the atmosphere of O2-contg. gas. Then, the vessel 3 is pressurized with O2-contg. gas through a solenoid valve 4, and the melt is quenched by blowing from a nozzle 1 onto a single roll 5 revolving at high speed to form completely uniform amorphous body 6 having ca. 5-20mu thickness. Then, the amorphous body 6 is heat-treated at ca. 450-850 deg.C for 1-10hr in the O2-contg. gas atmosphere, further, treated with a weak acid such as acetic acid to remove glass forming substances and impurities by dissolving in the acid. Thus fine particulate hexagonal ferrite having superior quality is obtd.

Description

【発明の詳細な説明】 本発明は、微粒子状六方晶系フェライトを製造する方法
の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for producing particulate hexagonal ferrite.

更に詳しくは2本発明は、塗布型の高密度垂直磁気記録
媒体用磁性粉末として好適な微粒子状六方晶系フェライ
トの製造法に関するものである。
More specifically, the present invention relates to a method for producing fine-grain hexagonal ferrite suitable as a magnetic powder for coating-type high-density perpendicular magnetic recording media.

近年磁気記録の高密度化の要求に伴い六方晶系フェライ
ト、例えばマグネトブランバイト型バリウムフェライト
を磁気記録媒体として使用した垂直磁気記録方式の開発
、実用化が進められている。
In recent years, with the demand for higher density magnetic recording, perpendicular magnetic recording systems using hexagonal ferrites, such as magnetobrambite barium ferrites, as magnetic recording media have been developed and put into practical use.

六方晶系フェライトは平板状で、磁化容易軸が面に垂直
であるので容易に垂直配向を行うことができ、垂直磁気
記録媒体として適しているが、保磁力が通常5000エ
ルステツド(Oe)以上と高すぎ、現状では記録時にヘ
ッドが飽和するため。
Hexagonal ferrite has a flat plate shape and the axis of easy magnetization is perpendicular to the plane, so it can be easily aligned perpendicularly, making it suitable for use as a perpendicular magnetic recording medium, but the coercive force is usually 5000 Oe or more. Too expensive, as the head saturates during recording under current conditions.

垂直磁気記録媒体としての六方晶糸フェライトとしては
その基本成分である鉄の一部を適当な置換成分で置換し
てヘッドに対応した適当な値(500〜150CIOθ
程度)にまで保磁力を低減させる方法かとられている。
As a hexagonal crystal thread ferrite used as a perpendicular magnetic recording medium, a part of its basic component iron is replaced with an appropriate substitute component to obtain an appropriate value (500 to 150 CIO θ) corresponding to the head.
A method of reducing the coercive force to a degree of

保磁力低減のだめの置換成分としては2例えばTi、c
o、Mn、Zn+ Ge、Nb、V、Ta。
Substituting components for reducing coercive force include 2, for example, Ti, c
o, Mn, Zn+ Ge, Nb, V, Ta.

sb等が知られている。sb etc. are known.

・、捷だ垂直磁気記録媒体として用いられる六方晶系フ
ェライトとしては1粒径が小さい−ものの方が好ましい
が粒子があまり小さすぎると強磁性を示さず、また太き
すぎると磁気特性2分散性等が悪くなるので0.01μ
〜0.3μ程度の範囲で板状比が大きく粒径分布がシャ
ープで形状のよ・く揃った凝集、焼結等のない飽和磁化
の高いものが望まれている。
・For hexagonal ferrite used as a perpendicular magnetic recording medium, it is preferable to have small grains, but if the grains are too small, they will not exhibit ferromagnetism, and if they are too thick, the magnetic properties will be dispersive. etc. becomes worse, so 0.01μ
A material with a large plate-like ratio in the range of about 0.3 μm, a sharp particle size distribution, a well-defined shape, and a high saturation magnetization without agglomeration or sintering is desired.

従来六方晶系フェライトの製造法としては7例えば共沈
法、水熱合成法、ガラス結晶化法等種々の方法が知られ
ている。これらのなかでも六方晶系フェライトの基本成
分、保磁力低減のだめの置換成分およびガラス形成物質
を混合溶解し、溶解物を急速冷却し、得られる非晶質体
を熱処理してフェライト微粒子を析出させ1弱酸処理し
てガラス成分、不純物等を除去するガラス結晶化法は。
Conventionally, various methods are known for producing hexagonal ferrite, such as a coprecipitation method, a hydrothermal synthesis method, and a glass crystallization method. Among these, the basic components of hexagonal ferrite, substitute components for reducing coercive force, and glass-forming substances are mixed and melted, the melt is rapidly cooled, and the resulting amorphous body is heat-treated to precipitate fine ferrite particles. 1. Glass crystallization method involves removing glass components, impurities, etc. by treatment with a weak acid.

他の方法による場合よシも粒径が小さく垂直磁気記録媒
体として適したものが得られやすいという利点がある。
Compared to other methods, this method has the advantage that it is easier to obtain particles that are smaller in particle size and suitable as perpendicular magnetic recording media.

ガラス結晶化法による六方結晶フェライトの製造法とし
ては7例えば特開昭56−67904号公報、特開昭5
 ’67125’ 2 L9号公報、特開昭56−16
4’522号公報、特開昭56−155022号公報、
特開昭51−16912’8号公報、特開昭j7−56
629号公報、特開昭5’7−56328号公報、特開
昭57−567)26号公報等で提案されている。
Methods for producing hexagonal crystal ferrite by glass crystallization include 7, for example, JP-A-56-67904, JP-A-5
'67125' 2 L9 Publication, JP-A-56-16
4'522, JP-A-56-155022,
JP-A-51-16912'8, JP-A-J7-56
This method has been proposed in JP-A No. 629, JP-A-5'7-56328, and JP-A-57-567-26.

しかしながら提案された方法で原料溶解物を双ロール上
に注いで急速冷却した場合2例えば特開昭56−125
219号公報の第2頁、右下欄の記載からも明らかであ
るように、完全一様な非晶質体を得ることができず、−
!た得られるフレーク(非晶質リボン)は相互に凝集し
ており、これを熱処理しても粒径が1μ以上もあるよう
な大きなフェライトの結晶が混在したりして板状比が太
きく粒径分布が/ヤープで形状のよく揃った分散性。
However, when the raw material melt is poured onto twin rolls and rapidly cooled using the proposed method 2, for example, JP-A-56-125
As is clear from the description in the lower right column on page 2 of Publication No. 219, it is not possible to obtain a completely uniform amorphous body, and -
! The resulting flakes (amorphous ribbons) are mutually agglomerated, and even if they are heat-treated, large ferrite crystals with a grain size of 1μ or more are mixed in, resulting in grains with a thick plate-like ratio. Dispersion with a well-shaped diameter distribution.

配−向性等のよい大方晶系フェライトを得ることが困難
である。
It is difficult to obtain macrogonal ferrite with good orientation.

本発明者らは、従来提案された双ロールを用いて急速冷
却する方法の上述した難点を解消することを目的として
カラス結晶化法による六方晶系フェライトの製法につい
て鋭意研究を行った結果、゛原料溶融物を単ロールを、
用いて急速冷却すると。
The present inventors have conducted intensive research on a method for producing hexagonal ferrite using the crow crystallization method, with the aim of solving the above-mentioned difficulties in the previously proposed method of rapid cooling using twin rolls. Single roll of raw material melt,
When used for rapid cooling.

寮易に完全−一様な非晶質体にすることができ、これを
熱処理して得られる六方晶系フェライトは従来提案の方
法によって得られるもめ士す粒径が小さく、板状比覗犬
ぎく粒径分布がシャープで分散性、配向性等にすぐれて
いることを知り2本発明に到った。
The hexagonal ferrite obtained by heat treatment can easily be made into a completely uniform amorphous material, and the grain size of the hexagonal ferrite obtained by the conventionally proposed method is smaller than that of the plate-shaped ferrite. It was discovered that the grain size distribution of the cylindrical grain is sharp and the dispersibility, orientation, etc. are excellent, leading to the invention of the present invention.

本発明は、六方晶系フェライトの基本成分、保磁力低減
のだめの置換成分およびガラス形成物質を混合溶解し、
溶解物を急速冷却し、得られる非晶質体を熱処理してフ
ェライト微粒子を析出させ。
The present invention involves mixing and melting a basic component of hexagonal ferrite, a substitute component for reducing coercive force, and a glass-forming substance,
The melt is rapidly cooled, and the resulting amorphous material is heat-treated to precipitate ferrite particles.

弱酸処理して微粒子状六方晶系フェライトを製造する方
法において、溶解物の急速冷却を一単ロール上で行うこ
とを特徴とする六方晶系フェライトの製造法に関するも
のである。
The present invention relates to a method for producing hexagonal ferrite in the form of fine particles by treatment with a weak acid, which is characterized in that the melt is rapidly cooled on a single roll.

本発明によって単ロール」二で急速冷却した場合。When rapidly cooled in a single roll according to the present invention.

双ロールを用いた場合と比較して非晶質体の厚さが双ロ
ールの約50μに対し約5〜20μと薄いので伝熱係数
の小さい溶解物の急冷および均一な非晶質化を効果的に
行うことができ2寸だ双ロールのようにロール同志の圧
着を必要としないためロール表面の平滑性、耐久性等も
すぐれている。
Compared to the case using twin rolls, the thickness of the amorphous material is thinner at about 5 to 20μ compared to about 50μ for twin rolls, so it is effective for rapid cooling and uniform amorphization of melts with a small heat transfer coefficient. Since it does not require crimping of the rolls together as with two-inch rolls, the roll surface has excellent smoothness and durability.

壕だ単ロール上で急速冷却して得られる非晶質体は、そ
の後の熱処理によって粒径分布が0.05〜0.10μ
程度と双ロール上で急速冷却して得られたものを熱処理
した場合の六方晶系フェライトよりも2粒径分布がシャ
ープで粒径が小さく、また板状比も大きな六方晶系フェ
ライトになるので。
The amorphous material obtained by rapid cooling on a trench single roll has a particle size distribution of 0.05 to 0.10μ by subsequent heat treatment.
The result is a hexagonal ferrite with a sharper grain size distribution, smaller grain size, and larger plate-like ratio than the hexagonal ferrite obtained by rapid cooling on twin rolls and heat treatment. .

分散性、配向性等がすぐれている。Excellent dispersibility, orientation, etc.

本発明において、六方晶系フェライトの基本成分、保磁
力低減のだめの置換成分およびガラス形成物質は、公知
のものが使用され、それ自体公知の方法で混合し、加熱
溶解させる。六方晶系フェライトの基本成分としてはF
eおよびBa 、 Sr+ Pb等を挙げることができ
、これらは一般にはFeC1゜Fe2O3、Ba、O、
Ba、C03、P’bO、PbCO3、、SrO。
In the present invention, known basic components of hexagonal ferrite, substitute components for reducing coercive force, and glass-forming substances are used, and are mixed and heated to melt by a method known per se. The basic component of hexagonal ferrite is F.
e and Ba, Sr+ Pb, etc., and these are generally FeC1゜Fe2O3, Ba, O,
Ba, C03, P'bO, PbCO3, SrO.

S r CO3等の酸化物や炭酸塩として使用される。It is used as an oxide or carbonate such as S r CO3.

保磁力低減のだめの置換成分としては、 CO,Ti。Substitution components for reducing coercive force include CO and Ti.

Zn、Mn、()e、V、’Nb、Ta、Sb等を挙げ
ることができ、これらも一般には酸化物として使用され
る。
Zn, Mn, ()e, V, 'Nb, Ta, Sb, etc. can be mentioned, and these are also generally used as oxides.

ガラス形成物質としては、一般にはH3BO3。The glass-forming substance is generally H3BO3.

B2O3等のホウ素化合物とBaO、BaCO3+ S
rO。
Boron compounds such as B2O3 and BaO, BaCO3+ S
rO.

SrC!03 等のアルカリ土類金属化合物が使用され
る。これら原$1.(7)混合割合としては、六方晶系
フ、エラ身トの基本成分が12〜80モルチ、保磁力低
減のだめの置換成分が0.5〜0.8モル係およびガラ
ス形成物質が20〜88モル係の範囲にするのか適当で
ある。まだ加熱溶解は、酸素含有ガス雰囲気下に原料混
合物の融点以上の温度、一般には1350°C程度の温
度で行い、完全に溶融溶解させて均一な溶解物にするの
が適当である。
SrC! Alkaline earth metal compounds such as 03 are used. These original $1. (7) The mixing ratio is 12 to 80 mol of the basic component of hexagonal crystal structure, 0.5 to 0.8 mol of the substitute component for reducing coercive force, and 20 to 88 mol of the glass forming substance. It is appropriate to set it within the molar range. It is appropriate that the heating melting be carried out in an oxygen-containing gas atmosphere at a temperature higher than the melting point of the raw material mixture, generally at a temperature of about 1350°C, to completely melt and dissolve the material into a uniform melt.

本発明においては、溶解物を単ロール上で急速冷却して
非晶質体にすることが特に重要である。
In the present invention, it is particularly important that the melt is rapidly cooled on a single roll into an amorphous form.

俗解物を単ロール上で急速冷却するにあたっては、射角
イ物を高速回転する単ロール上に吹きつける方法で行う
のが好適である。単ロールとして(d冷媒等でロールを
冷却することができるようになっているものを用いても
、またなっていないものを用いてもよく、ロールを冷却
することができるようになっていないものを用いても室
温で十分に完全一様な非晶質体にすることができる。ま
た単ロール上に俗解物を吹きつけるにあたっては、一般
に溶解物に酸素含有ガス圧をかけてノズルからロール上
に吹きつける方法が採用される。単ロ−ル上で急速冷却
して得られる非晶質体の厚さは。
When rapidly cooling a common product on a single roll, it is preferable to use a method in which a projectile material is sprayed onto a single roll rotating at high speed. As a single roll (d) Rolls that can be cooled with refrigerant or the like may be used, or rolls that are not capable of being cooled may be used. It is also possible to form a fully uniform amorphous material at room temperature by using a melt.Also, when spraying a melt onto a single roll, generally oxygen-containing gas pressure is applied to the melt and the melt is sprayed from a nozzle onto the roll. The thickness of the amorphous material obtained by rapid cooling on a single roll is:

溶解物の粘度、溶解物の単ロール上への吹き出し速度、
ロールの回転数等によっても異なるが、約5〜20μで
あり、双ロールを用いる場合よりも相対的に薄くて非晶
質化度の高いものが得られる。
The viscosity of the melt, the speed at which the melt is blown onto a single roll,
Although it varies depending on the number of rotations of the rolls, it is about 5 to 20 μm, and it is possible to obtain a product that is relatively thinner and has a higher degree of amorphism than when using twin rolls.

非晶質体は、これを酸素含有ガス雰囲気下に450〜8
50”Cで1〜10時間熱処理すると。
The amorphous body is heated under an oxygen-containing gas atmosphere to 450-8
When heat treated at 50"C for 1 to 10 hours.

好捷しくは450〜650°Cで1〜10時間−次熱処
理し1次いで750〜850°Cで1〜10時間二次熱
処理すると、六方晶系フェライトの微粒イが析出するの
で、これを弱酸2例えば酢酸や希釈した硝酸、塩酸、リ
ン酸等の弱酸処理し、ガラス形成物質や不純物を溶解洗
浄除去すると、双ロールを用いて非晶質体とした後加熱
および弱酸処理して得られるものよりも一段とすぐれた
微粒子状六方晶系フェライトが得られる。
Preferably, if a second heat treatment is performed at 450 to 650°C for 1 to 10 hours, and then a second heat treatment is performed at 750 to 850°C for 1 to 10 hours, fine grains of hexagonal ferrite will precipitate. 2 For example, by treating with a weak acid such as acetic acid, diluted nitric acid, hydrochloric acid, or phosphoric acid, and removing glass-forming substances and impurities by dissolving and washing, the material is made into an amorphous state using twin rolls, and then heated and treated with a weak acid. It is possible to obtain fine-grained hexagonal ferrite which is even better than that of the conventional method.

次に実施例および比較例を示す。Next, Examples and Comparative Examples will be shown.

実施例1 B20326.7モル%、13a03ろ、ろモル係。Example 1 B20326.7 mol%, 13a03 Ro, Romol section.

Fe2O3ろ0゜4モ/l/%、 0o04.8モル係
およびTi024.8モル係になるように+ H3BO
3、BaO03。
Fe2O3 filter 0゜4 mo/l/%, 0o04.8 mole ratio and Ti024.8 mole ratio + H3BO
3. BaO03.

Fe2O3、CoCO3およびTiO2の粉末を混合し
、その1007を第1図に示した先端にノズル1を有し
、外部に高周波加熱ヒータ2を有する白金製容器乙に入
れ、1350°Cに加熱溶解させた後、白金製容器乙の
上方に設けられたガス圧入用電磁弁4を作動させて白金
容器6内の溶解物に1.5Kg/crlrの02ガス圧
をかけ、直径20cm、回転数1500r、p、mで回
転する銅製の単ロール5上にノズル1(吐出口径0−8
mm)から溶解物を吹きつけ急冷し。
Fe2O3, CoCO3, and TiO2 powders were mixed, and the mixture 1007 was placed in a platinum container B having a nozzle 1 at the tip as shown in Fig. 1 and a high-frequency heater 2 on the outside, and heated and melted at 1350°C. After that, the solenoid valve 4 for gas pressure injection provided above the platinum container B was activated to apply 02 gas pressure of 1.5 kg/crlr to the melted material in the platinum container 6. Nozzle 1 (discharge port diameter 0-8
Spray the melted material from mm) and quench it.

非晶質リボン6(厚さ約15調)を得た。Amorphous ribbon 6 (thickness approximately 15 shades) was obtained.

非晶質リボンは、これをX線回折分析法で分析したが1
回折ピークは観測されず、完全一様な非晶質体であるこ
とがわかった。非晶質体リボンの飽和磁化(Bm)およ
び繰磁力(Hc )はいずれも0であった。
The amorphous ribbon was analyzed using X-ray diffraction analysis.
No diffraction peaks were observed, indicating that it was a completely uniform amorphous material. The saturation magnetization (Bm) and remagnetization force (Hc) of the amorphous ribbon were both 0.

次いで非晶質リボンを空気雰囲気下に650°Cで10
時間−次熱処理し、さらに780°Cで2時間二次熱処
理した後、酢酸で処理しBaO相、BaO・B2O3相
等を溶解除去し、水で洗浄した後、乾燥してマグネトブ
ランバイト型バリウムフェライト(Bal Fe10.
4 Coo、s Ti0.80+9)の微粒子粉末を得
た。
The amorphous ribbon was then heated at 650°C in an air atmosphere for 10
After a secondary heat treatment at 780°C for 2 hours, it is treated with acetic acid to dissolve and remove BaO phase, BaO・B2O3 phase, etc., washed with water, and dried to produce magnetobrambite barium ferrite. (Bal Fe10.
4 Coo,s Ti0.80+9) fine particle powder was obtained.

得られたバリウムフェライト微粒子は形のそろったきれ
いな六角板状であった。バリウムフェライト微粒子粉末
の比表面積9粒径分布、飽和磁化(Bm)、保磁力(H
c)および板状比(透過型電子顕微鏡による)は第1表
のとおりであった。
The obtained barium ferrite fine particles had a uniform hexagonal plate shape. Specific surface area of barium ferrite fine particle powder9 Particle size distribution, saturation magnetization (Bm), coercive force (H
c) and platelet ratio (as determined by transmission electron microscope) as shown in Table 1.

実施例2 実施例1において02ガス圧を2.5Kg/(74,単
ロールの回転数を4.000 r、p、mにかえたほか
は。
Example 2 Example 1 except that the 02 gas pressure was changed to 2.5 Kg/(74) and the rotation speed of the single roll was changed to 4.000 r, p, m.

実施例1と同様にして非晶質リボンを得た後熱処理し酢
酸処理してマグネトブランバイト型バリウムフェライト
の微粒子粉末を得た。非晶質リボンは、厚さ約5μで、
X線回折分析法で分析したが回折ピークは観測されず、
完全一様な非晶質体であった。
An amorphous ribbon was obtained in the same manner as in Example 1, followed by heat treatment and acetic acid treatment to obtain a fine particle powder of magnetobrambite barium ferrite. The amorphous ribbon has a thickness of approximately 5μ,
Although it was analyzed using X-ray diffraction analysis, no diffraction peak was observed.
It was a completely uniform amorphous body.

また得られたバリウムフェライト微粒子は形のそろった
きれいな六角板状であった。バリウムフェライト微粒子
粉末の比表面積9粒径分布、飽和磁化(Bm)、保磁力
(Ha)おまひ板状比は第1表のとおシであった。
The obtained barium ferrite fine particles had a uniform hexagonal plate shape. The specific surface area, particle size distribution, saturation magnetization (Bm), coercive force (Ha), and plate-like ratio of the barium ferrite fine particles were as shown in Table 1.

比較例1 実施例1において単ロールにかえてロール直径20 C
Jn、 1 回転数1500 r、p、mで回転する双
ロールを用いたほかは、実施例1と同様にして非晶質リ
ボンをイ4すた後熱処理し酢酸処理してマグネトプラノ
バイト た。非晶質リボンは7厚さ約50μと)!¥<、飽和磁
化(Bm)および保磁力(Hc)を測定した結果。
Comparative Example 1 Instead of a single roll in Example 1, a roll diameter of 20 C was used.
Jn, 1 The amorphous ribbon was heated in the same manner as in Example 1, except that twin rolls rotating at 1500 rotations, r, p, and m were used, followed by heat treatment and acetic acid treatment to obtain magnetopranobite. The amorphous ribbon is about 50μ thick)! ¥<, Results of measuring saturation magnetization (Bm) and coercive force (Hc).

Bm=4.9 emu/ V. Hc = 2 7 0
 0eであシ,バリウムフェライトの結晶が認められた
Bm=4.9 emu/V. Hc = 2 7 0
Barium ferrite crystals were observed.

またバリウムフェライト微粒子粉末のなかには粒径が0
.6μ以」二もある大きな結晶が混在していた。バリウ
ムフェライト微粒子粉末の比表I7Il積。
Also, some barium ferrite fine particles have a particle size of 0.
.. Large crystals larger than 6μ were mixed together. Specification table I7Il product of barium ferrite fine particle powder.

粒径分布,飽和磁化(Bm)、保磁力(Hc )および
板状比は第1表のとおりであった。
The particle size distribution, saturation magnetization (Bm), coercive force (Hc), and plate ratio were as shown in Table 1.

第1表Table 1

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するために用いた装置の概(略図
である。 1・・・・ノズル、2・・・・高周波加熱ヒーター。 ろ・・・・白金製容器,4・・・・ガス圧入用電磁弁。
FIG. 1 is a schematic diagram of the apparatus used to carry out the present invention. 1. Nozzle, 2. High-frequency heater. Ro... Platinum container, 4.・Solenoid valve for gas pressure injection.

Claims (1)

【特許請求の範囲】 大方晶系フェライトの基本成分、保磁力低減のだめの置
換成分およびガラス形成物質を混合溶解し、溶解物を急
速冷却し、得られる非晶質体を熱処理してフェライト微
粒子を析出させ1弱酸処理して微粒子状六方晶系フェラ
イトを製造する方法プ において、溶解物の急速冷却を単ロール上で行うことを
特徴とする六方晶系フェラーイトの製造法。
[Claims] A basic component of macrogonal ferrite, a substitute component for reducing coercive force, and a glass-forming substance are mixed and melted, the melt is rapidly cooled, and the resulting amorphous body is heat-treated to form ferrite fine particles. 1. A method for producing hexagonal ferrite in the form of fine particles by precipitation and treatment with a weak acid, characterized in that the melt is rapidly cooled on a single roll.
JP59012008A 1984-01-27 1984-01-27 Preparation of hexagonal ferrite Pending JPS60161341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59012008A JPS60161341A (en) 1984-01-27 1984-01-27 Preparation of hexagonal ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59012008A JPS60161341A (en) 1984-01-27 1984-01-27 Preparation of hexagonal ferrite

Publications (1)

Publication Number Publication Date
JPS60161341A true JPS60161341A (en) 1985-08-23

Family

ID=11793556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59012008A Pending JPS60161341A (en) 1984-01-27 1984-01-27 Preparation of hexagonal ferrite

Country Status (1)

Country Link
JP (1) JPS60161341A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62175930A (en) * 1986-01-29 1987-08-01 Sony Corp Magnetic recording medium
JP2013042047A (en) * 2011-08-18 2013-02-28 Dowa Electronics Materials Co Ltd Hexagonal ferrite magnetic powder, manufacturing method of the same, and magnetic recording medium using the same
JP2016015519A (en) * 2015-10-05 2016-01-28 Dowaエレクトロニクス株式会社 Method for producing hexagonal crystal ferrite magnetic powder
CN112830776A (en) * 2021-03-25 2021-05-25 电子科技大学 U-shaped hexagonal ferrite material and preparation method thereof
CN113149081A (en) * 2021-04-30 2021-07-23 湘潭大学 Amorphous film coated alpha-Fe2O3Preparation method and application of nano spherical material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065728A (en) * 1983-09-19 1985-04-15 Toshiba Corp Production of magnetic powder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065728A (en) * 1983-09-19 1985-04-15 Toshiba Corp Production of magnetic powder

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62175930A (en) * 1986-01-29 1987-08-01 Sony Corp Magnetic recording medium
JPH077499B2 (en) * 1986-01-29 1995-01-30 ソニー株式会社 Magnetic recording medium
JP2013042047A (en) * 2011-08-18 2013-02-28 Dowa Electronics Materials Co Ltd Hexagonal ferrite magnetic powder, manufacturing method of the same, and magnetic recording medium using the same
JP2016015519A (en) * 2015-10-05 2016-01-28 Dowaエレクトロニクス株式会社 Method for producing hexagonal crystal ferrite magnetic powder
CN112830776A (en) * 2021-03-25 2021-05-25 电子科技大学 U-shaped hexagonal ferrite material and preparation method thereof
CN113149081A (en) * 2021-04-30 2021-07-23 湘潭大学 Amorphous film coated alpha-Fe2O3Preparation method and application of nano spherical material
CN113149081B (en) * 2021-04-30 2022-04-29 湘潭大学 Amorphous film coated alpha-Fe2O3Preparation method and application of nano spherical material

Similar Documents

Publication Publication Date Title
US4493874A (en) Production of a magnetic powder having a high dispersibility
US4341648A (en) Method for manufacturing magnetic powder for high density magnetic recording
US4569775A (en) Method for manufacturing a magnetic powder for high density magnetic recording
US4690768A (en) Process for the preparation of ferrite magnetic particulate for magnetic recording
US4493779A (en) Process for the preparation of ferrite magnetic particulate for magnetic recording
JPS60161341A (en) Preparation of hexagonal ferrite
JP3251753B2 (en) Method for producing Ba ferrite magnetic powder
JPS6324935B2 (en)
JP3083891B2 (en) Magnetic powder for magnetic recording medium and method for producing the same
JPS6353134B2 (en)
JPS6127329B2 (en)
JPH05326233A (en) Production of magnetic powder
JPS6015575B2 (en) Method for producing magnetic powder for magnetic recording
KR960000501B1 (en) Method of preparing high density magnetic hexagonal ferrite powder
JPS6110210A (en) Ferrite magnetic grain for magnetic recording
JPH0472601A (en) Manufacture of magnetic powder for magnetic recording medium
JP2691790B2 (en) Method for producing magnetic powder for magnetic recording medium
JPS6323133B2 (en)
JPS6121921A (en) Preparation of magnetic powder
JP2023152932A (en) Magnetic recording media magnetic powder and method for manufacturing the same
JPS6340302A (en) Magnetic powder for high-density magnetic recording
JPS63170218A (en) Production of ferrite powder
JPH04284604A (en) Manufacture of hexagonal-system ferrite for magnetic recording
JPS6218006A (en) Manufacture of hexagonal ferrite particle powder
JPH0122205B2 (en)