JPH04284604A - Manufacture of hexagonal-system ferrite for magnetic recording - Google Patents

Manufacture of hexagonal-system ferrite for magnetic recording

Info

Publication number
JPH04284604A
JPH04284604A JP3048256A JP4825691A JPH04284604A JP H04284604 A JPH04284604 A JP H04284604A JP 3048256 A JP3048256 A JP 3048256A JP 4825691 A JP4825691 A JP 4825691A JP H04284604 A JPH04284604 A JP H04284604A
Authority
JP
Japan
Prior art keywords
hexagonal
ferrite
compound
glass
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3048256A
Other languages
Japanese (ja)
Inventor
Toshiharu Kurisu
俊治 栗栖
Osamu Kubo
修 久保
Tatsumi Maeda
前田 辰巳
Etsuji Ogawa
悦治 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3048256A priority Critical patent/JPH04284604A/en
Publication of JPH04284604A publication Critical patent/JPH04284604A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a hexagonal-system ferrite whose particle-size distribution is narrow and whose crystallinity is good by a method wherein a compound by individual elements forming the hexagonal-system ferrite expressed by a specific structural formula, SiO2 and a compound which can become a specific compound are mixed and their mixture is heated and melted. CONSTITUTION:A compound by individual elements forming a hexagonal-system ferrite expressed by the formula, a glass formation component, a compound which can become SiO2 as a glass modification component and a compound which can become AO (where A represents one out of Ba, Sr, Ca and Pb) are mixed; their mixture is heated and melted; after that, it is quenched and made amorphous. (In the formula, 0.8<=n<=2.0, 0.55<=x<=2.7, 0.0<=y<2.0, 0.0<=a<=1.0, A represents at least one out of Ba, Sr, Ca and Pb, M1 represents at least one kind out of Co, Ni, Cu, Zr, Mn and Mg, and M2 represents at least one out of Ti, Nb, Sn, Zr, V, Al, Cr, Mo, Ge and W.) Then, this amorphous substance is heat-treated and the ferrite is precipitated and extracted.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】[発明の目的][Object of the invention]

【0002】0002

【産業上の利用分野】本発明は主に高密度磁気記録媒体
の構成に用いられる六方晶系フェライトの製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing hexagonal ferrite mainly used in the construction of high-density magnetic recording media.

【0003】0003

【従来の技術】たとえば塗布形の磁気記録媒体は、ポリ
エチレンテレフタレートフイルムなどから成る基体と、
この基体面上に形成された磁性粉およびバインダレジン
を主成分とする磁性層とで構成されている。そして、こ
のような磁気記録媒体の構成に用いられる磁性粉として
は、従来γ−Fe2 O3 、Co被着γ−Fe2 O
3 、CrO2 あるいは金属Feなどの針状磁性粉を
用い、面内長手方向の磁化を利用する磁気記録方式が採
られていた。
[Prior Art] For example, a coated magnetic recording medium has a base made of polyethylene terephthalate film, etc.
It is composed of magnetic powder formed on the base surface and a magnetic layer mainly composed of binder resin. Conventional magnetic powders used in the construction of such magnetic recording media include γ-Fe2O3, Co-coated γ-Fe2O
3. A magnetic recording method was adopted that utilized acicular magnetic powder such as CrO2 or metal Fe and utilized magnetization in the longitudinal direction in the plane.

【0004】しかし、前記面内長手方向の磁化を利用す
る磁気記録媒体においては、高周波域における記録再生
の向上を図ろうとすると、記録媒体内の減磁界が増加す
るため、記録密度をそれほど向上させることができない
という問題がある。
However, in a magnetic recording medium that utilizes magnetization in the in-plane longitudinal direction, when attempting to improve recording and reproduction in a high frequency range, the demagnetizing field within the recording medium increases, making it difficult to improve the recording density that much. The problem is that I can't.

【0005】一方、磁気記録密度の大幅な改善・向上を
図るため、磁気記録媒体の基体と垂直な方向の磁化を利
用する垂直磁気記録方式が提案されている。つまり、こ
の垂直磁気記録方式の場合は、高周波域においても記録
媒体内の減磁界の問題が生じないので、高密度記録に適
するからである。
On the other hand, in order to significantly improve the magnetic recording density, a perpendicular magnetic recording system has been proposed that utilizes magnetization in a direction perpendicular to the base of a magnetic recording medium. In other words, this perpendicular magnetic recording method is suitable for high-density recording because it does not cause the problem of demagnetizing fields within the recording medium even in a high frequency range.

【0006】前記垂直磁気記録方式に適する記録媒体と
して、Co−Cr合金などを真空蒸着法やスパッタ法に
より基体面上に被着・形成した構成のものが知られてい
る。しかしながら、この種の磁気記録媒体の場合、環境
安定性、走行耐久性、生産性などの点で問題がある。
As a recording medium suitable for the above-mentioned perpendicular magnetic recording system, one in which a Co--Cr alloy or the like is deposited and formed on a substrate surface by a vacuum evaporation method or a sputtering method is known. However, this type of magnetic recording medium has problems in terms of environmental stability, running durability, productivity, etc.

【0007】また、このような問題のない磁気記録媒体
として、基体面上に垂直な方向の磁化を用いる垂直記録
方式に適した高密度垂直記録媒体として、垂直方向に磁
化容易軸を配向し易い六方晶系フェライト、たとえばM
型のBaFe12O19、W型のBaMe2 Fe16
O27(Meは置換金属元素)、M型フェライトとスピ
ネルフェライトとを同時に含むもの、あるいはそれらの
原子の一部を他の元素で置換した六方晶系フェライトを
用いたものが知られている。すなわち、前記六方晶系フ
ェライト粉末を、バインダレジン、溶剤および各種添加
剤とともに混合して磁性塗料を調製し、この磁性塗料を
非磁性基体上に塗布したものが知られている。
[0007] Furthermore, as a magnetic recording medium free from such problems, a high-density perpendicular recording medium suitable for a perpendicular recording method that uses magnetization in a direction perpendicular to the surface of the substrate is used, in which the axis of easy magnetization is easily oriented in the perpendicular direction. Hexagonal ferrite, for example M
type BaFe12O19, W type BaMe2 Fe16
It is known to contain O27 (Me is a substitution metal element), M-type ferrite and spinel ferrite at the same time, or to use hexagonal ferrite in which some of these atoms are replaced with other elements. That is, it is known that a magnetic paint is prepared by mixing the hexagonal ferrite powder with a binder resin, a solvent, and various additives, and this magnetic paint is applied onto a nonmagnetic substrate.

【0008】ところで、このような磁気記録媒体用の六
方晶系フェライトを製造する方法としては、たとえば、
六方晶系フェライトの基本成分と、保磁力低減用の置換
成分と、飽和磁化向上など特性改善用の添加成分および
ガラス形成成分・ガラス修飾成分を混合して加熱溶融さ
せ、この溶融物を急速に冷却して非晶質化(ガラス化)
し、得られた非晶質体に熱処理を施して六方晶系フェラ
イトの結晶粒子を析出させた後、これを粉砕し、得られ
た微粉末をリン酸や酢酸などの希酸で洗浄処理し、ガラ
ス形成成分を溶解除去することなどによって、六方晶系
フェライトを分離抽出するという、ガラス結晶化法が採
られている。
By the way, as a method for manufacturing such hexagonal ferrite for magnetic recording media, for example,
The basic components of hexagonal ferrite, substituent components for reducing coercive force, additive components for improving properties such as improving saturation magnetization, and glass forming components/glass modifying components are mixed and melted by heating, and this melt is rapidly melted. Cool to become amorphous (vitrified)
Then, the obtained amorphous body is heat-treated to precipitate hexagonal ferrite crystal particles, which are then crushed and the resulting fine powder is washed with dilute acid such as phosphoric acid or acetic acid. A glass crystallization method is used in which hexagonal ferrite is separated and extracted by dissolving and removing glass-forming components.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、従来の
ガラス結晶化法では、ガラス形成成分・ガラス修飾成分
としてAO(AはBa、Sr、CaおよびPbから選ば
れた少なくとも1種の元素)となり得る化合物およびB
2 O3 となり得る化合物を用いている。しかして、
これら原料混合物成分の溶融物から得られる非晶質体に
おいては、630 ℃程度の温度で六方晶系フェライト
結晶の析出が始るが、結晶性のよい六方晶系フェライト
を得るためには、非晶質体の熱処理温度を可及的に高く
することが望まれ、たとえば850℃程度以上の温度に
設定すると、逆に高密度磁気記録用に適した微粒子とな
らずに、粒径の大きいものとなり多磁区粒子の生成が起
こるなどという問題がある。
[Problems to be Solved by the Invention] However, in the conventional glass crystallization method, AO (A is at least one element selected from Ba, Sr, Ca, and Pb) can be used as a glass forming component/glass modifying component. Compound and B
A compound that can become 2 O3 is used. However,
In the amorphous body obtained from the melt of these raw material mixture components, hexagonal ferrite crystals begin to precipitate at a temperature of about 630°C, but in order to obtain hexagonal ferrite with good crystallinity, it is necessary to It is desirable to make the heat treatment temperature of the crystalloids as high as possible; for example, if the temperature is set at about 850°C or higher, the particles will not be suitable for high-density magnetic recording, but instead will have large particle sizes. This causes problems such as the generation of multi-domain particles.

【0010】本発明はこのような問題を解決するために
なされたもので、粒度分布が狭くて結晶性の良好な六方
晶系フェライトを常に製造し得る方法の提供を目的とす
る。[発明の構成]
The present invention has been made to solve these problems, and its object is to provide a method that can consistently produce hexagonal ferrite having a narrow particle size distribution and good crystallinity. [Structure of the invention]

【0011】[0011]

【課題を解決するための手段】本発明に係る磁気記録用
六方晶系フェライトの製造方法は、一般式、AO・n(
Fe12−x−yM1 x M2 y O18−a)(
但し、0.8 ≦n≦2.0 、0.55≦x≦2.7
 、0.0 ≦y<2.0 、0.0 ≦a≦1.0 
、AはBa、Sr、CaおよびPbの中から選ばれた少
なくとも1種の元素、M1はCo、  Ni、Cu、Z
n、MnおよびMgの中から選ばれた少なくとも1種の
元素、M2 はTi、Nb、Sn、Zr、V、Al、C
r、Mo、GeおよびWの中から選ばれた少なくとも1
種の元素)で示される六方晶系フェライトを形成する各
元素の化合物と、ガラス形成成分・ガラス修飾成分とし
てのSiO2 になり得る化合物とAO(AはBa、S
r、CaおよびPbの中から選ばれた少なくとも1種)
になり得る化合物とを、混合して加熱溶融させた後、急
速冷却を施して非晶質化した後、その非晶質体に熱処理
を施して六方晶系フェライトを析出させ、さらに析出し
た六方晶系フェライトを抽出することを特徴とする。
[Means for Solving the Problems] A method for manufacturing a hexagonal ferrite for magnetic recording according to the present invention has a general formula: AO・n(
Fe12-x-yM1 x M2 y O18-a)(
However, 0.8≦n≦2.0, 0.55≦x≦2.7
,0.0≦y<2.0 ,0.0≦a≦1.0
, A is at least one element selected from Ba, Sr, Ca and Pb, M1 is Co, Ni, Cu, Z
At least one element selected from n, Mn and Mg, M2 is Ti, Nb, Sn, Zr, V, Al, C
At least one selected from r, Mo, Ge and W
Compounds of each element forming hexagonal ferrite shown as seed elements), compounds that can become SiO2 as a glass forming component/glass modifying component, and AO (A is Ba, S
at least one selected from r, Ca, and Pb)
After mixing and heating and melting a compound that can become It is characterized by extracting crystalline ferrite.

【0012】さらに要すれば、前記においてガラス形成
成分・ガラス修飾成分の組成比を、 0.8 <AO/SiO2 <2.5 に選択・設定することを特徴とする。
[0012] Furthermore, in the above method, the composition ratio of the glass-forming component and the glass-modifying component is selected and set to 0.8 <AO/SiO2 <2.5.

【0013】ここで、n、x、y、aが上記範囲を外れ
ると、形成される六方晶系フェライトの保磁力が200
 〜2000 Oe の範囲外となって、記録信号の保
持が不可能となったり、あるいは記録が困難となる。さ
らに、ガラス形成成分・ガラス修飾成分の比率は必ずし
も限定されないが、上記のように0.8 <AO/Si
O2 <2.5 の範囲外に選択・設定した場合は、熱
処理が施された物質から六方晶系フェライトを抽出し難
い傾向や、六方晶系フェライト以外の相も生成する傾向
がある。さらにまた、六方晶系フェライトの基本成分お
よび保磁力制御用の置換成分の量の和は、30〜50モ
ル% の範囲が好ましい。つまり、30モル% より少
ないと粒径が大きくなり過ぎの傾向があり、また50モ
ル% を超えると溶融温度が高くなるばかりでなく、熱
処理後における六方晶系フェライトの抽出が困難な傾向
があるからである。
[0013] If n, x, y, and a are out of the above range, the coercive force of the hexagonal ferrite formed will be 200
-2000 Oe, and it becomes impossible to hold the recording signal or recording becomes difficult. Further, the ratio of the glass forming component/glass modifying component is not necessarily limited, but as mentioned above, 0.8 <AO/Si
When O2 is selected and set outside the range of <2.5, it tends to be difficult to extract hexagonal ferrite from the heat-treated material, and phases other than hexagonal ferrite tend to be generated. Furthermore, the sum of the amounts of the basic component of the hexagonal ferrite and the substituted component for coercive force control is preferably in the range of 30 to 50 mol%. In other words, if it is less than 30 mol%, the particle size tends to become too large, and if it exceeds 50 mol%, not only does the melting temperature become high, but it also tends to be difficult to extract hexagonal ferrite after heat treatment. It is from.

【0014】本発明において、六方晶系フェライトの基
本成分は、BaO、SrO、CaOおよびPbOから選
ばれた少なくとも1種とFe2 O3 であり、また、
保磁力制御のための置換成分は、CoO、NiO、Cu
O、ZnO、MgO、TiO2 、Nb2 O5 、S
nO2 、ZrO2 、V2 O5 、CrO2 、M
oO2 、MoO、Al2 O3 、GeO2 および
WO2 から選ばれた少なくとも1種である。さらに、
ガラス形成成分・ガラス修飾成分は、BaO、SrO、
CaOおよびPbOから選ばれる少なくとも1種と、S
iO2 が用いられる。そして、これらの各成分は、た
とえば炭酸化合物など他の形態の化合物を用いてもよい
In the present invention, the basic components of the hexagonal ferrite are at least one selected from BaO, SrO, CaO and PbO and Fe2O3, and
Substitution components for coercive force control include CoO, NiO, and Cu.
O, ZnO, MgO, TiO2, Nb2O5, S
nO2, ZrO2, V2O5, CrO2, M
It is at least one selected from oO2, MoO, Al2O3, GeO2 and WO2. moreover,
Glass forming components and glass modification components include BaO, SrO,
at least one selected from CaO and PbO, and S
iO2 is used. For each of these components, other forms of compounds such as carbonate compounds may be used.

【0015】本発明に係る製造方法は、一般的に次のよ
うに行なわれる。すなわち、上記のように選択された原
料を十分に混合し、たとえば1350〜1600℃程度
の温度で加熱溶融した後、この溶融物をたとえば双ロー
ル間に落として急冷し非晶質体とする。次いで、この非
晶質体に800 〜1050℃程度好ましくは900 
℃以上の温度で熱処理を施し、六方晶系フェライトを析
出させた後、粉砕してから酸および水によりガラス成分
を除去し、前記析出した六方晶系フェライトを抽出して
乾燥することによって、所望の結晶性良好な六方晶系フ
ェライトが得られる。
The manufacturing method according to the present invention is generally carried out as follows. That is, after the raw materials selected as described above are sufficiently mixed and melted by heating at a temperature of, for example, about 1,350 to 1,600° C., the melt is dropped between, for example, twin rolls and rapidly cooled to form an amorphous material. Next, this amorphous body is heated to about 800 to 1050°C, preferably 900°C.
After precipitating hexagonal ferrite by heat treatment at a temperature of ℃ or higher, the glass component is removed with acid and water after pulverization, and the precipitated hexagonal ferrite is extracted and dried to form the desired material. Hexagonal ferrite with good crystallinity is obtained.

【0016】[0016]

【作用】本発明に係る磁気記録用六方晶系フェライトの
製造方法においては、ガラス形成成分・ガラス修飾成分
としてSiO2 となり得る化合物、AOとなり得る化
合物とを用いることによって、均一性のよい溶融物が容
易に得られるばかりでなく、微粒径で粒度分布が狭くか
つ板状比も大きくて、磁気記録用に適する結晶性の良好
な六方晶系フェライトを再現性よく得ることができる。
[Function] In the method for producing hexagonal ferrite for magnetic recording according to the present invention, by using a compound that can become SiO2 and a compound that can become AO as glass-forming components and glass-modifying components, a melt with good uniformity can be obtained. Hexagonal ferrite is not only easily obtained, but also has fine grain size, narrow particle size distribution, and large plate-like ratio, and has good crystallinity suitable for magnetic recording, and can be obtained with good reproducibility.

【0017】[0017]

【実施例】以下、本発明の実施例を説明する。[Examples] Examples of the present invention will be described below.

【0018】六方晶系フェライトの基本成分および保磁
力制御用の置換成分の和が、37.5モル% になるよ
うにし、各原料組成分を秤量した。なお、CoおよびT
iを置換成分としてその置換量x=y=0.77とし、
n=1.0 、a=0.0 とし、さらにAO=BaO
とした。
Each raw material composition was weighed so that the sum of the basic component of the hexagonal ferrite and the substituted component for coercive force control was 37.5 mol %. In addition, Co and T
Let i be a replacement component and its replacement amount x = y = 0.77,
n=1.0, a=0.0, and AO=BaO
And so.

【0019】また、析出した六方晶系フェライトの形状
は、透過電子顕微鏡写真上で400 個の粒子について
測定を行い算出し、結晶性の比較のため酸洗浄廃液中の
CoO量をICP発光分析により調べた。さらに磁気特
性は振動試料型磁力計にて最大磁界10 KOeを印加
して測定した。
In addition, the shape of the precipitated hexagonal ferrite was calculated by measuring 400 particles on a transmission electron micrograph, and the amount of CoO in the acid washing waste liquid was measured by ICP emission spectrometry to compare the crystallinity. Examined. Furthermore, the magnetic properties were measured by applying a maximum magnetic field of 10 KOe using a vibrating sample magnetometer.

【0020】実施例1 上記原料組成分の調製において、BaO/SiO2 =
1.0 と選択調製した原料組成分をそれぞれ白金ルツ
ボ内に収容し、1500℃で溶融した。このそれぞれの
溶融物を急速回転する双ローラ上に落とし、圧延急冷し
て非晶質体を得た。こうして得た非晶質体を900 ℃
で5時間保持の条件で熱処理して六方晶系フェライトを
析出させた後、粉砕しさらに20%酢酸溶液での酸洗浄
、水洗浄を順次施して六方晶系Baフェライトを抽出し
、これを乾燥処理して六方晶系Baフェライト粉末を得
た。
Example 1 In the preparation of the above raw material composition, BaO/SiO2 =
1.0 and the raw material compositions selected and prepared were respectively placed in a platinum crucible and melted at 1500°C. Each of the melts was dropped onto rapidly rotating twin rollers and rapidly cooled by rolling to obtain an amorphous body. The amorphous body thus obtained was heated to 900°C.
Hexagonal Ba ferrite was precipitated by heat treatment under conditions of holding for 5 hours, and then crushed, followed by acid washing with a 20% acetic acid solution and water washing to extract hexagonal Ba ferrite, which was then dried. After treatment, hexagonal Ba ferrite powder was obtained.

【0021】前記で得た六方晶系Baフェライトの磁気
特性などを測定したところ、保磁力910 Oe、飽和
磁化 56 emu/g 、角型比 0.50 、平均
粒径 48 nm、比表面積40 m2 /gであった
。また、酸洗浄廃液中のCoO量は 8 ppmであっ
た。
When the magnetic properties of the hexagonal Ba ferrite obtained above were measured, the coercive force was 910 Oe, the saturation magnetization was 56 emu/g, the squareness ratio was 0.50, the average grain size was 48 nm, and the specific surface area was 40 m2. /g. Further, the amount of CoO in the acid washing waste liquid was 8 ppm.

【0022】実施例2 上記原料組成分の調製において、BaO/SiO2 =
2.0 と選択調製した原料組成分をそれぞれ白金ルツ
ボ内に収容し、1500℃で溶融した。このそれぞれの
溶融物を急速回転する双ローラ上に落とし、圧延急冷し
て非晶質体を得た。こうして得た非晶質体を900 ℃
で5時間保持の条件で熱処理して六方晶系フェライトを
析出させた後、粉砕しさらに20%酢酸溶液での酸洗浄
、水洗浄を順次施して六方晶系Baフェライトを抽出し
、これを乾燥処理して六方晶系Baフェライト粉末を得
た。
Example 2 In the preparation of the above raw material composition, BaO/SiO2 =
2.0 and the selected raw material compositions were placed in a platinum crucible and melted at 1500°C. Each of the melts was dropped onto rapidly rotating twin rollers and rapidly cooled by rolling to obtain an amorphous body. The amorphous body thus obtained was heated to 900°C.
Hexagonal Ba ferrite was precipitated by heat treatment under conditions of holding for 5 hours, and then crushed, followed by acid washing with a 20% acetic acid solution and water washing to extract hexagonal Ba ferrite, which was then dried. After treatment, hexagonal Ba ferrite powder was obtained.

【0023】前記で得た六方晶系Baフェライトの磁気
特性などを測定したところ、保磁力1100 Oe 、
飽和磁化 55 emu/g 、角型比 0.50 、
比表面積46 m2 /gであった。また、酸洗浄廃液
中のCoO量は 10 ppm であった。
When the magnetic properties of the hexagonal Ba ferrite obtained above were measured, the coercive force was 1100 Oe,
Saturation magnetization 55 emu/g, squareness ratio 0.50,
The specific surface area was 46 m2/g. Further, the amount of CoO in the acid washing waste liquid was 10 ppm.

【0024】比較例1 上記原料組成分の調製において、BaO/B2 O3 
=1.14と選択調製した原料組成分をそれぞれ白金ル
ツボ内に収容し、1500℃で溶融した。このそれぞれ
の溶融物を急速回転する双ローラ上に落とし、圧延急冷
して非晶質体を得た。こうして得た非晶質体を760 
℃で5時間保持の条件で熱処理して六方晶系フェライト
を析出させた後、粉砕しさらに20%酢酸溶液での酸洗
浄、水洗浄を順次施して六方晶系Baフェライトを抽出
し、これを乾燥処理して六方晶系Baフェライト粉末を
得た。
Comparative Example 1 In the preparation of the above raw material composition, BaO/B2 O3
= 1.14 and the raw material compositions selected and prepared were each placed in a platinum crucible and melted at 1500°C. Each of the melts was dropped onto rapidly rotating twin rollers and rapidly cooled by rolling to obtain an amorphous body. The amorphous body thus obtained was 760
Hexagonal Ba ferrite was precipitated by heat treatment at ℃ for 5 hours, then crushed and washed with 20% acetic acid solution and water to extract hexagonal Ba ferrite. A hexagonal Ba ferrite powder was obtained by drying.

【0025】前記で得た六方晶系Baフェライトの磁気
特性などを測定したところ、保磁力1070 Oe 、
飽和磁化 53.5 emu/g 、角型比 0.47
 、平均粒径 48 nm、比表面積40m2 /gで
あった。また、酸洗浄廃液中のCoO量は 38 pp
m であった。
When the magnetic properties of the hexagonal Ba ferrite obtained above were measured, the coercive force was 1070 Oe,
Saturation magnetization 53.5 emu/g, squareness ratio 0.47
The average particle size was 48 nm, and the specific surface area was 40 m2/g. In addition, the amount of CoO in the acid washing waste liquid was 38 pp.
It was m.

【0026】比較例2 上記原料組成分の調製において、BaO/SiO2 =
0.5 と選択調製した原料組成分をそれぞれ白金ルツ
ボ内に収容し、1500℃で溶融した。このそれぞれの
溶融物を急速回転する双ローラ上に落とし、圧延急冷し
て非晶質体を得た。こうして得た非晶質体を900 ℃
で5時間保持の条件で熱処理して六方晶系フェライトを
析出させた後、粉砕しさらに20%酢酸溶液での酸洗浄
、水洗浄を順次施して六方晶系Baフェライトを抽出し
たが、X線回析したところガラスの結晶化したものが残
存していた。
Comparative Example 2 In the preparation of the above raw material composition, BaO/SiO2 =
0.5 and the selected raw material compositions were placed in a platinum crucible and melted at 1500°C. Each of the melts was dropped onto rapidly rotating twin rollers and rapidly cooled by rolling to obtain an amorphous body. The amorphous body thus obtained was heated to 900°C.
Hexagonal Ba ferrite was precipitated by heat treatment under conditions of holding for 5 hours, which was then crushed and further acid washed with a 20% acetic acid solution and water washed sequentially to extract the hexagonal Ba ferrite. Diffraction revealed that crystallized glass remained.

【0027】比較例3 上記原料組成分の調製において、BaO/SiO2 =
3.0 と選択調製した原料組成分をそれぞれ白金ルツ
ボ内に収容し、1500℃で溶融した。このそれぞれの
溶融物を急速回転する双ローラ上に落とし、圧延急冷し
て非晶質体を得た。うして得た非晶質体を1050℃で
5時間保持の条件で熱処理して六方晶系フェライトを析
出させた後、粉砕しさらに20%酢酸溶液での酸洗浄、
水洗浄を順次施して六方晶系Baフェライトを抽出した
が、X線回析したところFe3 O4 が生成していた
。  上記実施例および比較例から分かるように、非晶
質体の熱処理を低温で行った場合、酸洗浄廃液中のCo
O量も多い。このことは、置換成分としてのCoOが十
分に、六方晶系Baフェライト中に取り込まれておらず
結晶性の悪いことを示唆しており、また十分な置換が行
われていないことは、たとえば実施例1の場合に対して
比較例1の場合の方が、飽和磁化および角型比が小さい
ことからも容易に推察し得る。
Comparative Example 3 In the preparation of the above raw material composition, BaO/SiO2 =
3.0 and the selected raw material compositions were placed in a platinum crucible and melted at 1500°C. Each of the melts was dropped onto rapidly rotating twin rollers and rapidly cooled by rolling to obtain an amorphous body. The amorphous material thus obtained was heat treated at 1050° C. for 5 hours to precipitate hexagonal ferrite, and then ground, followed by acid washing with a 20% acetic acid solution.
The hexagonal Ba ferrite was extracted by successive water washings, but X-ray diffraction revealed that Fe3O4 was produced. As can be seen from the above Examples and Comparative Examples, when the amorphous material is heat-treated at a low temperature, Co
The amount of O is also large. This suggests that CoO as a substituted component is not sufficiently incorporated into the hexagonal Ba ferrite, resulting in poor crystallinity. This can be easily inferred from the fact that the saturation magnetization and squareness ratio are smaller in Comparative Example 1 than in Example 1.

【0028】なお、本発明に係る磁気記録用六方晶系フ
ェライトの製造方法は、前記例示に限定されるものでな
く、たとえば六方晶系フェライトの基本成分および置換
成分の量の和が37.5 mol% 以外の場合、Ba
フェライトの代わりにSrフェライトなど他のフェライ
トの場合、あるいは置換元素がCoやTi以外の場合で
も同様な傾向ないし結果が認められた。
Note that the method for manufacturing hexagonal ferrite for magnetic recording according to the present invention is not limited to the above-mentioned example; for example, when the sum of the amounts of the basic component and substituted component of the hexagonal ferrite is 37.5 In cases other than mol%, Ba
Similar trends and results were observed when other ferrites such as Sr ferrite were used instead of ferrite, or when the substitution element was other than Co or Ti.

【0029】[0029]

【発明の効果】以上の説明からも明らかなように、ガラ
ス結晶化法による六方晶系フェライトの製造に当たり、
ガラス形成成分・ガラス修飾成分として、SiO2 と
なり得る化合物およびAOとなり得る化合物を特に用い
る本発明の製造方法によれば、非晶質体の熱処理温度を
高めることが可能となるため、結晶性の良好な六方晶系
フェライトを析出し、しかもその粒度分布が狭くかつ板
状比が大きく、また塗料化の際も良好な分散性を呈する
。 すなわち、本発明の製造方法によれば、高密度磁気記録
用として好適する六方晶系フェライトを、再現性よく得
ることができる。
[Effects of the Invention] As is clear from the above explanation, in producing hexagonal ferrite by the glass crystallization method,
According to the production method of the present invention, in which a compound capable of forming SiO2 and a compound capable of forming AO are used as glass-forming components and glass-modifying components, it is possible to increase the heat treatment temperature of the amorphous material, resulting in good crystallinity. It precipitates hexagonal ferrite, which has a narrow particle size distribution and a large plate-like ratio, and exhibits good dispersibility when made into a paint. That is, according to the manufacturing method of the present invention, hexagonal ferrite suitable for high-density magnetic recording can be obtained with good reproducibility.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  一般式、 AO・n(Fe12−x−yM1 x M2 y O1
8−a)(但し、0.8 ≦n≦2.0 、0.55≦
x≦2.7 、0.0 ≦y<2.0 、0.0 ≦a
≦1.0 、AはBa、Sr、CaおよびPbの中から
選ばれた少なくとも1種の元素、M1はCo、  Ni
、Cu、Zn、MnおよびMgの中から選ばれた少なく
とも1種の元素、M2 はTi、Nb、Sn、Zr、V
、Al、Cr、Mo、GeおよびWの中から選ばれた少
なくとも1種の元素)で示される六方晶系フェライトを
形成する各元素の化合物と、ガラス形成成分・ガラス修
飾成分としてのSiO2 になり得る化合物と、AO(
AはBa、Sr、CaおよびPbの中から選ばれた少な
くとも1種)になり得る化合物とを、混合して加熱溶融
させた後、急速冷却を施して非晶質化する工程と、前記
形成した非晶質体に所定温度の熱処理を施して六方晶系
フェライトを析出させる工程と、前記析出した六方晶系
フェライトを抽出する工程とを備えたことを特徴とする
磁気記録用六方晶系フェライトの製造方法。
[Claim 1] General formula, AO・n(Fe12-x-yM1 x M2 y O1
8-a) (However, 0.8≦n≦2.0, 0.55≦
x≦2.7, 0.0≦y<2.0, 0.0≦a
≦1.0, A is at least one element selected from Ba, Sr, Ca and Pb, M1 is Co, Ni
, Cu, Zn, Mn and Mg; M2 is Ti, Nb, Sn, Zr, V
, Al, Cr, Mo, Ge, and W) and SiO2 as a glass-forming component and a glass-modifying component. The obtained compound and AO(
A is a compound that can be at least one selected from Ba, Sr, Ca, and Pb), a step of mixing and melting by heating, and then rapid cooling to make it amorphous; A hexagonal ferrite for magnetic recording, comprising the steps of: precipitating hexagonal ferrite by subjecting the amorphous body to heat treatment at a predetermined temperature; and extracting the precipitated hexagonal ferrite. manufacturing method.
【請求項2】  請求項1において、ガラス形成成分・
ガラス修飾成分としての化合物が酸化物換算でのモル比
で、0.8 <AO/SiO2 <2.5 に選択・設
定された磁気記録用六方晶系フェライトの製造方法。
2. According to claim 1, the glass-forming component/
A method for producing hexagonal ferrite for magnetic recording, in which a molar ratio of a compound as a glass modification component in terms of oxide is selected and set to 0.8 <AO/SiO2 <2.5.
JP3048256A 1991-03-13 1991-03-13 Manufacture of hexagonal-system ferrite for magnetic recording Withdrawn JPH04284604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3048256A JPH04284604A (en) 1991-03-13 1991-03-13 Manufacture of hexagonal-system ferrite for magnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3048256A JPH04284604A (en) 1991-03-13 1991-03-13 Manufacture of hexagonal-system ferrite for magnetic recording

Publications (1)

Publication Number Publication Date
JPH04284604A true JPH04284604A (en) 1992-10-09

Family

ID=12798368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3048256A Withdrawn JPH04284604A (en) 1991-03-13 1991-03-13 Manufacture of hexagonal-system ferrite for magnetic recording

Country Status (1)

Country Link
JP (1) JPH04284604A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110244272A1 (en) * 2010-03-31 2011-10-06 Fujifilm Corporation Hexagonal ferrite magnetic particle and method of manufacturing the same, and magnetic recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110244272A1 (en) * 2010-03-31 2011-10-06 Fujifilm Corporation Hexagonal ferrite magnetic particle and method of manufacturing the same, and magnetic recording medium
US8545714B2 (en) * 2010-03-31 2013-10-01 Fujifilm Corporation Hexagonal ferrite magnetic particle and method of manufacturing the same, and magnetic recording medium
US9251833B2 (en) 2010-03-31 2016-02-02 Fujifilm Corporation Hexagonal ferrite magnetic particle and method of manufacturing the same, and magnetic recording medium

Similar Documents

Publication Publication Date Title
JPH0690969B2 (en) Magnetic powder for magnetic recording medium and magnetic recording medium using the same
JPS6015577B2 (en) Method for producing magnetic powder for magnetic recording
JPH0512842B2 (en)
JPH0986906A (en) Production of functional oxide powder for functional thin film
JP3251753B2 (en) Method for producing Ba ferrite magnetic powder
JPH04284604A (en) Manufacture of hexagonal-system ferrite for magnetic recording
JPH01200605A (en) Magnetic powder
JP3083891B2 (en) Magnetic powder for magnetic recording medium and method for producing the same
JP3576332B2 (en) Magnetic powder for magnetic recording
JPH04284603A (en) Manufacture of hexagonal-system ferrite powder for magnetic recording
JP2515328B2 (en) Hexagonal ferrite fine particles and method for producing the same
JP2691790B2 (en) Method for producing magnetic powder for magnetic recording medium
JP3429881B2 (en) Composite type hexagonal ferrite magnetic powder and method for producing the same
JPH0727809B2 (en) Method for producing hexagonal ferrite powder
JP2717720B2 (en) Method for producing magnetic powder for magnetic recording medium
JPS61278104A (en) Manufacture of hexagonal system ferrite particle powder
KR960000501B1 (en) Method of preparing high density magnetic hexagonal ferrite powder
JPH04337521A (en) Magnetic powder for magnetic recording medium and magnetic recording medium formed by using the powder
JPH0685370B2 (en) Method for producing hexagonal ferrite powder
JPH04285015A (en) Manufacture of hexagonal ferrite for magnetic recording
JP2802653B2 (en) Magnetic powder for high-density magnetic recording and method for producing the same
JPH0685371B2 (en) Method for producing hexagonal ferrite powder
JP2706774B2 (en) Method for producing substitution type hexagonal ferrite magnetic powder
JPS6127329B2 (en)
JP2735281B2 (en) Method for producing magnetic powder for magnetic recording medium

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514