JPH028372B2 - - Google Patents

Info

Publication number
JPH028372B2
JPH028372B2 JP54102182A JP10218279A JPH028372B2 JP H028372 B2 JPH028372 B2 JP H028372B2 JP 54102182 A JP54102182 A JP 54102182A JP 10218279 A JP10218279 A JP 10218279A JP H028372 B2 JPH028372 B2 JP H028372B2
Authority
JP
Japan
Prior art keywords
magnetic
weight
recording medium
average particle
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP54102182A
Other languages
Japanese (ja)
Other versions
JPS5629840A (en
Inventor
Noboru Takahashi
Setsuo Ozaki
Hiromasa Isono
Toshikazu Nishihara
Kenji Ikushima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP10218279A priority Critical patent/JPS5629840A/en
Publication of JPS5629840A publication Critical patent/JPS5629840A/en
Publication of JPH028372B2 publication Critical patent/JPH028372B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は磁気記録媒体に係り、Feを主成分と
する金属磁性粉を用いた磁気記録媒体において、
該磁気記録媒体の磁性層中に、平均粒子径が1〜
2μmでかつ粒子表面に鋭角なエツジ部の形成され
ているモース硬度が6.5以上の無機質粒子を該金
属磁性粉に対して2〜15重量%含むようにしたこ
とにより、磁気テープ等を磁気記録再生装置に装
着して走行させた場合に磁気ヘツド表面が着色す
る現象をなくすことができ、かつ磁性層表面が平
滑でドロツプアウト等が少なく、さらには最大磁
束密度等磁気特性の良好な磁気記録媒体を提供す
ることを目的とする。 磁気記録媒体の磁性粉としては、従来γ―
Fe2O3等の酸化物が主として用いられてきたが、
これらの酸化物磁性粉を用いた磁気記録媒体は、
保磁力及び磁束密度が小さいため高密度記録に適
してなく、最近に至りFe等の金属系の磁性粉が
用いられるようになつている。これは、Fe等の
金属磁性粉の保磁力及び磁束密度が酸化物磁性粉
のものより大きく、その結果高密度記録に適して
いるからである。しかし、磁性粉として酸化物で
なく金属磁性粉を用いた場合に、磁気記録媒体の
他の組成物を酸化物磁性粉の場合と同じようにし
たのでは種々の問題が生じた。すなわち、金属磁
性粉は粒子自体の持つ磁化が酸化物磁性粉のもの
よりも大きく、磁性塗料中において分散しにくい
ので、分散性向上を図ると金属磁性粉粒子がこわ
れやすくなり、その結果磁気特性の劣化を起こ
す。 又、酸化物磁性粉の場合には硬度が大きいので
傷付等が生じにくいが、金属磁性粉の硬度は小さ
いので塗膜強度は弱く、又傷付きやすかつた。 そこで、この様な磁気記録媒体には、塗膜の結
合強度向上および磁気ヘツド等でこすられた際に
塗膜がはがれたり粉落ち等がおきて磁気ヘツドの
目づまり等がおきることを防止するために、研磨
材が加えられている。特に、金属磁性粉の場合に
は、磁気記録媒体の必須の構成要素として酸化物
磁性粉の場合よりも多量加えられている。そし
て、この研磨材の粒径は磁気テープ表面の平滑性
等より出来るだけ小さい方が望ましいとされてお
り、例えば約0.3〜0.5μmの粒径のものが用いられ
ている。また、この研磨材の粒子形状は、磁性体
粒子の中に均一に分散させることが容易なことな
どより、球状である方が望ましいとされている。 しかるに、この様な研磨材を用いた磁気テープ
をテープレコーダ等に装着して走行させている
と、磁気テープとの接触面である磁気ヘツド表面
が着色して、例えば黄褐色ないしは青紫色、場合
によつては暗紫色に変色するといつたブラウンコ
ーテイング現象が見い出された。 この磁気ヘツド表面に付着する着色物は、あら
ゆる有機溶剤に溶解せず、またX線マイクロ分析
あるいはマイクロオージエ分析等の分析手段によ
つてもその組成物は不明であり、かつその発生原
因も不明であつた。そして、このブラウンコーテ
イング現象の生じた磁気ヘツドをブラウンコーテ
イング現象の生じていない磁気ヘツドと比較した
場合に、その性能はそれ程低下することもないも
のであるが、磁気ヘツドが着色することにより、
使用者はその性能が低下したのではないかと不安
になつたり、さらには見ばえが悪くなり商品価値
も低下してしまう。 このブラウンコーテイング現象は、磁気テープ
の磁性粉として金属磁性粉を用い、かつ磁気ヘツ
ドの構成材料としてセンダスト系合金等の金属材
料を用いている場合に顕著に表れることに気付い
た。例えば、磁性粉としてγ―Fe2O3あるいは
CrO2等の酸化物磁性粉を用いて作つた磁気テー
プの場合には、磁気ヘツドの構成材料としてセン
ダスト系合金等を用いていても磁気ヘツド表面は
変色せず、ブラウンコーテイング現象は認められ
ないのに反し、磁性粉のみを金属磁性粉にかえ、
そして磁性層中の他の組成物はγ―Fe2O3の磁性
粉の場合と全く同じ組成物を用いて作つた磁気テ
ープをセンダスト系合金等の磁気ヘツドに対して
用いると、磁気ヘツド表面は著しく変色し、ブラ
ウンコーテイング現象が認められた。 この状況を実験してまとめた結果を表1に示
す。表1の内容は、通常使用される粒子形状の研
磨材を使用したときの実験結果であり、本発明の
目的は、この磁気テープにおけるブラウンコーテ
イング現象を除去することにある。次にこの磁気
テープに種々な研磨材を用いた実験例について述
べる。 この一連の実施例は、ブラウンコーテイング現
象の解決のため、エツジ部の鋭角な破砕型粒子を
用いたものである。
The present invention relates to a magnetic recording medium, and in a magnetic recording medium using metal magnetic powder containing Fe as a main component,
In the magnetic layer of the magnetic recording medium, the average particle diameter is 1 to 1.
By containing 2 to 15% by weight of inorganic particles with a Mohs hardness of 6.5 or higher and having a diameter of 2 μm and sharp edges on the particle surface, it is possible to magnetically record and reproduce magnetic tapes, etc. It is possible to eliminate the phenomenon of coloring of the surface of the magnetic head when it is attached to a device and run it, and the magnetic layer surface is smooth, there is little dropout, etc., and furthermore, the magnetic recording medium has good magnetic properties such as maximum magnetic flux density. The purpose is to provide. Traditionally, γ-
Oxides such as Fe 2 O 3 have been mainly used, but
Magnetic recording media using these oxide magnetic powders are
Because of their low coercive force and low magnetic flux density, they are not suitable for high-density recording, and recently metal-based magnetic powders such as Fe have come to be used. This is because the coercive force and magnetic flux density of metal magnetic powder such as Fe are larger than those of oxide magnetic powder, and as a result, it is suitable for high-density recording. However, when metal magnetic powder is used instead of oxide as the magnetic powder, various problems arise if the other compositions of the magnetic recording medium are the same as in the case of oxide magnetic powder. In other words, the magnetization of the metal magnetic powder particles themselves is larger than that of oxide magnetic powder, and it is difficult to disperse in magnetic paint. Therefore, if you try to improve the dispersibility, the metal magnetic powder particles will break easily, and as a result, the magnetic properties will deteriorate. cause deterioration. In addition, in the case of oxide magnetic powder, the hardness is high, so it is difficult to cause scratches, but the hardness of metal magnetic powder is low, so the coating film strength is weak and it is easily scratched. Therefore, such magnetic recording media are required to improve the bonding strength of the coating film and to prevent the coating film from peeling off or powder falling off when rubbed by a magnetic head, etc., and clogging the magnetic head. For this reason, abrasives are added. In particular, in the case of metal magnetic powder, a larger amount is added as an essential component of the magnetic recording medium than in the case of oxide magnetic powder. It is desirable that the particle size of this abrasive be as small as possible in view of the smoothness of the surface of the magnetic tape, and for example, a particle size of about 0.3 to 0.5 μm is used. Further, it is said that it is preferable that the particle shape of this abrasive is spherical because it is easy to uniformly disperse it in the magnetic particles. However, when a magnetic tape using such an abrasive material is mounted on a tape recorder or the like and run, the surface of the magnetic head, which is the contact surface with the magnetic tape, becomes colored, for example, yellowish brown or bluish-purple. In some cases, a brown coating phenomenon was found where the color changed to dark purple. The colored matter that adheres to the surface of the magnetic head does not dissolve in any organic solvent, and its composition is unknown even by analytical means such as X-ray microanalysis or microausier analysis, and the cause of its occurrence is unknown. It was unclear. When a magnetic head with this brown coating phenomenon is compared with a magnetic head without the brown coating phenomenon, its performance does not deteriorate significantly, but due to the coloring of the magnetic head,
The user becomes worried that the performance has deteriorated, and furthermore, the appearance becomes bad and the commercial value decreases. It has been noticed that this brown coating phenomenon appears conspicuously when metal magnetic powder is used as the magnetic powder of the magnetic tape and a metal material such as a sendust alloy is used as the constituent material of the magnetic head. For example, γ-Fe 2 O 3 or
In the case of magnetic tapes made using oxide magnetic powder such as CrO 2 , the surface of the magnetic head does not change color and no brown coating phenomenon is observed even if Sendust alloy is used as the component material of the magnetic head. Contrary to this, only the magnetic powder is replaced with metal magnetic powder,
The other composition in the magnetic layer is that when a magnetic tape made using the same composition as the magnetic powder of γ-Fe 2 O 3 is used for a magnetic head made of Sendust alloy, etc., the surface of the magnetic head is The color changed significantly and a brown coating phenomenon was observed. Table 1 shows the results of experiments on this situation. The contents of Table 1 are the results of experiments using commonly used abrasives in the form of particles, and the purpose of the present invention is to eliminate this brown coating phenomenon in magnetic tapes. Next, we will discuss experimental examples using various abrasives on this magnetic tape. In this series of examples, crushed particles with sharp edges were used to solve the brown coating phenomenon.

【表】 例えば、金属磁性粉として鉄を主成分とする針
状磁性粉約100重量部、結合剤約20重量部、トル
エン、メチルエチルケトンおよびメチルイソプチ
ルケトン等の溶剤約290重量部、分散剤約2重量
部、滑剤約2重量部及び研磨材として粒径が約
0.3μm(以下、単にμと記す)の比較的球状の
Cr2O3約5〜15重量部を混合した磁性塗料をポリ
エステルフイルム上に塗布して作つた磁気テープ
を、センダスト系合金より作つた磁気ヘツドのテ
ープレコーダに装着して走行させていると、磁気
ヘツド表面が変色してブラウンコーテイング現象
が認められた。また、研磨材として上記例のかわ
りに粒径が約0.5μの比較的球状のAl2O3約5〜15
重量部を用いて作つた磁気テープの場合も、同様
にブラウンコーテイング現象が認められた。ま
た、研磨材として三酸化二クロム(以下Cr2O3
記すこともある)とAl2O3の混合物、例えば上記
Al2O3約10重量部と上記Cr2O3約10重量部とを用
いて作つた磁気テープの場合にも、ブラウンコー
テイング現象が認められた。 以上の実施例をまとめたものを表2として示
す。
[Table] For example, approximately 100 parts by weight of acicular magnetic powder mainly composed of iron as metal magnetic powder, approximately 20 parts by weight of binder, approximately 290 parts by weight of solvents such as toluene, methyl ethyl ketone, and methyl isobutyl ketone, and approximately 200 parts by weight of dispersant. 2 parts by weight, about 2 parts by weight of a lubricant, and about 2 parts by weight of abrasive material.
A relatively spherical shape of 0.3μm (hereinafter simply referred to as μ)
When a magnetic tape made by coating a polyester film with a magnetic paint containing about 5 to 15 parts by weight of Cr 2 O 3 is attached to a tape recorder with a magnetic head made from a sendust alloy and run. The surface of the magnetic head was discolored and a brown coating phenomenon was observed. In addition, as an abrasive material, relatively spherical Al 2 O 3 with a particle size of about 0.5μ is used instead of the above example.
A similar brown coating phenomenon was also observed in the case of magnetic tape made using heavy weight parts. In addition, as an abrasive, a mixture of dichromium trioxide (hereinafter sometimes referred to as Cr 2 O 3 ) and Al 2 O 3 , such as the above
The brown coating phenomenon was also observed in the case of a magnetic tape made using about 10 parts by weight of Al 2 O 3 and about 10 parts by weight of the above-mentioned Cr 2 O 3 . Table 2 shows a summary of the above examples.

【表】 種々の研究の結果、このブラウンコーテイング
現象は磁気ヘツドの磨耗の程度と密接な関連を有
していることに気付き、そこで磁気記録媒体の1
組成物である研磨材についてさらに研究を進めた
結果、平均粒径が約1〜2μ程度の研磨材、特に
平均粒径が約1〜2μで、かつ粒子表面に鋭角な
エツジ部が多数形成され、さらにはその粒子形状
の縦横比が略1であるモース硬度が約6.5以上の
無機質粒子を所定量用いることによつて、ブラウ
ンコーテイング現象が生じなくなることを見い出
したのである。 以下、本発明に係る磁気記録媒体の実施例につ
いて説明する。 実施例 1 鉄を主成分とする伸状磁性粉(針状比は約7〜
11、平均粒径は約0.3〜0.4μ)約100重量部、メチ
ルエチルケトン、メチルイソプチルケトン及トル
エンの混合溶剤約350重量部及分散剤約2重量部
をまず混合した後、ボールミル中で前記混合物に
ビニルアルコール含有塩化ビニル酢酸ビニル共重
合体あるいはポリウレタンエラストマー等の磁気
記録用バインダー約20重量部、滑剤約2重量部、
及び研磨剤として平均粒径が約1.0μのAl2O3約2
重量部を加えて十分に分散させて、磁性塗料を作
る。 この磁性塗料の製造に際し用いたAl2O3は、溶
融アルミナを破砕機等で機械的に破砕した後、ふ
るいにかけてサイズ別に分ける分級工程を経て作
つたいわゆる破砕型粒子であり、粒子表面は鋭角
なエツジ部が多数形成されており、かつその粒子
の縦横比はほぼ1であつた。 そして、この磁性塗料をポリエステルのベース
フイルム上に塗布し、カルンダー処理して磁性層
を約3〜4μの厚さにし、かつ幅約3.81mmにスリツ
トして磁気テープを作る。 実施例 2 実施例1で用いた平均粒径が約1μのAl2O3のか
わりに、平均粒径が約2μのAl2O3を約2〜5重量
部用いて、実施例1と同様にして磁気記録媒体を
作る。 尚、本実施例のAl2O3も実施例1のAl2O3とそ
の粒子形状は略同じである。 実施例 3 実施例1で用いたAl2O3のかわりに、平均粒径
が約1μのCr2O3を約6重量部用いて、実施例1と
同様にして磁気記録媒体を作る。 尚、本実施例のCr2O3も実施例1のAl2O3とそ
の粒子形状は略同じである。 実施例 4 実施例1で用いたAl2o3のかわりに、平均粒径
が約1μの酸化ケイ素(SiO2以下、SiO2と記すこ
ともある)を約5重量部用いて、実施例1と同様
にして磁気記録媒体を作る。 尚、本実施例のSiO2も実施例1のAl2O3とその
粒子形状は略同じである。 実施例 5 実施例1で用たAl2O3のかわりに、平均粒径が
約1μの炭化ケイ素を約5重量部用いて、実施例
1と同様にして磁気記録媒体を作る。 尚、本実施例の炭化ケイ素も実施例1のAl2O3
とその粒子形状は略同じである。 実施例 6 実施例1で用いたAl2O3のかわりに、平均粒経
が約1μの炭化ホウ素を約5重量部用いて、実施
例1と同様にして磁気記録媒体を作る。 尚、本実施例の炭化ホウ素も実施例1のAl2O3
とその粒子形状は略同じである。 比較例 1 実施例1で用いた平均粒径が約1.0μのAl2O3
1重量部を用いて、実施例1と同様にして磁気記
録媒体を作る。尚、本比較例のAl2O3も実施例1
のAl2O3とその粒子形状は略同じである。 比較例 2 実施例2で用いた平均粒径が2.0μのAl2O3約1
重量部を用いて、実施例1と同様にして磁気記録
媒体を作る。 尚、本比較例のAl2O3も実施例1のAl2O3とそ
の粒子形状は略同じである。 尚、本実施例のCr2O3も実施例1のAl2O3とそ
の粒子形状は略同じである。 尚、無機質粒子の平均粒径が約1μのものは、
1μ以下が約30%、1〜1.5μが約30%、1.5〜2μが
約24%、2〜2.5μが約10%、2.5〜3μが約2%、
3μ以上が約4%のものであり、また、平均粒経
が約2μのものは、1.5μ以下が約21%、1.5〜2μが
約25%、2〜25μが20%、2.5〜3μが約16%、3〜
3.5μが約8%、3.5〜4μが約4%、4μ以上が約6
%のものであつた。 上記実施例1〜6及び比較例1,2で作つたこ
れらの磁気テープを、センダスト系合金材料より
作つた磁気ヘツドを磁気記録再生装置に装着し、
約一昼夜反復走行テストを行い、磁気ヘツド表面
に着色物が生じるか否かを調べた。 その結果、比較例1及び2における平均粒径が
1.0μ及び2.0μのAl2O3の添加量が約1重量部の場
合の磁気テープではブラウンコーテイング現象が
発生するかあるいは少し認められ、そして実施例
1における平均粒径が1.0μのAl2O3の添加量が約
2重量部以上の場合の磁気テープ及び実施例2に
おける平均粒径が2.0μのAl2O3の添加量が2〜5
重量部の場合の磁気テープではほとんどブラウン
コーテイング現象が認められなかつた。 以上の実施例をまとめたものを表3,4として
示す。この表3から鋭角エツジの研磨材粒子を用
いたとき、その粒子サイズ、添加量によりブラウ
ンコーテイングの発生状況が変わることが良くわ
かる。表4はAl2O3以外の研磨材でも、ブラウン
コーテイング発生防止に有効なことが理解でき
る。
[Table] As a result of various studies, it was discovered that this brown coating phenomenon is closely related to the degree of wear of the magnetic head, and therefore
As a result of further research on the abrasive composition, we found that the abrasive material has an average particle size of approximately 1 to 2 μm, especially an average particle size of approximately 1 to 2 μm, and many sharp edges are formed on the particle surface. Furthermore, they have discovered that by using a predetermined amount of inorganic particles whose particle shape has an aspect ratio of about 1 and a Mohs hardness of about 6.5 or more, the brown coating phenomenon does not occur. Examples of the magnetic recording medium according to the present invention will be described below. Example 1 Extended magnetic powder mainly composed of iron (acicular ratio is about 7~
11. After first mixing about 100 parts by weight (average particle size is about 0.3 to 0.4 μ), about 350 parts by weight of a mixed solvent of methyl ethyl ketone, methyl isobutyl ketone and toluene, and about 2 parts by weight of a dispersant, the mixture was mixed in a ball mill. about 20 parts by weight of a magnetic recording binder such as vinyl alcohol-containing vinyl chloride-vinyl acetate copolymer or polyurethane elastomer, about 2 parts by weight of a lubricant,
and about 2 Al 2 O 3 with an average particle size of about 1.0μ as an abrasive.
Add parts by weight and fully disperse to make magnetic paint. The Al 2 O 3 used in the production of this magnetic paint is so-called crushed particles, which are made by mechanically crushing molten alumina using a crusher, etc., and then passing through a sieving and classification process to classify it by size. A large number of sharp edge portions were formed, and the aspect ratio of the particles was approximately 1. Then, this magnetic paint is coated on a polyester base film, subjected to calendering treatment to form a magnetic layer with a thickness of about 3 to 4 μm, and slit to a width of about 3.81 mm to produce a magnetic tape. Example 2 The same procedure as in Example 1 was carried out except that about 2 to 5 parts by weight of Al 2 O 3 with an average particle size of about 2 μ was used in place of the Al 2 O 3 with an average particle size of about 1 μ used in Example 1. to make magnetic recording media. Note that the particle shape of Al 2 O 3 of this example is almost the same as that of Al 2 O 3 of Example 1. Example 3 A magnetic recording medium is produced in the same manner as in Example 1 except that about 6 parts by weight of Cr 2 O 3 having an average particle size of about 1 μm is used instead of Al 2 O 3 used in Example 1. Note that the particle shape of Cr 2 O 3 in this example is almost the same as that of Al 2 O 3 in Example 1. Example 4 In place of Al 2 o 3 used in Example 1, about 5 parts by weight of silicon oxide (hereinafter referred to as SiO 2 , sometimes referred to as SiO 2 ) having an average particle size of about 1 μm was used to produce Example 1. A magnetic recording medium is made in the same manner. Incidentally, the particle shape of SiO 2 of this example is almost the same as that of Al 2 O 3 of Example 1. Example 5 A magnetic recording medium is produced in the same manner as in Example 1 except that about 5 parts by weight of silicon carbide having an average particle size of about 1 μm is used instead of Al 2 O 3 used in Example 1. Note that silicon carbide in this example is also Al 2 O 3 in Example 1.
and their particle shapes are almost the same. Example 6 A magnetic recording medium is produced in the same manner as in Example 1 except that about 5 parts by weight of boron carbide having an average grain size of about 1 μm is used instead of Al 2 O 3 used in Example 1. Note that boron carbide in this example is also Al 2 O 3 in Example 1.
and their particle shapes are almost the same. Comparative Example 1 A magnetic recording medium is produced in the same manner as in Example 1 using about 1 part by weight of Al 2 O 3 having an average particle size of about 1.0 μm. Note that the Al 2 O 3 of this comparative example is also the same as that of Example 1.
The particle shape of Al 2 O 3 is almost the same as that of Al 2 O 3 . Comparative Example 2 Approximately 1 Al 2 O 3 with an average particle size of 2.0μ used in Example 2
A magnetic recording medium is prepared in the same manner as in Example 1 using the weight parts. Note that the particle shape of Al 2 O 3 of this comparative example is almost the same as that of Al 2 O 3 of Example 1. Note that the particle shape of Cr 2 O 3 in this example is almost the same as that of Al 2 O 3 in Example 1. In addition, inorganic particles with an average particle size of about 1μ,
Approximately 30% below 1μ, approximately 30% between 1 and 1.5μ, approximately 24% between 1.5 and 2μ, approximately 10% between 2 and 2.5μ, approximately 2% between 2.5 and 3μ,
Approximately 4% of particles are 3μ or more, and for those with an average grain size of approximately 2μ, approximately 21% are 1.5μ or less, 25% are 1.5 to 2μ, 20% are 2 to 25μ, and 2.5 to 3μ. Approximately 16%, 3~
3.5μ is about 8%, 3.5 to 4μ is about 4%, 4μ or more is about 6
%. These magnetic tapes made in Examples 1 to 6 and Comparative Examples 1 and 2 above were attached to a magnetic recording/reproducing device using a magnetic head made of a Sendust alloy material.
A repeated running test was carried out for about one day and a night, and it was investigated whether or not colored matter was formed on the surface of the magnetic head. As a result, the average particle diameter in Comparative Examples 1 and 2 was
Brown coating phenomenon occurs or is slightly observed in the magnetic tapes in which the addition amount of Al 2 O 3 of 1.0μ and 2.0μ is about 1 part by weight, and the Al 2 O 3 with an average particle size of 1.0μ in Example 1 is observed. A magnetic tape in which the amount of O 3 added is about 2 parts by weight or more and the amount of Al 2 O 3 added with an average particle size of 2.0 μ in Example 2 is 2 to 5 parts by weight.
In the case of the weight part magnetic tape, almost no brown coating phenomenon was observed. Tables 3 and 4 summarize the above examples. It is clearly seen from Table 3 that when sharp-edged abrasive particles are used, the state of occurrence of brown coating changes depending on the particle size and amount added. Table 4 shows that abrasives other than Al 2 O 3 are also effective in preventing the occurrence of brown coating.

【表】【table】

【表】 従つて、ブラウンコーテイング現象の発生に対
する対策として、平均粒径が約1〜2μの無機質
粒子、特に粒子表面に鋭角なエツジ部が多数形成
されている平均粒径が約1〜2μの無機質粒子を
磁性粉に対して約2重量%以上加えておくこと
が、効果的なことがわかる。 しかし、無機質粒子を多量に加えすぎると、磁
気記録媒体の磁気特性の低下が著しくなる。例え
ば、平均粒径が約1μのAl2O3を磁性粉に対して20
重量%以上加えていると、磁気記録媒体の最大磁
束密度は10%以上も低下し、磁気特性が好ましく
なくなる。従つて、無機質粒子は磁性粉に対して
約20重量%以下であることが好ましい。この無機
質粒子の添加量の上限は、Al2O3以外でのものに
ついても同様である。 ここで、図を用いて磁束密度変化率とAl2O3
加量との関係を示す。 また、無機質粒子の大きさは、その平均粒径が
大きい程ブラウンコーテイング現象に対して効果
的であるが、大きくなりすぎると磁気記録媒体表
面の平滑性がなくなり、ドロツプアウト等が生じ
るようになる。そこで、無機質粒子の平均粒径は
あまり大きすぎてはならず、本発明の如く平均粒
径が約1〜2μのものが好ましい。そして、この
範囲のものであれば、ドロツプアウト等もほとん
ど生じなかつた。 さらに、モース硬度の小さい無機質粒子は、塗
膜強度及びヘツドクロツグ等の点において問題が
あり、この様な観点より無機質粒子のモース硬度
は約6.5以上のものが好ましいものである。 そして、この様な無機質粒子としては、前記
Al2O3等のほか、ダイヤモンド、溶融ジルコン、
ざくろ石、黄玉、水晶、溶融石英(SiO2よりな
るガラス)、正長石等がある。 参考までに各種無機質粒子のモース硬度を表5
に示す。
[Table] Therefore, as a countermeasure against the occurrence of the brown coating phenomenon, inorganic particles with an average particle size of about 1 to 2 μm, especially particles with an average particle size of about 1 to 2 μm with many sharp edges formed on the particle surface, are recommended. It can be seen that it is effective to add about 2% by weight or more of inorganic particles to the magnetic powder. However, if too much inorganic particles are added, the magnetic properties of the magnetic recording medium will be significantly degraded. For example, Al 2 O 3 with an average particle size of about 1μ is mixed with 20% of magnetic powder.
If more than % by weight is added, the maximum magnetic flux density of the magnetic recording medium will decrease by 10% or more, and the magnetic properties will become unfavorable. Therefore, it is preferable that the amount of inorganic particles is about 20% by weight or less based on the magnetic powder. The upper limit of the amount of inorganic particles added is the same for particles other than Al 2 O 3 . Here, the relationship between the magnetic flux density change rate and the amount of Al 2 O 3 added will be shown using a diagram. Regarding the size of the inorganic particles, the larger the average particle size, the more effective it is against the brown coating phenomenon, but if the inorganic particles are too large, the surface smoothness of the magnetic recording medium will be lost and dropouts will occur. Therefore, the average particle size of the inorganic particles should not be too large, and preferably has an average particle size of about 1 to 2 μm as in the present invention. And, within this range, there was almost no dropout or the like. Furthermore, inorganic particles having a small Mohs' hardness have problems in terms of coating film strength, head clog, etc. From this point of view, it is preferable that the Mohs' hardness of the inorganic particles is about 6.5 or more. As such inorganic particles, the above-mentioned
In addition to Al 2 O 3 , etc., diamond, fused zircon,
These include garnet, jadeite, quartz, fused quartz (glass made of SiO 2 ), orthoclase, etc. For reference, Table 5 shows the Mohs hardness of various inorganic particles.
Shown below.

【表】【table】

【表】 上述のごとく、本発明に係わる磁気記録媒体
は、Feを主成分とする金属磁性粉を用いた磁気
記録媒体において、該磁気記録媒体の磁性層中
に、平均粒子径が1〜2μmmでかつ粒子表面に鋭
角なエツジ部の形成されているモース硬度が6.5
以上の無機質粒子を該金属磁性粉に対して2〜15
重量%含むので、金属系材料で作つた磁気ヘツド
を磁気記録再生装置に装着して走行させてもいわ
ゆるブラウンコーテイング現象は起きにくく、ま
た磁気記録媒体の走行性及び磁気特性は良好であ
り、特に無機質粒子の添加量が磁性粉に対して約
2〜15重量%の場合には、ブラウンコーテイング
現象は全く認められず、かつ磁気記録媒体の走行
性及び飽和磁束密度等の磁気特性も良好である等
の特長を有する。
[Table] As described above, the magnetic recording medium according to the present invention is a magnetic recording medium using metal magnetic powder containing Fe as a main component, and has an average particle diameter of 1 to 2 μm in the magnetic layer of the magnetic recording medium. The Mohs hardness is 6.5, with sharp edges formed on the particle surface.
2 to 15 inorganic particles to the metal magnetic powder
% by weight, so even if a magnetic head made of metal material is attached to a magnetic recording/reproducing device and run, the so-called brown coating phenomenon is unlikely to occur, and the running properties and magnetic properties of the magnetic recording medium are good. When the amount of inorganic particles added is about 2 to 15% by weight based on the magnetic powder, no brown coating phenomenon is observed, and the magnetic properties of the magnetic recording medium, such as runnability and saturation magnetic flux density, are also good. It has the following features.

【図面の簡単な説明】[Brief explanation of drawings]

図はアルミナの添加量と磁束密度変化率との関
係を示すグラフである。
The figure is a graph showing the relationship between the amount of alumina added and the rate of change in magnetic flux density.

Claims (1)

【特許請求の範囲】[Claims] 1 Feを主成分とする金属磁性粉を用いた磁気
配録媒体において、該磁気記録媒体の磁性層中
に、平均粒子径が1〜2μmでかつ粒子表面に鋭角
なエツジ部の形成されているモース硬度が6.5以
上の無機質粒子を該金属磁性粉に対して2〜15重
量%含むことを特徴とする磁気記録媒体。
1. In a magnetic recording medium using metal magnetic powder containing Fe as a main component, the magnetic layer of the magnetic recording medium has an average particle diameter of 1 to 2 μm and has sharp edges formed on the particle surface. A magnetic recording medium comprising 2 to 15% by weight of inorganic particles having a Mohs hardness of 6.5 or more based on the metal magnetic powder.
JP10218279A 1979-08-13 1979-08-13 Magnetic recording medium Granted JPS5629840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10218279A JPS5629840A (en) 1979-08-13 1979-08-13 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10218279A JPS5629840A (en) 1979-08-13 1979-08-13 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS5629840A JPS5629840A (en) 1981-03-25
JPH028372B2 true JPH028372B2 (en) 1990-02-23

Family

ID=14320523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10218279A Granted JPS5629840A (en) 1979-08-13 1979-08-13 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5629840A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157036A (en) * 1984-08-27 1986-03-22 Tdk Corp Magnetic recording medium
JPH0618074B2 (en) * 1984-10-25 1994-03-09 住友化学工業株式会社 Magnetic recording medium
JP2600787B2 (en) * 1988-04-11 1997-04-16 松下電器産業株式会社 Magnetic recording media
JPH0630139B2 (en) * 1990-09-21 1994-04-20 コニカ株式会社 Magnetic recording medium

Also Published As

Publication number Publication date
JPS5629840A (en) 1981-03-25

Similar Documents

Publication Publication Date Title
JPH028372B2 (en)
US4515856A (en) Magnetic recording media comprising titanium monoxide and carbon black powders in a magnetic recording layer
JPS6057530A (en) Magnetic recording medium
US4818608A (en) Magnetic recording medium
JPS6292128A (en) Magnetic recording medium
JP2620256B2 (en) Magnetic recording media
JPH01260626A (en) Magnetic recording medium
JP2671340B2 (en) Magnetic recording media
JPH0770044B2 (en) Magnetic recording medium
JPH04368618A (en) Magnetic recording medium
JPH0679374B2 (en) Magnetic recording medium
JP3452124B2 (en) Non-magnetic particle powder for non-magnetic underlayer of magnetic recording medium, method for producing the same, and magnetic recording medium
KR930002158B1 (en) Method of making magnetic recording medium
JP2825263B2 (en) Magnetic recording media
JPH059846B2 (en)
JPS6330697B2 (en)
JPH0729151A (en) Magnetic recording medium
JPH01227217A (en) Magnetic recording medium
JPS62154230A (en) Magnetic recording medium
JPS60193131A (en) Magnetic recording medium
JPS63166011A (en) Magnetic recording medium
JPS63136317A (en) Magnetic recording medium
JPS58199437A (en) Magnetic recording medium
JPH03201213A (en) Magnetic recording medium
JPH04134721A (en) Magnetic recording medium