JPH0517158A - Production of chromium (iii) oxide - Google Patents

Production of chromium (iii) oxide

Info

Publication number
JPH0517158A
JPH0517158A JP19749491A JP19749491A JPH0517158A JP H0517158 A JPH0517158 A JP H0517158A JP 19749491 A JP19749491 A JP 19749491A JP 19749491 A JP19749491 A JP 19749491A JP H0517158 A JPH0517158 A JP H0517158A
Authority
JP
Japan
Prior art keywords
chromium
oxide
iii
impurities
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19749491A
Other languages
Japanese (ja)
Inventor
Ikuya Seo
郁矢 瀬尾
Yoshio Tanaka
義雄 田中
Tetsuo Kaneko
哲雄 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP19749491A priority Critical patent/JPH0517158A/en
Publication of JPH0517158A publication Critical patent/JPH0517158A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To produce high-purity chromium III oxide having low contents of impurities from chromium III hydroxide readily, efficiently and effectively. CONSTITUTION:Chromium III hydroxide is heated to >=300 deg.C, dehydrated, washed with water, an acidic aqueous solution, an alkali aqueous solution, etc., and impurities such as alkali metals and alkaline earth metals are removed to produce high-purity chromium III oxide efficiently and effectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水化酸化クロム(II
I)を洗浄により精製して高純度の酸化クロム(II
I)を得る方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a hydrated chromium oxide (II
I) is purified by washing to obtain high-purity chromium oxide (II
I).

【0002】酸化クロム(III)は顔料、金属クロム
製造原料などとして広く用いられている有用な化合物で
ある。この場合、その用途から高純度品が求められる。
Chromium (III) oxide is a useful compound widely used as a raw material for producing pigments and metallic chromium. In this case, a high-purity product is required due to its use.

【0003】[0003]

【従来の技術】従来、水化酸化クロム(III)から酸
化クロム(III)を製造する場合、そのまま加熱脱水
するか、又は水化酸化クロム(III)を水洗した後、
加熱脱水していた。
2. Description of the Related Art Conventionally, when producing chromium (III) oxide from hydrated chromium (III) oxide, it is heated and dehydrated as it is, or after hydrated chromium (III) oxide is washed with water,
It was dehydrated by heating.

【0004】[0004]

【本発明が解決すべき課題】水化酸化クロム(III)
をそのまま加熱脱水して酸化クロム(III)とする
と、水化酸化クロム(III)製造時に混入した不純物
が、そのまま酸化クロム(III)に残留し、純度低下
をきたす。
Problem to be Solved by the Invention Chromium (III) oxide hydrate
Is heated and dehydrated as it is to form chromium (III) oxide, impurities mixed during the production of hydrated chromium (III) oxide remain in the chromium (III) oxide as they are, resulting in a decrease in purity.

【0005】又、水化酸化クロム(III)を水洗する
場合は、水化酸化クロム(III)の不純物吸着作用が
大きく、不純物を除去し難い。又、不純物の一部は結晶
内部に入っており、水洗では除去できないものもある。
When the chromium (III) oxide hydrate is washed with water, the chromium (III) oxide hydroxide has a large effect of adsorbing impurities, and it is difficult to remove the impurities. Further, some of the impurities are contained inside the crystal and cannot be removed by washing with water.

【0006】[0006]

【課題を解決すべき手段】本発明者らは、上記の問題点
を解決すべく、水化酸化クロム(III)から容易でに
効率良く、効果的に不純物を除去できる高純度酸化クロ
ム(III)の製造方法を鋭意研究した結果、水化酸化
クロム(III)を加熱脱水した後に洗浄する事によ
り、不純物を容易に除去できることを見出だし、遂に本
発明を完成した。
SUMMARY OF THE INVENTION In order to solve the above problems, the present inventors have made it possible to remove impurities from hydrated chromium (III) oxide easily, efficiently, and effectively by removing impurities of high purity chromium (III) oxide. As a result of earnest studies on the production method of (1), it was found that impurities can be easily removed by heating and dehydrating the hydrated chromium (III) oxide, and finally the present invention was completed.

【0007】すなわち、本発明は、水化酸化クロム(I
II)を300℃以上の温度で加熱脱水した後、洗浄し
て不純物を除去する事を特徴とする酸化クロム(II
I)の製造方法である。
That is, the present invention relates to hydrated chromium oxide (I
II) is dehydrated by heating at a temperature of 300 ° C. or higher, and then washed to remove impurities.
This is the method I).

【0008】[0008]

【作用】以下、本発明を詳細に説明する。The present invention will be described in detail below.

【0009】本発明で使用される水化酸化クロム(II
I)は[Cr2 3 ・nH2 O:n≧1]で表され、そ
の中にはオキシ水酸化クロム[CrOOH=Cr2 3
・H2 O]、及び1<n≦9である更に水分の多い水化
物が含まれる。ここでn=9の場合は[Cr(OH)3
・3H2 O]に相当する。これらの水化酸化クロム(I
II)の製法は別に問わないが、オキシ水酸化クロムは
一般的にアルカリ性雰囲気下でのクロム化合物の水熱処
理により製造され、針状晶である事が多く、更に含水量
の多い水化酸化クロム(III)は通常の中和反応によ
って得られる事が多い。水化酸化クロム(III)は、
粉体でも、粉体を造粒したものでも良い。
The hydrated chromium oxide (II) used in the present invention
I) is represented by [Cr 2 O 3 · nH 2 O: n ≧ 1], in which chromium oxyhydroxide [CrOOH = Cr 2 O 3 is included.
H 2 O], and hydrates with higher water content, where 1 <n ≦ 9. Here, when n = 9, [Cr (OH) 3
・ 3H 2 O]. These hydrated chromium oxides (I
The production method of II) is not particularly limited, but chromium oxyhydroxide is generally produced by hydrothermal treatment of a chromium compound in an alkaline atmosphere, often has needle-like crystals, and has a high water content. (III) is often obtained by a usual neutralization reaction. Hydrated chromium (III) oxide is
Either powder or granulated powder may be used.

【0010】水化酸化クロム(III)を加熱脱水する
温度は300℃以上である。300℃未満の場合には加
熱脱水が充分進まないか、又は脱水に長時間を要する。
300℃以上で速やかに脱水し、後の酸化クロム(II
I)の洗浄による不純物除去が容易となる。加熱脱水温
度の上限は、別に問わないが、1500℃以下が好まし
い。温度が高いと脱水は容易となるが、熱エネルギ−を
多量に必要とし、又、装置材料が高価なものに限られて
くる。更に好ましい加熱脱水温度は400〜1000℃
である。この温度範囲では、容易に、しかも経済的に実
施でき、洗浄による不純物除去効果も大きい。
The temperature for dehydrating the chromium (III) oxide hydrate by heating is 300 ° C. or higher. When the temperature is lower than 300 ° C, the dehydration by heating does not proceed sufficiently or the dehydration requires a long time.
It is immediately dehydrated at 300 ° C or higher, and the subsequent chromium oxide (II
The impurities can be easily removed by the cleaning of I). The upper limit of the heating dehydration temperature is not particularly limited, but it is preferably 1500 ° C or lower. When the temperature is high, dehydration is easy, but a large amount of heat energy is required, and the equipment materials are limited to expensive ones. More preferable heat dehydration temperature is 400 to 1000 ° C.
Is. Within this temperature range, it can be carried out easily and economically, and the effect of removing impurities by washing is large.

【0011】又、加熱脱水雰囲気としては空気が好まし
く、比較的低い温度で効率良く、効果的に実施できる。
窒素、アルゴン等の不活性ガス雰囲気では、比較的高温
が良く、600〜1000℃が好ましい。
Air is preferable as the heating and dehydrating atmosphere, and it can be carried out efficiently and effectively at a relatively low temperature.
In an atmosphere of an inert gas such as nitrogen or argon, the temperature is relatively high and 600 to 1000 ° C. is preferable.

【0012】加熱脱水機としては、通常用いられる、静
置式加熱機、ロ−タリ−キルン、流動式加熱機、ベルト
式加熱機、マッフル炉等を使用できる。
As the heating and dehydrating machine, a stationary heating machine, a rotary kiln, a flow type heating machine, a belt type heating machine, a muffle furnace and the like which are usually used can be used.

【0013】加熱脱水により、酸化クロム(III)が
得られるが、酸化クロム(III)は完全な無水物であ
る必要はない。化学式Cr2 3・nH2 Oに於いて、
nを0.5以下にするのが好ましく、この場合に洗浄に
よる不純物除去は効果的、効率的に実施することができ
る。nが大きい場合、即ち水分含量の多い場合、洗浄効
果はやや低下する。更に好ましくは、n≦0.05であ
り、実質的に無水物である。この場合、不純物の洗浄除
去効果は更に向上し、又、洗浄時間が短くなる等、操作
も容易となる。
[0013] The heat dehydration gives chromium (III) oxide, but chromium (III) oxide does not have to be completely anhydrous. In the chemical formula Cr 2 O 3 · nH 2 O,
It is preferable that n is 0.5 or less, and in this case, removal of impurities by washing can be effectively and efficiently performed. When n is large, that is, when the water content is high, the cleaning effect is slightly reduced. More preferably, n ≦ 0.05, which is substantially anhydrous. In this case, the effect of cleaning and removing impurities is further improved, and the cleaning time is shortened, which facilitates the operation.

【0014】次に、本発明は酸化クロム(III)を洗
浄して不純物を除去する洗浄条件は特に限定しないが、
酸化クロム(III)と洗浄液を充分接触させれば良
い。
Next, in the present invention, the washing conditions for washing chromium (III) oxide to remove impurities are not particularly limited,
It suffices if the chromium (III) oxide and the cleaning liquid are brought into sufficient contact with each other.

【0015】洗浄液は水でも、酸性水溶液でも、アルカ
リ性水溶液でも良い。
The cleaning liquid may be water, an acidic aqueous solution or an alkaline aqueous solution.

【0016】水を用いる場合、ナトリウム、カリウム等
のアルカリ金属、マグネシウム、カルシウム等のアルカ
リ土類金属が比較的容易に除去できる。
When water is used, alkali metals such as sodium and potassium and alkaline earth metals such as magnesium and calcium can be removed relatively easily.

【0017】酸性水溶液としては、無機酸、有機酸の水
溶液、いずれも使用でき、具体的には、塩酸、硫酸、酢
酸等の水溶液が挙げられる。濃度としては2mol/l
以下が好ましい。アルカリ性水溶液としては、無機アル
カリ、有機アルカリの水溶液、いずれも使用でき、具体
的には、水酸化ナトリウム、水酸化カリウム、アンモニ
ア、水溶性アミン類等の水溶液が挙げられる。濃度とし
ては2mol/l以下が望ましい。酸性水溶液及び/又
はアルカリ性水溶液を用いた場合、後に水で再度洗浄す
るのが好ましい。こうすることによって、洗浄に用いた
酸性物質、アルカリ性物質を除去できる。
As the acidic aqueous solution, an aqueous solution of an inorganic acid or an organic acid can be used, and specific examples thereof include aqueous solutions of hydrochloric acid, sulfuric acid, acetic acid and the like. The concentration is 2 mol / l
The following are preferred. As the alkaline aqueous solution, both an inorganic alkaline solution and an organic alkaline aqueous solution can be used, and specific examples thereof include aqueous solutions of sodium hydroxide, potassium hydroxide, ammonia, water-soluble amines and the like. The concentration is preferably 2 mol / l or less. When using an acidic aqueous solution and / or an alkaline aqueous solution, it is preferable to wash again with water later. By doing so, the acidic substance and the alkaline substance used for cleaning can be removed.

【0018】洗浄時の温度は特に限定しないが、常温で
充分実施できる。加温すると洗浄時間は短くてすみ好ま
しいが、加温の為の熱エネルギ−を必要とする。又、加
熱脱水して得られた酸化クロム(III)を50〜20
0℃に冷却した時点で洗浄を行なうと、熱エネルギ−が
有効に使える以外にも洗浄効果を向上差せられるという
利点がある。
The temperature at the time of washing is not particularly limited, but it can be sufficiently carried out at room temperature. When heating, the cleaning time is short and preferable, but heat energy for heating is required. In addition, the chromium (III) oxide obtained by heating and dehydrating is added to 50 to 20
If the cleaning is performed at the time of cooling to 0 ° C., there is an advantage that the cleaning effect can be improved in addition to the effective use of thermal energy.

【0019】操作としては、種々あるが、濾過器上に酸
化クロム(III)を置き、これに洗浄液をかける洗浄
と固液分離を同時に行なう方法、あらかじめ酸化クロム
(III)と洗浄液を懸濁させた後、濾過器で洗浄液と
酸化クロム(III)を固液分離する方法などを例とし
て挙げる事ができる。
Although there are various operations, chromium (III) oxide is placed on a filter, and a washing liquid is applied to the filter to perform washing and solid-liquid separation simultaneously. Chromium (III) oxide and the washing liquid are suspended in advance. After that, a method of solid-liquid separating the cleaning liquid and the chromium (III) oxide with a filter can be mentioned as an example.

【0020】濾過器としては、通常固液分離に用いられ
ている、遠心濾過器、加圧濾過器、減圧濾過器、等があ
る。
As the filter, there are a centrifugal filter, a pressure filter, a vacuum filter and the like which are usually used for solid-liquid separation.

【0021】こうして得られた不純物の除去された酸化
クロム(III)は通常、乾燥して付着水を除去するの
が好ましい。
The thus-obtained impurity-free chromium (III) oxide is usually preferably dried to remove the attached water.

【0022】本発明の作用機構について、明確に説明す
る事はできないが、次のように推察している。
The mechanism of action of the present invention cannot be clearly explained, but is presumed as follows.

【0023】即ち、水化酸化クロム(III)は、不純
物の吸着作用が極めて大きく、通常の洗浄操作では不純
物を除去することができない。しかしながら、該水化酸
化クロム(III)を加熱脱水すると、別の結晶形態で
ある酸化クロム(III)に変化する。この時、不純物
と酸化クロム(III)の親和力が低下し、洗浄除去効
果が向上したものと考える。
That is, the chromium (III) oxide hydrate has a very large effect of adsorbing impurities, and the impurities cannot be removed by a normal washing operation. However, when the hydrated chromium (III) oxide hydrate is heated and dehydrated, it changes to another crystalline form, chromium (III) oxide. At this time, it is considered that the affinity between the impurities and chromium (III) oxide was reduced, and the cleaning removal effect was improved.

【0024】又、水化酸化クロム(III)の結晶内部
に入っていた不純物は結晶形態変化により、酸化クロム
(III)結晶外に移動し、その洗浄除去効果が向上し
たものと考える。
Further, it is considered that the impurities contained inside the crystal of chromium (III) oxide hydrate are moved to the outside of the crystal of chromium (III) oxide due to the change in crystal form, and the cleaning and removing effect thereof is improved.

【0025】[0025]

【実施例】以下、本発明を実施例により説明するが、本
発明はこれらにより限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited thereto.

【0026】実施例1 水熱合成により得られた水化酸化クロム(III)を空
気中、400℃で4時間加熱脱水した後、水洗を行っ
た。水洗後、吸引濾過、乾燥した試料の化学分析結果を
表1に示す。表1の分析結果はクロム純分に対するwt
%で示した。加熱脱水前の水化酸化クロム(III)中
のNaは0.26wt%、Mgは0.005wt%、C
aは0.005%であった。
Example 1 Chromium (III) oxide hydrate obtained by hydrothermal synthesis was dehydrated by heating in air at 400 ° C. for 4 hours and then washed with water. Table 1 shows the chemical analysis results of the sample which was suction filtered and dried after washing with water. The analysis results in Table 1 are wt with respect to chromium pure content
Shown in%. 0.26 wt% of Na, 0.005 wt% of Mg, and C in hydrated chromium (III) oxide before heat dehydration
a was 0.005%.

【0027】加熱脱水前の水化酸化クロム(III)
は、粉末X線回折により、オキシ水酸化クロム(CrO
OH)のピ−クが認められた。この試料の水分含有量を
水分気化装置付きカ−ルフィッシャ−式水分測定器によ
り1000℃で水分を気化させて求めたところ、18.
3wt%となり、これより換算すると該試料はCrOO
H・0.44H2 O又はCr2 3 ・1.89H2 Oと
表すことができる。
Hydrated chromium (III) oxide before heat dehydration
Was determined by powder X-ray diffraction to be chromium oxyhydroxide (CrO).
OH) peak was observed. The water content of this sample was determined by evaporating the water at 1000 ° C. with a Cal-Fisher type water content measuring instrument equipped with a water evaporation device.
3% by weight, which is converted into CrOO
It can be expressed as H · 0.44H 2 O or Cr 2 O 3 · 1.89H 2 O.

【0028】加熱脱水後の試料では弱い三・二酸化クロ
ム(Cr2 3 )のピ−クだけが認められ、一部が三・
二酸化クロムとなっていることが確認された。又、電子
顕微鏡観察によって加熱脱水後は処理前の針状晶が崩れ
ていることも確認された。該加熱脱水試料の水分含有量
は2.95wt%であり、Cr2 3 ・0.26H2
と表せる。
In the sample after heat dehydration, only weak peaks of chromium dioxide (Cr 2 O 3 ) were recognized, and a part of the peak
It was confirmed that it was chromium dioxide. It was also confirmed by electron microscope observation that the needle-shaped crystals before treatment were collapsed after heating and dehydration. The water content of the heat dehydrated sample was 2.95 wt%, and Cr 2 O 3 .0.26H 2 O was used.
Can be expressed as

【0029】水洗操作は室温で水化酸化クロム10部に
対して蒸留水100部を加え、15分間スタ−ラ−で撹
拌後、60分間静置した後、吸引濾過した。
The washing operation was carried out by adding 100 parts of distilled water to 10 parts of hydrated chromium oxide at room temperature, stirring with a stirrer for 15 minutes, allowing to stand for 60 minutes, and then suction filtering.

【0030】表1より、比較例に対してNaが顕著に減
少していることがわかる。
From Table 1, it can be seen that Na is remarkably reduced as compared with the comparative example.

【0031】実施例2 実施例1と同一の水化酸化クロム(III)を窒素中、
800℃で1時間加熱脱水した以外は実施例1と同様な
水洗操作をした結果を表1に示す。
Example 2 The same chromium (III) hydrate oxide as in Example 1 was added in nitrogen,
Table 1 shows the results of the same washing operation as in Example 1 except that the mixture was heated and dehydrated at 800 ° C. for 1 hour.

【0032】加熱脱水後の試料では強い三・二酸化クロ
ム(Cr2 3 )のピ−クだけが認められ、三・二酸化
クロムとなっていることが確認された。又、電子顕微鏡
観察によって加熱脱水後は処理前の針状晶が崩れている
ことも確認された。該加熱脱水試料の水分含有量は0.
21wt%であり、Cr2 3 ・0.02H2 Oと表せ
る。
In the sample after heat dehydration, only a strong peak of chromium trioxide (Cr 2 O 3 ) was observed, and it was confirmed that the sample was chromium trioxide. It was also confirmed by electron microscope observation that the needle-shaped crystals before treatment were collapsed after heating and dehydration. The water content of the heated dehydrated sample was 0.
It is 21 wt% and can be expressed as Cr 2 O 3 .0.02H 2 O.

【0033】表1より、Na以外にMg、Caも比較例
より減少している事がわかる。
From Table 1, it can be seen that in addition to Na, Mg and Ca are also reduced as compared with the comparative example.

【0034】水洗処理を5回繰り返した試料に炭素を混
じてブリケット状に成型し、真空炭素還元反応を行なっ
たところ、Na≦5ppm、K≦5ppm、Mg:1p
pm、Ca:20ppmの高純度金属クロムが容易に得
られた。
Carbon was mixed with a sample obtained by repeating the washing with water 5 times to form a briquette, and a vacuum carbon reduction reaction was carried out. Na ≦ 5 ppm, K ≦ 5 ppm, Mg: 1 p
High-purity metallic chromium with pm and Ca of 20 ppm was easily obtained.

【0035】比較例 実施例1と同一の水化酸化クロム(III)をそのまま
水洗処理した結果を表1に示すが、顕著な水洗効果は認
められなかった。
Comparative Example The same results as in Example 1 in which the same hydrated chromium (III) oxide was washed as it is, are shown in Table 1, but no remarkable washing effect was observed.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【発明の効果】本発明の方法によれば、水化酸化クロム
(III)から不純物含量の少ない高純度酸化クロム
(III)を容易に効率的、効果的に製造する事ができ
る。
According to the method of the present invention, high-purity chromium (III) oxide containing a small amount of impurities can be easily, efficiently and effectively produced from hydrated chromium (III) oxide.

【0038】具体的効果を列記すると、不純物除去効
率が高い、操作が極めて簡単である、薬剤を用いな
いか又は用いたにしても極少量であり、経済性が高い、
ということが言える。
To list the specific effects, the efficiency of removing impurities is high, the operation is extremely simple, no chemicals are used or only a very small amount is used, and the economy is high.
It can be said that.

【0039】又、本発明の方法により得られた酸化クロ
ム(III)は顔料、高純度の金属クロム製造原料とし
て有効に使用することができる。
The chromium (III) oxide obtained by the method of the present invention can be effectively used as a pigment and a raw material for producing high-purity metallic chromium.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】水化酸化クロム(III)を300℃以上
の温度で加熱脱水した後、洗浄して不純物を除去するこ
とを特徴とする酸化クロム(III)の製造方法。
1. A method for producing chromium (III) oxide, which comprises removing dehydrated impurities by heating and dehydrating chromium (III) hydrate oxide at a temperature of 300 ° C. or higher.
【請求項2】水化酸化クロム(III)がオキシ水酸化
クロム[CrOOH]である請求項1記載の製造方法。
2. The method according to claim 1, wherein the chromium (III) oxide hydrate is chromium oxyhydroxide [CrOOH].
【請求項3】不純物が第Ia族のアルカリ金属元素及び
/又は第IIa族のアルカリ土類金属元素である請求項
1記載の製造方法。
3. The method according to claim 1, wherein the impurities are Group Ia alkali metal elements and / or Group IIa alkaline earth metal elements.
【請求項4】加熱脱水を400℃以上、1000℃以下
の温度で行なう事を特徴とする請求項1記載の製造方
法。
4. The method according to claim 1, wherein the heat dehydration is performed at a temperature of 400 ° C. or higher and 1000 ° C. or lower.
JP19749491A 1991-07-12 1991-07-12 Production of chromium (iii) oxide Pending JPH0517158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19749491A JPH0517158A (en) 1991-07-12 1991-07-12 Production of chromium (iii) oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19749491A JPH0517158A (en) 1991-07-12 1991-07-12 Production of chromium (iii) oxide

Publications (1)

Publication Number Publication Date
JPH0517158A true JPH0517158A (en) 1993-01-26

Family

ID=16375408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19749491A Pending JPH0517158A (en) 1991-07-12 1991-07-12 Production of chromium (iii) oxide

Country Status (1)

Country Link
JP (1) JPH0517158A (en)

Similar Documents

Publication Publication Date Title
RU2171229C2 (en) Method of dissolving and purifying tantalum pentaoxide (variants)
JP6926010B2 (en) Method for producing lithium hydroxide
AU605965B2 (en) Process for the manufacture of zirconium oxide hydrate from granular crystallized zirconium oxide
US4822575A (en) Process for the purification of zirconium compounds
US3890427A (en) Recovery of gallium
JP2823070B2 (en) Method for producing high-purity zirconium oxychloride crystal
RU2424188C1 (en) Method of producing high-purity calcium fluoride
JP2006335578A (en) Leaflet-like gypsum dihydrate and its manufacturing method
JPH0517158A (en) Production of chromium (iii) oxide
JPH05507054A (en) A simple method for producing swellable layered silicates
JP3137226B2 (en) Production method of high purity strontium chloride
JP2634290B2 (en) Method for producing barium titanate powder
JPS61256920A (en) Sectorial magnesium oxysulfate and its production
JP3466754B2 (en) Purification method of magnesium oxide
JPH0692247B2 (en) Method for producing magnesium silicofluoride
US3980754A (en) Purification of alkali carbonate containing a fluorine compound
JPS6148506A (en) Refining method of fine particle by gaseous phase process
RU2309897C2 (en) Method of cleaning zinc oxide from silicon admixture
JPH05170432A (en) Alumina having low cao content and its production
JPH0524861B2 (en)
JP3577224B2 (en) Method for producing strontium hydrogen fluoride
JPH1043609A (en) Ion exchanger
JPS63162507A (en) Manufacture of calcium hypochlorite and product thereby
JP3503115B2 (en) Method for producing free hydroxylamine aqueous solution
JPS62202820A (en) Purification of titanium sulfate solution