JPH05171304A - Method for recovering valuable metal from aluminum alloy - Google Patents

Method for recovering valuable metal from aluminum alloy

Info

Publication number
JPH05171304A
JPH05171304A JP35469391A JP35469391A JPH05171304A JP H05171304 A JPH05171304 A JP H05171304A JP 35469391 A JP35469391 A JP 35469391A JP 35469391 A JP35469391 A JP 35469391A JP H05171304 A JPH05171304 A JP H05171304A
Authority
JP
Japan
Prior art keywords
metal
alloy
crucible
compound
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP35469391A
Other languages
Japanese (ja)
Inventor
Hitoshi Matsuzaki
崎 均 松
Tatsuhiko Sodo
道 龍 彦 草
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP35469391A priority Critical patent/JPH05171304A/en
Publication of JPH05171304A publication Critical patent/JPH05171304A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To recover a valuable high-m.p. metal with a simple process by keep ing an Al alloy contg. the high-m.p. metal below the liquidus line and above the solidus line, crystallizing and setting the Al compd. CONSTITUTION:The scraps of Al-X alloy (X is >=1 kind of high-m.p. metal among Co, Ni, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Gd, Tb, Dy, Ho, Er, Tm, Lu, etc.) are used as the melting material. The alloy is placed in a crucible, etc., heated below the liquidus line and above the solidus line and held at that temp. to settle the compd. having a high content of the high-m.p. metal by gravity. The compd. is then solidified in the crucible, or only the molten metal is discharged to recover the settled compd. The recovered compd. is not segregated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアルミニウム合金から有
用金属を回収する方法に関し、さらに詳しくは、Al−
X系合金の製造時に発生するスクラップおよび使用済み
のターゲット材から合金元素として含まれている有用金
属をアルミニウム合金から回収する方法である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering a useful metal from an aluminum alloy, more specifically, Al-
It is a method of recovering useful metals contained as alloying elements from an aluminum alloy from scraps generated at the time of manufacturing an X-based alloy and a used target material.

【0002】[0002]

【従来技術】従来から、Al−Ta系合金、Al−Ti
系合金等のAl−高融点金属合金は、純Alと比較して
薄膜に成形した場合に、耐蝕性、耐熱性に優れた特性を
示すものであり、光ディスクの反射膜、半導体の配線材
料等に広く使用されてきており、主としてスパッタリン
グにより薄膜として成形されている。
2. Description of the Related Art Conventionally, Al--Ta alloys and Al--Ti
Al-refractory metal alloys such as alloys exhibit excellent corrosion resistance and heat resistance when formed into a thin film as compared with pure Al, and are used as reflective films for optical disks, wiring materials for semiconductors, etc. It has been widely used in, and is formed as a thin film mainly by sputtering.

【0003】このように広く使用されているAl−高融
点金属合金(以下、Al−X系合金)から、高融点金属
のみを回収するための、従来技術としては、(1)スク
ラップ自体を再溶解、鋳造して再利用する方法、(2)
Al−X系合金を塩化し、塩化物の蒸気圧差を利用して
分離し、その塩化物を還元し、金属とするか、または、
酸化物として回収する方法、(3)スクラップを酸によ
り溶解し、溶媒抽出により有用金属を回収する方法、等
がある。
As a conventional technique for recovering only the high melting point metal from the widely used Al-high melting point metal alloy (hereinafter referred to as Al-X type alloy), (1) the scrap itself is recycled. Melting, casting and reusing, (2)
The Al-X alloy is chlorinated and separated by utilizing the vapor pressure difference of chloride, and the chloride is reduced to a metal, or
There are a method of recovering as an oxide, (3) a method of dissolving scrap with an acid and recovering a useful metal by solvent extraction, and the like.

【0004】しかして、上記(1)のスクラップを再溶
解する方法は、工程が簡単でかかる費用が低いけれど
も、Al−X系合金はAlとX(高融点金属)との比重
差による重力偏析により均一な鋳塊を製造することがで
きないという問題があり、(2)のAl−X系合金を塩
化して分離する方法は、金属別に回収することができる
ため、再利用し易いが、有毒な塩素を使用すること、金
属を回収するためには取り扱いの煩わしい塩化物を還元
するか、また、一旦、酸化物にしてから還元する必要が
あり、工程が極めて複雑になり、かつ、費用が高くなる
という問題があり、(3)の溶媒抽出による方法は、工
程が複雑であるばかりではなく、回収する高融点金属の
種類が変われば、使用する溶媒も変更しなければなら
ず、さらに、溶媒抽出法による場合でも回収は酸化物等
の化合物であり、還元して再利用しなければならないと
いう問題がある。
Although the scrap remelting method (1) is simple in process and low in cost, the Al--X alloy has a gravity segregation due to a difference in specific gravity between Al and X (high melting point metal). Therefore, there is a problem that a uniform ingot cannot be produced, and the method (2) of separating the Al-X alloy by chlorination and separating can be easily reused because it can be recovered for each metal, but it is toxic. It is necessary to use simple chlorine and reduce chloride, which is cumbersome to handle in order to recover metal, or to convert it to an oxide and then reduce it, making the process extremely complicated and costly. The method of solvent extraction of (3) not only has a complicated process, but if the type of refractory metal to be recovered changes, the solvent used must also be changed. Solvent extraction Recovery even if by is a compound such as an oxide, there is a problem that must be recycled by reduction.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記に説明し
たように、Al−高融点金属合金から有用金属の高融点
金属を回収する方法の種々の問題点に鑑み、本発明者が
鋭意研究を行い、検討を重ねた結果、アルミニウム合金
中に含まれてれいる高融点金属(X)として、Co、N
i、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、
W、Gd、Tb、Dy、Ho、Er、Tm、Lu等の高
融点金属の有用金属を比較的簡単な工程で、かつ、上記
の全ての高融点金属において同じ方法および同じ設備に
よりアルミニウム合金から高融点金属の有用金属を回収
する方法を開発したのである。
SUMMARY OF THE INVENTION As described above, the present invention has been made by the present inventors in view of various problems in the method of recovering a refractory metal of a useful metal from an Al-refractory metal alloy. As a result of repeated investigations, as a refractory metal (X) contained in the aluminum alloy, Co, N
i, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo,
Useful metals of refractory metals such as W, Gd, Tb, Dy, Ho, Er, Tm, and Lu can be prepared from aluminum alloy by a relatively simple process and by the same method and the same equipment in all the refractory metals described above. We have developed a method for recovering useful metals of refractory metals.

【0006】[0006]

【課題を解決するための手段】本発明に係るアルミニウ
ム合金から有用金属を回収する方法の特徴とするところ
は、Al−X系合金(高融点金属X : Co、Ni、T
i、Zr、Hf、V、Nb、Ta、Cr、Mo、W、G
d、Tb、Dy、Ho、Er、Tm、Lu等の高融点金
属から選ばれた1種)を、その合金の液相線以下で、か
つ、固相線以上の温度に保持してAl−X化合物を晶
出、沈降させることにある。
The method of recovering a useful metal from an aluminum alloy according to the present invention is characterized in that an Al--X alloy (refractory metal X: Co, Ni, T) is used.
i, Zr, Hf, V, Nb, Ta, Cr, Mo, W, G
d), Tb, Dy, Ho, Er, Tm, Lu, or another refractory metal) is kept at a temperature below the liquidus line of the alloy and above the solidus line to form Al- It is to crystallize and precipitate the X compound.

【0007】本発明に係るアルミニウム合金から有用金
属を回収する方法について、以下詳細に説明する。
The method for recovering a useful metal from the aluminum alloy according to the present invention will be described in detail below.

【0008】本発明に係るアルミニウム合金から有用金
属を回収する方法において、回収する高融点金属(X)
は、Al−X系合金溶湯を冷却した場合に、初晶として
Al−X系合金溶湯の高融点金属(X)含有量より高い
高融点金属(X)含有量の化合物が晶出してきて、この
化合物と固相線温度における液相との比重差が0.5g
/cm3以上である高融点金属(X)である。そして、
この高融点金属(X)として具体的なものは、Ti、Z
r、Hf、V、Nb、Ta、Cr、Mo、W、Co、N
iおよびGd以上の重希土類金属しである。特に、Z
r、Hf、Nb、Ta、Wが最も適している高融点金属
である。
In the method for recovering a useful metal from an aluminum alloy according to the present invention, a refractory metal (X) to be recovered
When a molten Al-X alloy melt is cooled, a compound having a high melting point metal (X) content higher than the high melting point metal (X) content of the Al-X alloy melt is crystallized out as a primary crystal. The specific gravity difference between this compound and the liquid phase at the solidus temperature is 0.5 g
The refractory metal (X) has a melting point of at least 3 / cm 3 . And
Specific examples of the refractory metal (X) include Ti and Z.
r, Hf, V, Nb, Ta, Cr, Mo, W, Co, N
It is a heavy rare earth metal having i or more than Gd. In particular, Z
r, Hf, Nb, Ta and W are the most suitable refractory metals.

【0009】本発明に係るアルミニウム合金から有用金
属を回収する方法において、溶解原料として使用できる
ものは、有用金属としての高融点金属が溶解原料全体の
平均高融点金属(X)含有量により規定することがで
き、高融点金属(X)の含有量の下限はAl−X系合金
の包晶または共晶組成であり、高融点金属(X)含有量
の上限は理論的にはAl−X系合金溶湯を冷却した場合
に、初晶として溶湯組成より高融点金属(X)含有量が
高い化合物が晶出する組成までであるが、高い高融点金
属(X)含有量の場合には、全体が固相になる時の液相
中の高融点金属(X)含有量が高くなり、回収率が悪く
なるので高融点金属(X)含有量の上限は、全体が固相
となる温度が700℃以下の組成とする。
In the method for recovering a useful metal from an aluminum alloy according to the present invention, what can be used as a melting raw material is that the refractory metal as the useful metal is defined by the average refractory metal (X) content of the entire melting raw material. The lower limit of the content of the refractory metal (X) is the peritectic or eutectic composition of the Al—X alloy, and the upper limit of the content of the refractory metal (X) is theoretically the Al—X system. When the molten alloy is cooled, the composition is such that a compound having a higher refractory metal (X) content than the molten metal composition as a primary crystal is crystallized, but in the case of a high refractory metal (X) content, Since the content of the refractory metal (X) in the liquid phase becomes high when the solid phase becomes a solid phase and the recovery rate deteriorates, the upper limit of the content of the refractory metal (X) is 700 at which the entire solid phase is the solid phase. The composition is below ℃.

【0010】本発明に係るアルミニウム合金から有用金
属を回収する方法は、先ず、溶解原料であるAl−X系
合金スクラップを溶解坩堝内に装入して、所定の処理温
度まで昇温を行う。この昇温後、一定の温度に保持して
高融点金属(X)含有量の高い化合物を比重差により沈
降させ、その後、坩堝内において凝固させるか、或い
は、溶湯だけを排湯して沈降堆積した化合物を回収す
る。また、上記溶解坩堝の溶解は、誘導加熱、抵抗加熱
の如何を問わず、溶解雰囲気は非酸化性とするのがよい
が、大気中でも差し支えない。
In the method of recovering a useful metal from an aluminum alloy according to the present invention, first, an Al-X alloy scrap, which is a melting raw material, is charged into a melting crucible and heated to a predetermined processing temperature. After the temperature is raised, the compound having a high refractory metal (X) content is kept at a constant temperature to settle due to the difference in specific gravity, and then solidified in the crucible, or only the molten metal is discharged and settled and deposited. The compound obtained is recovered. Further, the melting crucible may be melted regardless of induction heating or resistance heating, and the melting atmosphere is preferably non-oxidizing, but it may be in the air.

【0011】高融点金属(X)の含有量が高い化合物を
沈降させる場合の処理温度は、固相線以上で、液相線以
下の温度とするのがよいが、固相線近傍の温度で処理を
行った方が回収率がよい。しかし、処理温度が低い程、
液相の粘度が高くなって処理時間が長くなるので、これ
を防止するために、一旦液相線近傍まで昇温し徐々に温
度を下げて行きながら晶出される化合物を比較的粘性の
低い高温域において大部分を沈降させて、最終的に固相
線直上の温度に保持して回収率を向上させることができ
る。
The treatment temperature for precipitating a compound having a high content of refractory metal (X) is preferably above the solidus and below the liquidus, but at temperatures near the solidus. The recovery rate is better when treated. However, the lower the processing temperature,
Since the viscosity of the liquid phase becomes high and the processing time becomes long, in order to prevent this, once the temperature rises to near the liquidus and the temperature gradually decreases, the compound that crystallizes out has a relatively low viscosity at high temperature. It is possible to settle a large part in the region and finally maintain the temperature just above the solidus to improve the recovery rate.

【0012】また、沈降させた高融点金属(X)含有量
の高い化合物を回収する方法としては、次に説明する方
法がある。
As a method for recovering the precipitated compound having a high refractory metal (X) content, there is a method described below.

【0013】1.坩堝内において凝固させた場合は、坩
堝から取り出した鋳塊を切断し、断面をエッチングし
て、化合物が堆積している部分と処理温度において溶湯
であった部分との境界を見極めて(図1の切断面のエッ
チング後の金属組織の顕微鏡写真の矢印で示してあると
ころが境界である)その境界で切断する方法。
1. When solidified in the crucible, the ingot taken out from the crucible is cut and the cross-section is etched so that the boundary between the portion where the compound is deposited and the portion which was the molten metal at the processing temperature is cut. A method of cutting at the boundary (the boundary is indicated by an arrow in the micrograph of the metal structure after etching the cut surface in FIG. 1).

【0014】2.溶湯だけを排湯した場合は、坩堝内に
残っている化合物を取り出すことができれば、それをそ
のまま再利用すればよく、また、坩堝内に化合物が固着
して取り出すことができない場合には、坩堝を破壊して
取り出す方法もあるが、再加熱して化合物を溶解し、鋳
造して再利用する方法が工程および費用の面から有利で
ある。
2. When only the molten metal is discharged, if the compound remaining in the crucible can be taken out, it can be reused as it is. Further, the compound cannot be taken out because the compound is fixed in the crucible. In some cases, there is a method of destroying the crucible and taking it out, but a method of reheating to melt the compound, casting and reusing is advantageous in terms of steps and cost.

【0015】3.溶湯と晶出化合物とを分離する方法と
して、フィルターを使用する方法があり、このフィルタ
ーの使用方法を図2および図3により説明する。図2に
示すフィルターの使用方法は、鋳型3内の適宜のところ
に、フィルター加熱器4により処理温度に保持されてい
るフィルター2を設置しておき、処理温度に加熱するた
めの加熱器が外側にもうけられている溶解坩堝1内の沈
降処理後の溶湯と晶出物5とを、溶解坩堝1を傾斜させ
て、鋳型3内に設置してあるフィルター2上に鋳込む方
法である。図3に示す使用方法は、処理温度に加熱器に
より加熱されている溶解坩堝1内の沈降処理後の溶湯と
晶出物5の中に、処理温度に加熱されているフィルター
2を挿入することにより、溶湯部分を絞り出すようにし
て、溶湯と晶出物5とを分離する方法である。
3. As a method of separating the molten metal and the crystallized compound, there is a method of using a filter. The method of using this filter will be described with reference to FIGS. 2 and 3. In the method of using the filter shown in FIG. 2, the filter 2 held at the processing temperature by the filter heater 4 is installed at an appropriate place in the mold 3, and the heater for heating to the processing temperature is outside. In this method, the molten metal after the sedimentation treatment and the crystallized substance 5 in the melting crucible 1 are cast on the filter 2 installed in the mold 3 with the melting crucible 1 tilted. The method of use shown in FIG. 3 is to insert the filter 2 heated to the treatment temperature into the melt and the crystallized substance 5 after the sedimentation treatment in the melting crucible 1 heated to the treatment temperature by the heater. Is a method of separating the melt and the crystallized substance 5 by squeezing out the melt.

【0016】図2および図3のフィルターの使用方法に
おいては、フィルターは処理温度近傍の温度に加熱して
おく必要があり、また、フィルターはアルミニウム溶湯
と反応しない材料を使用する必要がある。
In the method of using the filter shown in FIGS. 2 and 3, the filter needs to be heated to a temperature near the treatment temperature, and the filter needs to use a material that does not react with the molten aluminum.

【0017】[0017]

【実 施 例】本発明に係るアルミニウム合金から有用
金属を回収する方法の実施例を説明する。
[Example] An example of a method for recovering a useful metal from an aluminum alloy according to the present invention will be described.

【0018】[0018]

【実 施 例 1】Ta含有量が不明であるAl−Ta系
合金スクラップを誘導溶解炉において溶解し、一時14
00℃の温度にまで昇温してから、10分間で700℃
の温度まで降温し、10分間保持した後、坩堝内におい
て凝固させた。凝固後の鋳塊の断面の金属組織の顕微鏡
写真を図1に示す。
[Practical example 1] Al-Ta alloy scrap whose Ta content is unknown is melted in an induction melting furnace and
700 ℃ in 10 minutes after heating up to 00 ℃
After the temperature was lowered to the temperature of 10 minutes and held for 10 minutes, it was solidified in the crucible. A micrograph of the metal structure of the cross section of the ingot after solidification is shown in FIG.

【0019】鋳塊下部に晶出した化合物が堆積している
のがわかる(上記に説明したようにエッチングを行うこ
とによりさらに明瞭となる。)。この顕微鏡写真の矢印
のところで切断した時の上部と下部のTa含有量の分析
値を表1に示す。なお、溶湯のTa分析値も併せて示し
てある。この表1より鋳塊の下部にTaが多量に含有さ
れていることがわかる。
It can be seen that the crystallized compound is deposited in the lower part of the ingot (it becomes clearer by performing the etching as described above). Table 1 shows the analytical values of the Ta content in the upper and lower parts when the micrograph was cut at the arrow. The Ta analysis value of the molten metal is also shown. It can be seen from Table 1 that a large amount of Ta is contained in the lower part of the ingot.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【実 施 例 2】Ta含有量の不明な2種類のAl−T
a系合金スクラップを、実施例1と同様な方法により処
理を行い、700℃の温度に保持後、溶湯をゆっくり排
湯した。残った化合物を1550℃の温度に昇温して溶
解後、鋳造を行った。それぞれの鋳塊のトップ部とボト
ム部のTa含有量の分析値、および、溶湯分析値を表2
に示す。
[Example 2] Two kinds of Al-T with unknown Ta content
The a-type alloy scrap was treated in the same manner as in Example 1, and after maintaining the temperature at 700 ° C., the molten metal was slowly discharged. The remaining compound was heated to a temperature of 1550 ° C., melted, and then cast. Table 2 shows the analysis values of the Ta content at the top and bottom of each ingot and the analysis values of the molten metal.
Shown in.

【0021】この表2より、2種類の溶湯のTa含有量
の相違している場合でも、回収した鋳塊のTa含有量は
殆ど同じ程度であること、鋳塊には殆ど偏析がないこ
と、また、実施例1の坩堝内で凝固させた場合に比較し
てTa含有量の高いことがわかる。
From Table 2, even when the Ta contents of the two kinds of molten metal are different, the Ta contents of the recovered ingots are almost the same, and the ingots have almost no segregation. Further, it can be seen that the Ta content is higher than that in the case of solidifying in the crucible of Example 1.

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【実 施 例 3】Al−Hf系合金スクラップを誘導溶
解炉において溶解し、一時1000℃の温度まで昇温し
た後、5分間で700℃の温度まで降温して10分間保
持してから、溶湯を排湯して残った化合物を1600℃
の温度に昇温して溶解後に鋳造した。この鋳塊のトップ
部とボトム部のHf含有量の分析値と溶湯の分析値を表
3に示す。この表3より溶湯に比してトップ部とボトム
部のHf含有量が極めて多いことがわかる。
[Example 3] Al-Hf alloy scrap was melted in an induction melting furnace, temporarily heated to a temperature of 1000 ° C, then cooled to a temperature of 700 ° C in 5 minutes and held for 10 minutes, and then the molten metal was melted. The remaining compound after draining the water at 1600 ° C
Then, the temperature was raised to the above temperature to melt and casting was performed. Table 3 shows the analysis values of the Hf content of the top part and the bottom part of this ingot and the analysis values of the molten metal. It can be seen from Table 3 that the Hf content in the top portion and the bottom portion is much higher than that in the molten metal.

【0024】[0024]

【表3】 [Table 3]

【0025】[0025]

【発明の効果】以上詳細に説明したように、本発明に係
るアルミニウム合金から有用金属を回収する方法は上記
の構成であるから、工程および設備が共に比較的簡単で
あり、また、溶解原料スクラップの組成の如何に拘わら
ず回収された化合物は組成が略一定であり、従って、溶
解原料スクラップの組成が不明の物でも使用することが
可能であり、回収された化合物に偏析がないという優れ
た効果を有しているものである。
As described in detail above, since the method for recovering a useful metal from the aluminum alloy according to the present invention has the above-mentioned constitution, both the process and the equipment are relatively simple, and the melting raw material scrap is The composition of the recovered compound is almost constant regardless of the composition, and therefore, even if the composition of the molten raw material scrap is unknown, it can be used, and the recovered compound has no segregation. It has an effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】溶解原料を坩堝内において凝固させた場合の鋳
塊の切断断面の金属組織の顕微鏡写真である。
FIG. 1 is a micrograph of a metal structure of a cut cross section of an ingot when a molten raw material is solidified in a crucible.

【図2】処理温度に保持したフィルターを設置した鋳型
に沈降処理した溶湯を鋳込む方法を示す概略図である。
FIG. 2 is a schematic diagram showing a method of casting a melt subjected to sedimentation treatment into a mold provided with a filter maintained at a treatment temperature.

【図3】沈降処理後にフィルターを坩堝内に挿入して溶
湯を絞り出して溶湯と晶出物とを分離する方法を示す概
略図である。
FIG. 3 is a schematic view showing a method of separating a molten metal and a crystallized substance by inserting a filter into the crucible after the sedimentation treatment and squeezing out the molten metal.

【符号の説明】[Explanation of symbols]

1・・・溶解坩堝 2・・・フィルター 3・・・鋳型 4・・・フィルター加熱器 5・・・晶出物 1 ... Melting crucible 2 ... Filter 3 ... Mold 4 ... Filter heater 5 ... Crystallized substance

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Al−X系合金(X : Co、Ni、T
i、Zr、Hf、V、Nb、Ta、Cr、Mo、W、G
d、Tb、Dy、Ho、Er、Tm、Lu等の高融点金
属から選ばれた1種)を、その合金の液相線以下で、か
つ、固相線以上の温度に保持してAl−X化合物を晶
出、沈降させることを特徴とするアルミニウム合金から
有用金属を回収する方法。
1. An Al—X alloy (X: Co, Ni, T
i, Zr, Hf, V, Nb, Ta, Cr, Mo, W, G
d), Tb, Dy, Ho, Er, Tm, Lu, or another refractory metal) is kept at a temperature below the liquidus line of the alloy and above the solidus line to form Al- A method for recovering a useful metal from an aluminum alloy, which comprises crystallization and precipitation of an X compound.
JP35469391A 1991-12-19 1991-12-19 Method for recovering valuable metal from aluminum alloy Withdrawn JPH05171304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35469391A JPH05171304A (en) 1991-12-19 1991-12-19 Method for recovering valuable metal from aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35469391A JPH05171304A (en) 1991-12-19 1991-12-19 Method for recovering valuable metal from aluminum alloy

Publications (1)

Publication Number Publication Date
JPH05171304A true JPH05171304A (en) 1993-07-09

Family

ID=18439270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35469391A Withdrawn JPH05171304A (en) 1991-12-19 1991-12-19 Method for recovering valuable metal from aluminum alloy

Country Status (1)

Country Link
JP (1) JPH05171304A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004162139A (en) * 2002-11-14 2004-06-10 Seiji Akatsu Fractional recovery method for metal, and metal precipitation furnace used for the method
WO2010071048A1 (en) * 2008-12-17 2010-06-24 Tanakaホールディングス株式会社 Method for recovering metal from target and target manufacturing method
JP2011214104A (en) * 2010-03-31 2011-10-27 Tanaka Kikinzoku Kogyo Kk Method for recovering metal from target and method for manufacturing target
WO2015111695A1 (en) * 2014-01-27 2015-07-30 住友金属鉱山株式会社 Scandium concentrate recovery method
WO2015111696A1 (en) * 2014-01-27 2015-07-30 住友金属鉱山株式会社 Scandium chloride and scandium chloride production method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004162139A (en) * 2002-11-14 2004-06-10 Seiji Akatsu Fractional recovery method for metal, and metal precipitation furnace used for the method
WO2010071048A1 (en) * 2008-12-17 2010-06-24 Tanakaホールディングス株式会社 Method for recovering metal from target and target manufacturing method
US8287804B2 (en) 2008-12-17 2012-10-16 Tanaka Holdings Co., Ltd Method for recovering metal from target and method for manufacturing target
JP2011214104A (en) * 2010-03-31 2011-10-27 Tanaka Kikinzoku Kogyo Kk Method for recovering metal from target and method for manufacturing target
US8366800B2 (en) 2010-03-31 2013-02-05 Tanaka Kikinzoku Kogyo K.K. Method for recovering metal from target and method for manufacturing target
TWI448558B (en) * 2010-03-31 2014-08-11 Tanaka Precious Metal Ind The metal recovery method of the target and the manufacturing method of the target
WO2015111695A1 (en) * 2014-01-27 2015-07-30 住友金属鉱山株式会社 Scandium concentrate recovery method
WO2015111696A1 (en) * 2014-01-27 2015-07-30 住友金属鉱山株式会社 Scandium chloride and scandium chloride production method
JP2015140444A (en) * 2014-01-27 2015-08-03 住友金属鉱山株式会社 Method for producing scandium chloride and scandium oxide
JP2015140443A (en) * 2014-01-27 2015-08-03 住友金属鉱山株式会社 scandium concentrate recovery method

Similar Documents

Publication Publication Date Title
Munitz et al. Supercooling effects in Cu-10 Wt Pct Co alloys solidified at different cooling rates
JP4224532B2 (en) Method for producing Al-Sc master alloy and Al-Sc master alloy obtained by the method
US3548948A (en) Procedure for chill casting beryllium composite
US3548915A (en) New procedure for chill casting beryllium composite
Wang et al. Control of silicon solidification and the impurities from an Al–Si melt
WO2019077892A1 (en) Al ALLOY RECOVERY METHOD
JP3329013B2 (en) Continuous refining method and apparatus for Al-Si aluminum scrap
JPH05171304A (en) Method for recovering valuable metal from aluminum alloy
JPS6139385B2 (en)
JP7123834B2 (en) Impurity removal method
JP6800128B2 (en) How to regenerate Al alloy
KR102655019B1 (en) Impurity removal method
WO2019198476A1 (en) Impurity removal method
CN111961899B (en) Method for removing impurity iron in magnesium alloy by using Al-Zr intermediate alloy
JP5634704B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JP3673919B2 (en) High-purity titanium recovery method
US4474614A (en) Impurity segregation in copper by controlled cooling treatment
US2381291A (en) Process for producing beryllium
CN113286912A (en) Method for regenerating aluminum alloy
de Castro et al. Microstructure of undercooled Pb–Sn alloys
JP4253936B2 (en) Aluminum purification method and use of the obtained aluminum
JPH0885833A (en) Method for refining rare earth metal
JP2019077895A (en) REGENERATION METHOD OF Al ALLOY
JP3709466B2 (en) Separation and recovery method of copper and iron from copper iron scrap
SE448164B (en) PROCEDURE FOR PROVIDING A BED OF PURE SILICONE CRYSTALS

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990311