JPH05167224A - Formation of electrode forming transfer sheet and external electrode of electronic part - Google Patents

Formation of electrode forming transfer sheet and external electrode of electronic part

Info

Publication number
JPH05167224A
JPH05167224A JP3352081A JP35208191A JPH05167224A JP H05167224 A JPH05167224 A JP H05167224A JP 3352081 A JP3352081 A JP 3352081A JP 35208191 A JP35208191 A JP 35208191A JP H05167224 A JPH05167224 A JP H05167224A
Authority
JP
Japan
Prior art keywords
electrode
composite layer
metal composite
transfer sheet
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3352081A
Other languages
Japanese (ja)
Inventor
Shozo Kawazoe
昭造 河添
Hidehito Okano
秀仁 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP3352081A priority Critical patent/JPH05167224A/en
Publication of JPH05167224A publication Critical patent/JPH05167224A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE:To provide an outer electrode forming method whereby an external electrode is formed on the edge face at low cost in an excellent workability without substantially generating the problems such as lowering of reliability and the like caused by the intrusion of the conventional plating solution. CONSTITUTION:Using an electrode forming transfer sheet 1, the edge face 2a of an electronic part 2 is brought into contact with the metal composite layer 11 of the above-mentioned sheet 11 through the intermediary of conductive paste 12P. After the paste 12P has been dried up and hardened, the electronic part 2 is peeled from the sheet 1. As a result, an external electrode 3, consisting of a paste hardened layer 12 and a metal composite layer 11, is formed by transfer on the edge face 2a of the electronic part 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電極形成用転写シ―ト
と、これを用いた電子部品の外部電極形成方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transfer sheet for forming electrodes and a method for forming external electrodes of electronic parts using the transfer sheet.

【0002】[0002]

【従来の技術】近年、移動体通信やカメラ一体型VTR
などのように、電子機器の軽薄短小化の傾向が強く、こ
れに伴い電子部品の小型軽量化が進められており、特
に、積層セラミツクコンデンサや半固定ボリユ―ムなど
の電子部品に関して、広範囲の研究が続けられている。
2. Description of the Related Art In recent years, mobile communication and camera-integrated VTRs
There is a strong tendency for electronic devices to become lighter, thinner, shorter, and smaller, and along with this, electronic components are being made smaller and lighter, and in particular, a wide range of electronic components such as multilayer ceramic capacitors and semi-fixed volumes are being used. Research is ongoing.

【0003】ところで、このような電子部品において、
機器接続用の外部電極の形成は、通常、各電子部品の端
面に、導電性ペ―ストである銀ペ―ストを浸漬塗布し、
これの乾燥,硬化後、さらにこの上にNiバリア層とS
nまたはハンダ(SnとPbの合金)層をそれぞれメツ
キ形成する方式で、行われている。ここで、Niバリア
層は、高融点材料層として、ハンダ付け時の銀ペ―スト
硬化層の食われを防止するためのものであり、また最外
層のSnまたはハンダ層は、低融点材料層として、ハン
ダ付け時の濡れ性を良くするためのものである。
By the way, in such electronic parts,
External electrodes for device connection are usually formed by dipping and applying a conductive paste, silver paste, to the end face of each electronic component.
After this is dried and cured, a Ni barrier layer and an S
This is carried out by a method of forming n or solder (alloy of Sn and Pb) layers respectively. Here, the Ni barrier layer is a high melting point material layer for preventing the silver paste hardened layer from being eaten away during soldering, and the outermost Sn or solder layer is a low melting point material layer. The purpose is to improve wettability when soldering.

【0004】[0004]

【発明が解決しようとする課題】しかるに、上記従来の
外部電極の形成方法では、工程が多い上にメツキ液の管
理が面倒で、作業性が悪く、コスト高となる。また、メ
ツキ液が電子部品内に侵入し、たとえば、積層セラミツ
クコンデンサでは内部電極とセラミツクとの間に、半固
定ボリユ―ムでは抵抗体とセラミツクとの間に、それぞ
れ侵入し、水素ガスの発生や導電性イオンの残留で、絶
縁劣化や抵抗値の劣化などを引き起こし、生産歩留りの
低下や電子部品としての信頼性の低下を招いていた。
However, in the above-mentioned conventional method of forming an external electrode, the number of steps is large, the management of the plating solution is troublesome, the workability is poor, and the cost is high. Further, the plating solution enters the electronic parts, for example, between the internal electrode and the ceramic in the laminated ceramic capacitor, and between the resistor and the ceramic in the semi-fixed volume, respectively, to generate hydrogen gas. Also, residual conductive ions cause insulation deterioration, resistance value deterioration, etc., leading to a decrease in production yield and a decrease in reliability as an electronic component.

【0005】本発明は、上記従来の事情に鑑み、種々の
電子部品の端面に、低コストでかつ作業性良好に外部電
極を形成でき、しかもその際従来のようなメツキ液の侵
入による信頼性低下などの問題が本質的に起こらない上
記外部電極の形成方法を提供することを目的としてい
る。
In view of the above conventional circumstances, the present invention can form external electrodes on the end faces of various electronic parts at low cost and with good workability, and at that time, reliability due to the penetration of a plating solution as in the conventional case. It is an object of the present invention to provide a method for forming the external electrode, which does not cause problems such as deterioration.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記の目
的を達成するために、鋭意検討した結果、電極構成用の
Niバリア層やSnまたはハンダ層の形成に従来より用
いられてきたメツキ液に代えて、特定の電極形成用転写
シ―トを用いることにより、前記従来の問題をすべて克
服できることを知り、本発明を完成するに至つた。
Means for Solving the Problems As a result of intensive studies to achieve the above object, the present inventors have conventionally used it for forming a Ni barrier layer or an Sn or solder layer for forming an electrode. The present inventors have completed the present invention, knowing that the above conventional problems can be overcome by using a specific electrode forming transfer sheet instead of the plating solution.

【0007】すなわち、本発明の第1は、剥離性基材上
に、Snなどの低融点金属薄膜と、Niなどの高融点金
属薄膜とからなる金属複合層が、上記の順に積層形成さ
れてなる電極形成用転写シ―トに係るものである。
That is, according to the first aspect of the present invention, a metal composite layer composed of a thin film of a low melting point metal such as Sn and a thin film of a high melting point metal such as Ni is laminated and formed on the peelable substrate in the above order. The present invention relates to a transfer sheet for electrode formation.

【0008】また、本発明の第2は、上記の電極形成用
転写シ―トの金属複合層上に、電子部品の端面を、導電
性ペ―ストを介して当接させ、このペ―ストの乾燥,硬
化後、上記シ―トより電子部品を引き剥がすことによ
り、電子部品の端面に上記ペ―ストの硬化層と金属複合
層とからなる外部電極を転写形成することを特徴とする
電子部品の外部電極形成方法に係るものである。
In a second aspect of the present invention, the end face of the electronic component is brought into contact with the metal composite layer of the above-described electrode-forming transfer sheet via a conductive paste, and the paste is placed on the metal composite layer. After drying and curing, the electronic component is peeled off from the sheet to transfer and form an external electrode composed of a cured layer of the paste and a metal composite layer on the end face of the electronic component. The present invention relates to a method for forming an external electrode of a component.

【0009】[0009]

【発明の構成・作用】以下、本発明を、図面を参考にし
て説明する。図1は、本発明に用いる電極形成用転写シ
―ト1の一例を示したもので、剥離性基材10上に、低
融点金属薄膜11aと、高融点金属薄膜11bとからな
る金属複合層11が、上記の順に積層形成されている。
The present invention will be described below with reference to the drawings. FIG. 1 shows an example of an electrode-forming transfer sheet 1 used in the present invention. A metal composite layer comprising a low melting point metal thin film 11a and a high melting point metal thin film 11b on a peelable substrate 10. 11 are laminated in the above order.

【0010】剥離性基材10は、水の接触角(θ)が7
0度以上、好ましくは100度以上となるものが用いら
れ、ガラス板その他の厚手のものであつてもよいが、通
常は転写シ―トとしてロ―ル状に加工可能な厚さが数μ
m〜100μm程度の可撓性のプラスチツクフイルムが
好ましく用いられる。
The peelable substrate 10 has a water contact angle (θ) of 7
A material having a temperature of 0 ° or more, preferably 100 ° or more is used, and it may be a glass plate or other thick one, but normally, a thickness capable of being processed into a roll as a transfer sheet is several μ.
A flexible plastic film of about m to 100 μm is preferably used.

【0011】水の接触角が上記値となるプラスチツクフ
イルムとしては、たとえば、ポリテトラフルオロエチレ
ン、ポリクロロトリフルオロエチレン、ポリフツ化ビニ
ル、ポリフツ化ビニリデン、テトラフルオロエチレンと
ヘキサフルオロプロピレンとの共重合物、クロロトリフ
ルオロエチレンとフツ化ビニリデンとの共重合物などか
らなるフツ素系樹脂フイルムが挙げられる。
Examples of the plastic film having a water contact angle of the above value include, for example, polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinyl fluoride, polyvinylidene fluoride, and a copolymer of tetrafluoroethylene and hexafluoropropylene. , A fluorine-based resin film made of a copolymer of chlorotrifluoroethylene and vinylidene fluoride.

【0012】また、他のプラスチツクフイルムとして、
ポリスチレン、ポリエチレン、ポリプロピレン、ポリエ
ステル、ポリアミド、ポリイミドなどからなる非剥離性
樹脂フイルムの表面に、適宜の剥離処理を施したものも
使用できる。この剥離処理は、たとえば、水酸基やビニ
ル基を有するジメチルポリシロキサンとメチルハイドロ
ジエンポリシロキサンとの組み合わせなどからなるシリ
コ―ン含有化合物のほか、ポリクロロトリフルオロエタ
ンなどのフツ素系樹脂、硫化モリブデンなどの剥離処理
剤を用いて、塗工法、スプレ―法、真空蒸着法、スパツ
タリング法、イオンプレ―テイング法、焼付法などの手
法で行うことができる。
As another plastic film,
A non-peelable resin film made of polystyrene, polyethylene, polypropylene, polyester, polyamide, polyimide or the like, which has been subjected to an appropriate peeling treatment on the surface, can also be used. This peeling treatment is performed, for example, in addition to a silicone-containing compound such as a combination of dimethylpolysiloxane having a hydroxyl group or vinyl group and methylhydrogenpolysiloxane, a fluorine-based resin such as polychlorotrifluoroethane, molybdenum sulfide. It can be carried out by a method such as a coating method, a spray method, a vacuum deposition method, a sputtering method, an ion plating method, a baking method, etc.

【0013】金属複合層11のうち、低融点金属薄膜1
1aは、ハンダ付け時の濡れ性を良くするためのもの
で、Snまたはハンダなどの融点が500℃以下の金属
が好ましく用いられるが、その他Ag、Cu、Auなど
の融点が1,100℃程度までの金属も使用できる。一
方、高融点金属薄膜11bは、ハンダ付け時の導電性ペ
―スト硬化層の食われを防止するためのもので、通常N
iが用いられるが、その他Cr、Feなどの融点が1,
400℃以上の金属も使用できる。
Of the metal composite layer 11, the low melting point metal thin film 1
1a is for improving the wettability at the time of soldering, and a metal such as Sn or solder having a melting point of 500 ° C. or lower is preferably used, but other melting points such as Ag, Cu, and Au are about 1100 ° C. Metals up to can also be used. On the other hand, the high-melting-point metal thin film 11b is for preventing the conductive paste hardened layer from being eroded during soldering, and is usually N
i is used, but the melting point of Cr, Fe, etc. is 1,
Metals of 400 ° C. or higher can also be used.

【0014】これらの低融点金属薄膜11aおよび高融
点金属薄膜11bは、それぞれの厚さが0.1〜100
μm、好ましくは0.5〜10μmの範囲で、両薄膜1
1a,11bからなる金属複合層11全体の厚さが0.
2〜100μm、好ましくは1〜20μmの範囲にある
のがよい。薄膜11a,11bが薄くなりすぎると、連
続被膜とならず、目的とする電極形成が難しくなる。ま
た、薄膜11a,11bの厚さや、金属複合層11全体
の厚さが厚くなりすぎると、引張強度が強くなつて電子
部品への寸法精度良好な転写が難しくなつたり、転写後
に部品周辺部にはみ出して外観不良などの不都合をきた
しやすい。
The low melting point metal thin film 11a and the high melting point metal thin film 11b each have a thickness of 0.1 to 100.
μm, preferably in the range of 0.5 to 10 μm, both thin films 1
The total thickness of the metal composite layer 11 composed of 1a and 11b is 0.
It may be in the range of 2 to 100 μm, preferably 1 to 20 μm. If the thin films 11a and 11b are too thin, the film will not be a continuous film, making it difficult to form the intended electrode. Further, if the thickness of the thin films 11a and 11b or the thickness of the entire metal composite layer 11 becomes too thick, the tensile strength becomes so strong that it becomes difficult to transfer the dimensional accuracy to the electronic component with good accuracy. It easily sticks out and causes inconvenience such as poor appearance.

【0015】このような薄膜11a,11bは、一般
に、真空蒸着法により形成されるが、スパツタリング
法、イオンプレ―テイング法などの他のドライメツキ法
や、無電解および電解メツキ(ウエツトメツキ法)など
の方法で形成してもよく、薄膜形成の手段は特に限定さ
れない。
Such thin films 11a and 11b are generally formed by a vacuum deposition method, but other dry plating methods such as a sputtering method and an ion plating method, and electroless and electrolytic plating methods (wet plating method) and the like. May be used, and the means for forming the thin film is not particularly limited.

【0016】図2の(A),(B)は、上記構成の電極
形成用転写シ―ト1を用いて、積層セラミツクコンデン
サや半固定ボリユ―ムなどの電子部品の端面に、本発明
の方法にしたがつて、外部電極を形成する方法を示した
ものである。
2 (A) and 2 (B), the electrode-forming transfer sheet 1 having the above-described structure is used to apply the present invention to an end surface of an electronic component such as a laminated ceramic capacitor or a semi-fixed volume. According to the method, a method for forming an external electrode is shown.

【0017】(A)に示すように、まず、電極形成用転
写シ―ト1の金属複合層11上に、電子部品2の端面2
aを、導電性ペ―スト12Pを介して当接させる。つま
り、通常は、電子部品2の端面2aの方に導電性ペ―ス
ト12Pを浸漬塗布したのち、この塗布面を上記の金属
複合層11上に押し当てる。
As shown in FIG. 1A, first, the end face 2 of the electronic component 2 is formed on the metal composite layer 11 of the transfer sheet 1 for electrode formation.
a is brought into contact via the conductive paste 12P. That is, normally, after the conductive paste 12P is dip-coated on the end surface 2a of the electronic component 2, the coated surface is pressed onto the metal composite layer 11.

【0018】導電性ペ―スト12Pは、従来と同様構成
のものでよく、一般には銀ペ―ストが用いられる。この
銀ペ―ストは、銀粉や銀/銅混合粉と、フエノ―ル系、
アクリル系、エポキシ系などの樹脂またはガラスフリツ
トなどの結合剤と、少量の希釈溶剤とを、塗布可能な粘
度に混練してなるものである。塗布厚さは、乾燥,硬化
後の厚さが通常0.1〜50μm程度となるようにする
のがよい。
The conductive paste 12P may have the same structure as the conventional one, and a silver paste is generally used. This silver paste is made of silver powder, silver / copper mixed powder, phenol-based,
It is made by kneading a binder such as an acrylic or epoxy resin or a glass frit and a small amount of a diluting solvent so that the viscosity is coatable. The coating thickness is preferably such that the thickness after drying and curing is usually about 0.1 to 50 μm.

【0019】つぎに、上記塗布面を金属複合層11上に
押し当てた状態で、導電性ペ―スト12Pを、その材料
構成によつても異なるが、通常は100〜200℃で1
0〜60分の条件で、乾燥,硬化させる。この硬化で、
電子部品2の端面2aに対し金属複合層11(の高融点
金属薄膜11b側)が強固に接合される。
Next, while the coated surface is pressed against the metal composite layer 11, the conductive paste 12P is usually 1 to 100 ° C. to 200 ° C., although it varies depending on the material constitution.
Dry and cure under conditions of 0 to 60 minutes. With this curing,
The metal composite layer 11 (on the high melting point metal thin film 11b side) is firmly bonded to the end surface 2a of the electronic component 2.

【0020】しかるのち、(B)に示すように、上記シ
―ト1より電子部品2を引き剥がし操作すると、電子部
品2の端面2aに上記ペ―ストの硬化層12と共に金属
複合層11が転写形成される。すなわち、これら層1
1,12によつて外部電極3が構成されることになる。
Thereafter, as shown in (B), when the electronic component 2 is peeled off from the sheet 1, the metal composite layer 11 is formed on the end face 2a of the electronic component 2 together with the hardened layer 12 of the paste. Transfer formed. That is, these layers 1
The external electrodes 3 are composed of 1 and 12.

【0021】シ―ト1からの電子部品2の引き剥がし操
作は、特別な力を要することなく容易に行えるが、これ
は、シ―ト1における金属複合層11の引張強度が剥離
性基材10に対する90度剥離強度よりも小さいためで
ある。つまり、上記の引張強度は、10〜1,000g
/μm×cm、好適には17〜530g/μm×cmであ
り、一方90度剥離強度は10g/cm2 以上、好適には
400g/cm2 以上である。また、180度剥離強度は
1g/cm以上、好適には2g/cm以上である。
The peeling operation of the electronic component 2 from the sheet 1 can be easily carried out without requiring any special force. This is because the tensile strength of the metal composite layer 11 in the sheet 1 is a peelable substrate. This is because it is smaller than the 90-degree peel strength with respect to 10. That is, the above tensile strength is 10 to 1,000 g.
/ Μm × cm, preferably 17 to 530 g / μm × cm, while the 90 degree peel strength is 10 g / cm 2 or more, preferably 400 g / cm 2 or more. The 180 degree peel strength is 1 g / cm or more, preferably 2 g / cm or more.

【0022】なお、上記の引張強度は、単位断面積あた
りの引張強度(kg/m2)から計算により求められる値で
ある。また、90度剥離強度は、1cm角あたりの基材に
対する90度方向の剥離力をシヨツパ―やテンシロンな
どを用いて測定される値である。さらに、180度剥離
強度は、1cm幅あたりの180度方向の剥離力をシヨツ
パ―やテンシロンなどを用いて測定される値である。
The above tensile strength is a value obtained by calculation from the tensile strength per unit cross-sectional area (kg / m 2 ). The 90-degree peel strength is a value obtained by measuring the peel force per 1 cm square in the 90-degree direction with respect to the substrate by using a shocker or tensilon. Further, the 180-degree peel strength is a value obtained by measuring the peel force in the 180-degree direction per 1 cm width using a shocker or tensilon.

【0023】[0023]

【発明の効果】以上のように、本発明においては、電子
部品への外部電極の形成に際し、従来のNiバリア層や
Snまたはハンダ層形成用のメツキ液に代えて、特定の
電極形成用転写シ―トを使用し、その金属複合層を導電
性ペ―ストの乾燥,硬化と同時に電子部品に転写形成す
るものであるため、積層セラミツクコンデンサや半固定
ボリユ―ムなどの種々の電子部品に対し、低コストでか
つ作業性良好に外部電極を形成でき、特に電極形成用転
写シ―トをロ―ル状に加工しておくことにより、電極形
成の自動化も可能で大幅な省力化を期待できる。しか
も、従来のようなメツキ液の侵入による信頼性低下など
の問題を本質的に回避できる。
As described above, according to the present invention, when the external electrode is formed on the electronic component, a specific electrode forming transfer is performed instead of the conventional Ni barrier layer or Sn or the soldering liquid for forming the solder layer. Since a sheet is used and the metal composite layer is transferred and formed on the electronic parts at the same time when the conductive paste is dried and cured, it can be applied to various electronic parts such as laminated ceramic capacitors and semi-fixed volumes. On the other hand, it is possible to form external electrodes at low cost and with good workability. Especially by processing the transfer sheet for electrode formation into a roll shape, it is possible to automate the electrode formation and expect significant labor savings. it can. Moreover, it is possible to essentially avoid the conventional problems such as the decrease in reliability due to the penetration of the plating solution.

【0024】また、電子部品、たとえば半固定ボリユ―
ムなどの小型化が進むと、電極間の間隔が小さくなり、
従来技術では電極形成のためのメツキ作業時に電極間で
橋かけ現象などが発生し、電気的短絡を引き起こすおそ
れがあつたが、本発明では、メツキ液を用いずに電極形
成するものであるため、このような心配がないうえ、電
極形成用転写シ―トの材料構成に応じた所望厚さの電極
形成を行えることから、電子部品の小型化に十分に対応
できる。
Also, electronic parts such as semi-fixed volume
As the size of the electrodes becomes smaller, the gap between the electrodes becomes smaller,
In the prior art, a bridging phenomenon or the like occurs between electrodes during plating work for electrode formation, which may cause an electrical short circuit.However, in the present invention, electrodes are formed without using a plating solution. However, since there is no such concern and an electrode having a desired thickness can be formed in accordance with the material configuration of the transfer sheet for electrode formation, it is possible to sufficiently cope with miniaturization of electronic components.

【0025】[0025]

【実施例】つぎに、本発明を、電子部品として積層セラ
ミツクコンデンサおよび半固定ボリユ―ムに適用した実
施例につき、具体的に説明する。
EXAMPLES Next, examples in which the present invention is applied to a laminated ceramic capacitor and a semi-fixed volume as electronic parts will be specifically described.

【0026】実施例1 厚さが50μmのポリテトラフルオロエチレンフイルム
(剥離性基材)の片面に、真空度1×10-4Torrの
条件でSnを真空蒸着して、厚さが3μmのSn薄膜
(低融点金属薄膜)を形成したのち、この上にさらに上
記と同一条件でNiを真空蒸着して、厚さが1μmのN
i薄膜(高融点金属薄膜)を形成し、図1に示す構造の
電極形成用転写シ―トを得た。
Example 1 Sn was vacuum-deposited on one surface of a polytetrafluoroethylene film (releasable substrate) having a thickness of 50 μm under the conditions of a vacuum degree of 1 × 10 −4 Torr to obtain Sn having a thickness of 3 μm. After forming a thin film (low melting point metal thin film), Ni is vacuum-deposited on the thin film under the same conditions as described above to form N having a thickness of 1 μm.
An i thin film (high melting point metal thin film) was formed to obtain an electrode forming transfer sheet having the structure shown in FIG.

【0027】なお、この電極形成用転写シ―トは、低融
点金属薄膜と高融点金属薄膜とからなる金属複合層の引
張強度が370g/μm×cm、剥離性基材に対する90
度剥離強度が3,000g/cm2 、また180度剥離強
度が6g/cmであつた。
In this electrode-forming transfer sheet, the tensile strength of the metal composite layer consisting of the low-melting metal thin film and the high-melting metal thin film was 370 g / μm × cm, and the tensile strength against the peelable substrate was 90.
The peel strength was 3,000 g / cm 2 , and the 180 degree peel strength was 6 g / cm.

【0028】つぎに、この電極形成用転写シ―トを用い
て、前記図2の方法に準じて、積層セラミツクコンデン
サの端面に外部電極を形成した。すなわち、まず、上記
コンデンサの端面に、銀ペ―ストを乾燥,硬化後の厚さ
が約20μmとなるように塗布したのち、この塗布面を
上記シ―トの金属複合層上に押し当てた。この状態で1
20℃で約30分間乾燥,硬化させた。
Next, using this electrode-forming transfer sheet, external electrodes were formed on the end faces of the laminated ceramic capacitor according to the method shown in FIG. That is, first, silver paste was applied to the end surface of the capacitor so that the thickness after drying and curing was about 20 μm, and then the applied surface was pressed onto the metal composite layer of the sheet. .. 1 in this state
It was dried and cured at 20 ° C. for about 30 minutes.

【0029】しかるのち、上記コンデンサをシ―トより
引き剥がし操作すると、上記の金属複合層は銀ペ―スト
の硬化層と一体となつて剥離性基材から剥離し、上記コ
ンデンサの端面に転写された。このようにして、積層セ
ラミツクコンデンサの端面に、銀ペ―ストの硬化層と金
属複合層との一体化物からなる外部電極を、従来のメツ
キ液を用いる方法に比べて簡便な操作でかつ低コスト
で、しかもメツキ液に伴う信頼性低下などの問題を一切
きたすことなく、良好に形成できた。
Thereafter, when the capacitor is peeled off from the sheet, the metal composite layer is integrated with the hardened layer of silver paste to be peeled off from the peelable substrate and transferred to the end face of the capacitor. Was done. In this way, an external electrode composed of an integrated body of a hardened layer of silver paste and a metal composite layer is provided on the end surface of the laminated ceramic capacitor, which is simpler and less costly than the conventional method using a plating solution. In addition, it could be formed satisfactorily without causing any problems such as a decrease in reliability due to the plating solution.

【0030】実施例2 厚さが75μmのポリテトラフルオロエチレンフイルム
(剥離性基材)の片面に、真空度2×10-4Torrの
条件でPbを真空蒸着して、厚さが4μmのPb薄膜
(低融点金属薄膜)を形成したのち、この上にさらに上
記と同一条件でCrを真空蒸着して、厚さが0.5μm
のCr薄膜(高融点金属薄膜)を形成し、図1に示す構
造の電極形成用転写シ―トを得た。
Example 2 Pb having a thickness of 4 μm was vacuum-deposited on one surface of a polytetrafluoroethylene film having a thickness of 75 μm (peeling base material) under the condition of a vacuum degree of 2 × 10 −4 Torr. After forming a thin film (low melting point metal thin film), Cr is further vacuum-deposited under the same conditions as above, and the thickness is 0.5 μm.
Cr thin film (high melting point metal thin film) was formed to obtain an electrode forming transfer sheet having the structure shown in FIG.

【0031】なお、この電極形成用転写シ―トは、低融
点金属薄膜と高融点金属薄膜とからなる金属複合層の引
張強度が282g/μm×cm、剥離性基材に対する90
度剥離強度が2,200g/cm2 、また180度剥離強
度が6g/cmであつた。
In this electrode forming transfer sheet, the tensile strength of the metal composite layer comprising the low melting point metal thin film and the high melting point metal thin film was 282 g / μm × cm, and the peel strength was 90
The peel strength was 2,200 g / cm 2 , and the 180 degree peel strength was 6 g / cm.

【0032】つぎに、この電極形成用転写シ―トを用い
て、前記図2の方法に準じて、半固定ボリユ―ムの端面
に外部電極を形成した。すなわち、まず、半固定ボリユ
―ムの端面に、銀ペ―ストを乾燥,硬化後の厚さが約1
0μmとなるように塗布したのち、この塗布面を上記シ
―トの金属複合層上に押し当てた。この状態で180℃
で約20分間乾燥,硬化させた。
Next, using this electrode-forming transfer sheet, external electrodes were formed on the end faces of the semi-fixed volume according to the method shown in FIG. That is, first, the silver paste is dried and cured to a thickness of about 1 on the end face of the semi-fixed volume.
After coating so as to have a thickness of 0 μm, this coated surface was pressed onto the metal composite layer of the above sheet. 180 ℃ in this state
And dried and cured for about 20 minutes.

【0033】しかるのち、半固定ボリユ―ムをシ―トよ
り引き剥がし操作すると、上記の金属複合層は銀ペ―ス
トの硬化層と一体となつて剥離性基材から剥離し、半固
定ボリユ―ムの端面に転写された。このようにして、半
固定ボリユ―ムの端面に、銀ペ―ストの硬化層と金属複
合層との一体化物からなる外部電極を、従来のメツキ液
を用いる方法に比べて簡便な操作でかつ低コストで、し
かもメツキ液に伴う信頼性低下などの問題を一切きたす
ことなく、良好に形成できた。
Then, when the semi-fixed volume is peeled off from the sheet, the above-mentioned metal composite layer is integrated with the hardened layer of the silver paste to be peeled off from the releasable substrate, and the semi-fixed volume is removed. -It was transferred to the end face of the mu. In this way, an external electrode composed of an integrated body of the hardened layer of silver paste and the metal composite layer is provided on the end face of the semi-fixed volume with a simpler operation and compared with the conventional method using the plating solution. It could be formed favorably at low cost and without causing any problems such as a decrease in reliability associated with the plating solution.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電極形成用転写シ―トの一例を示す断
面図である。
FIG. 1 is a cross-sectional view showing an example of a transfer sheet for electrode formation of the present invention.

【図2】本発明の外部電極形成方法の一例を示す工程図
で、(A)は、電極形成用転写シ―トの金属複合層上に
電子部品の端面を導電性ペ―ストを介して当接させた状
態を示す断面図、(B)は、上記ペ―ストの乾燥,硬化
後、上記シ―トより電子部品を引き剥がした状態を示す
断面図である。
FIG. 2 is a process diagram showing an example of an external electrode forming method of the present invention, in which (A) shows an end face of an electronic component on a metal composite layer of a transfer sheet for electrode formation via a conductive paste. FIG. 3B is a cross-sectional view showing a state in which they are brought into contact with each other, and FIG. 3B is a cross-sectional view showing a state in which the electronic component is peeled off from the sheet after the paste is dried and cured.

【符号の説明】[Explanation of symbols]

1 電極形成用転写シ―ト 10 剥離性基材 11 金属複合層 11a 低融点金属薄膜 11b 高融点金属薄膜 12P 導電性ペ―スト 12 導電性ペ―ストの硬化層 2 電子部品 2a 端面 3 外部電極 DESCRIPTION OF SYMBOLS 1 Transfer sheet for electrode formation 10 Releasable substrate 11 Metal composite layer 11a Low melting point metal thin film 11b High melting point metal thin film 12P Conductive paste 12 Hardened layer of conductive paste 2 Electronic component 2a End surface 3 External electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 剥離性基材上に低融点金属薄膜と高融点
金属薄膜とからなる金属複合層が上記の順に積層形成さ
れてなる電極形成用転写シ―ト。
1. A transfer sheet for electrode formation, comprising a peelable substrate, and a metal composite layer comprising a low melting point metal thin film and a high melting point metal thin film laminated in this order.
【請求項2】 請求項1に記載の電極形成用転写シ―ト
の金属複合層上に、電子部品の端面を、導電性ペ―スト
を介して当接させ、このペ―ストの乾燥,硬化後、上記
シ―トより電子部品を引き剥がすことにより、電子部品
の端面に上記ペ―ストの硬化層と金属複合層とからなる
外部電極を転写形成することを特徴とする電子部品の外
部電極形成方法。
2. An end face of an electronic component is brought into contact with the metal composite layer of the transfer sheet for electrode formation according to claim 1 through a conductive paste, and the paste is dried, After curing, by peeling off the electronic component from the sheet, an external electrode composed of a cured layer of the paste and a metal composite layer is transferred and formed on the end surface of the electronic component. Electrode forming method.
JP3352081A 1991-12-12 1991-12-12 Formation of electrode forming transfer sheet and external electrode of electronic part Pending JPH05167224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3352081A JPH05167224A (en) 1991-12-12 1991-12-12 Formation of electrode forming transfer sheet and external electrode of electronic part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3352081A JPH05167224A (en) 1991-12-12 1991-12-12 Formation of electrode forming transfer sheet and external electrode of electronic part

Publications (1)

Publication Number Publication Date
JPH05167224A true JPH05167224A (en) 1993-07-02

Family

ID=18421653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3352081A Pending JPH05167224A (en) 1991-12-12 1991-12-12 Formation of electrode forming transfer sheet and external electrode of electronic part

Country Status (1)

Country Link
JP (1) JPH05167224A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100810459B1 (en) * 2005-12-15 2008-03-07 티디케이가부시기가이샤 Method for forming an outer electrode
JP2009049319A (en) * 2007-08-22 2009-03-05 Tdk Corp Method of manufacturing electronic component
JP2009170599A (en) * 2008-01-15 2009-07-30 Tdk Corp Method for producing electronic component
US8291585B2 (en) 2007-08-22 2012-10-23 Tdk Corporation Method for manufacturing electronic component

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100810459B1 (en) * 2005-12-15 2008-03-07 티디케이가부시기가이샤 Method for forming an outer electrode
US7803421B2 (en) 2005-12-15 2010-09-28 Tdk Corporation External electrode forming method
JP2009049319A (en) * 2007-08-22 2009-03-05 Tdk Corp Method of manufacturing electronic component
JP4586835B2 (en) * 2007-08-22 2010-11-24 Tdk株式会社 Manufacturing method of electronic parts
US8291585B2 (en) 2007-08-22 2012-10-23 Tdk Corporation Method for manufacturing electronic component
JP2009170599A (en) * 2008-01-15 2009-07-30 Tdk Corp Method for producing electronic component

Similar Documents

Publication Publication Date Title
US11328851B2 (en) Ceramic electronic component and manufacturing method therefor
US20130208401A1 (en) Electronic component and method for manufacturing electronic component
US8470680B2 (en) Substrate with embedded patterned capacitance
US4328048A (en) Method of forming copper conductor
JP3758293B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
EP0485176B1 (en) Metal thin film having excellent transferability and method of preparing the same
JPH05167224A (en) Formation of electrode forming transfer sheet and external electrode of electronic part
JPH06168845A (en) Chip type laminated film capacitor
JPH05167225A (en) Formation of electrode forming transfer sheet and external electrode of electronic part
US4833004A (en) Structure of copper conductor and method of forming same
JPH0722268A (en) Chip device
JPH0897075A (en) Production of ceramic device
JPH04154104A (en) Laminated ceramic capacitor
JP2000077253A (en) Electronic component, electronic component chip, and component manufacturing method
JPH02224311A (en) Manufacture of laminated ceramic electronic part
JP2000188228A (en) Chip type electronic component
JPH02294007A (en) Formation of ceramic electronic component electrode
JPH08111349A (en) Chip component
TW575885B (en) Copper foil with nickel pattern layer for forming internal electrode of multilayer ceramic capacitor, method of manufacturing multilayer ceramic capacitor having the same copper foil with nickel pattern layer, and multilayer ceramic capacitor
JPH06104152A (en) Forming method for terminal electrode for chip type electronic part
JPH08236387A (en) Surface-mounting electronic component and manufacture thereof
JP2537182B2 (en) Method for manufacturing chip-type solid electrolytic capacitor
JP2000017424A (en) Metal transfer film
JP2914019B2 (en) Electronic component manufacturing method
JPH03129894A (en) Flexible printed wiring board and manufacture thereof