JPH05164472A - Expansible fiber insulation material and high air tight insulation material - Google Patents

Expansible fiber insulation material and high air tight insulation material

Info

Publication number
JPH05164472A
JPH05164472A JP35225491A JP35225491A JPH05164472A JP H05164472 A JPH05164472 A JP H05164472A JP 35225491 A JP35225491 A JP 35225491A JP 35225491 A JP35225491 A JP 35225491A JP H05164472 A JPH05164472 A JP H05164472A
Authority
JP
Japan
Prior art keywords
fiber
heat insulating
core material
mat
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP35225491A
Other languages
Japanese (ja)
Inventor
Junichi Iura
純一 井浦
Takashi Mukoyama
巍 向山
Naoki Taneda
直樹 種田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP35225491A priority Critical patent/JPH05164472A/en
Publication of JPH05164472A publication Critical patent/JPH05164472A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2839Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
    • F01N3/2853Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing
    • F01N3/2857Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing the mats or gaskets being at least partially made of intumescent material, e.g. unexpanded vermiculite

Abstract

PURPOSE:To enhance a thermal sealing performance by wrapping a core material which uses a heat expansion material made of ceramic fiber and an inorganic heat expansion substance with fabric made of quartz glass fiber of a specific composition. CONSTITUTION:An amorphous short fiber mainly composed of ceramic fiber, such as SiO2-Al2O3 is formed in the shape of a mat with an organic binder. During this formation process, an inorganic expansion material, such as vermiculite is covered in or mixed so as to form a core material. The surface of the core material is covered with a texture or a knitted article made of quartz glass long fiber having a composition of more than 96 mole % of SiO2 and less than 4 mole % of TiO2. Especially preferable is that the quartz glass fiber is made of quartz single fiber having no fine holes. This construction makes it possible to bring the shrinkage percentage of the quartz long fiber to 0 and hence inhibit the generation of local shrinkage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、膨張性繊維質断熱材、
特に各種工業炉用断熱材、シール材、あるいはパッキン
グ材に関するものであって、また特に、半導体、集積回
路製造に用いられる拡散炉、CVD炉用の高気密性断熱
パッキング材に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to an expansive fibrous heat insulating material,
In particular, the present invention relates to a heat insulating material for various industrial furnaces, a sealing material, or a packing material, and more particularly to a highly airtight heat insulating packing material for a diffusion furnace and a CVD furnace used for manufacturing semiconductors and integrated circuits.

【0002】[0002]

【従来の技術】一般に工業炉の断熱材、シール材あるい
はパッキング材には、アスベストやガラス繊維、セラミ
ックス繊維のウール、さらには、これらの短繊維物を耐
熱性を有するガラスあるいはセラミックス長繊維からな
る織物、あるいは編組物で包んだタイプのものが数多く
用いられている。これらの材料構成から成る断熱材は、
さらには、エレクトロニクス分野での半導体や集積回路
の製造に用いられる拡散炉やCVD炉においても広く利
用されている。
2. Description of the Related Art Generally, heat insulating materials, sealing materials or packing materials for industrial furnaces are made of asbestos, glass fibers, wool of ceramic fibers, and further, these short fiber materials are made of heat-resistant glass or ceramic long fibers. Many types of woven or braided type are used. Insulation material consisting of these material configurations,
Further, it is also widely used in diffusion furnaces and CVD furnaces used for manufacturing semiconductors and integrated circuits in the electronics field.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
断熱材、あるいは断熱材として用いられる無機質繊維材
料は、耐熱実用温度の差はあるものの、長時間にわたっ
て使用されると、いずれも繊維質材料そのものが熱的に
収縮する性質を有するため、断熱材全体が均一あるいは
局所的に収縮し、本来必要とされる熱的シールが著しく
損なわれるという欠点があった。
However, the conventional heat insulating material or the inorganic fiber material used as a heat insulating material has a difference in heat resistant practical temperature, but when used for a long time, both are fibrous materials themselves. Has a property of being thermally shrunk, so that there is a drawback that the entire heat insulating material is uniformly or locally shrunk, and the originally required thermal seal is significantly impaired.

【0004】特に厳しい均熱ゾーンが要求される半導
体、集積回路の製造に用いられる拡散炉CVD炉の断熱
材については、このような寸法の縮みは、低ダストレベ
ル(例えばクラス100)のクリーンルームから、ダス
トレベルの高い(クラス1000以上、いわゆるワーキ
ングルームと称される)クリーンルームへ流れる気流
が、炉の発熱体と拡散チューブなどの炉芯管との間の空
間に流れ込み、炉芯管の割れを引き起こすといった問題
を引き起こしていた。このような観点から見ると、従来
特公昭60−43011号公報(拡散チューブ支持カラ
ー)で述べられている“所定の拡散チューブの外周に密
に嵌合し、かつ、炉の壁に設けられた孔内に嵌合するよ
うになされた支持カラー”も、材料の熱的収縮性を考え
れば、炉の運転時に長時間にわたって、決して、チュー
ブの外周および炉の壁の孔内との嵌合状態を保ち続ける
とは言えない。
For the insulation material of the diffusion furnace CVD furnace used for the production of semiconductors and integrated circuits which require particularly severe soaking zone, such dimensional shrinkage is caused by a low dust level (for example, class 100) clean room. , The airflow flowing to a clean room with high dust level (class 1000 or higher, so-called working room) flows into the space between the heating element of the furnace and the furnace core tube such as the diffusion tube, causing cracks in the furnace core tube. It was causing problems such as causing it. From this point of view, as described in Japanese Patent Publication No. 60-43011 (diffusion tube support collar), it is "fitted tightly to the outer periphery of a predetermined diffusion tube and provided on the wall of the furnace. The support collar, which is designed to fit inside the hole, also fits with the outer circumference of the tube and inside the hole in the wall of the furnace for a long time during operation of the furnace, considering the thermal shrinkage of the material. It cannot be said that it keeps keeping.

【0005】[0005]

【課題を解決するための手段】本発明は前述の課題を解
決すべくなされたものであり、セラミックス繊維と無機
質の熱膨張性物質からなる熱膨張性材料とを少なくとも
一部に用いた芯材をSiO2 が96モル%以上かつTi
2 が4モル%以下の組成を有する石英ガラス質長繊維
からなる織物または編組物で包んで成ることを特徴とす
る膨張性繊維質断熱材、工業炉用断熱材、特に半導体、
集積回路の製造に用いられる拡散炉およびCVD炉用の
高気密性断熱材を提供するものである。特に、前記石英
ガラス質長繊維は微細孔をもたない石英ガラス質単繊維
からなることが好ましい。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and is a core material using at least a part of ceramic fibers and a heat-expandable material made of an inorganic heat-expandable substance. SiO 2 is 96 mol% or more and Ti
An expansive fibrous heat insulating material, an industrial furnace heat insulating material, especially a semiconductor, characterized by being wrapped with a woven or braided silica glass long fiber having a composition of O 2 of 4 mol% or less.
The present invention provides a highly airtight insulation for diffusion furnaces and CVD furnaces used in the manufacture of integrated circuits. In particular, the quartz vitreous continuous fibers are preferably composed of quartz vitreous single fibers having no fine pores.

【0006】本発明において芯材として用いられるセラ
ミックス繊維と無機質の熱膨張性物質からなる熱膨張性
材料について実施例1に従って説明する。本発明におい
て、セラミックス繊維とは例えばSiO2 −Al23
を主成分とする非晶質短繊維を有機バインダーによって
マット状にシート成形したものであり、該マットの成形
過程で無機質の熱膨張性物質、例えばバーミキュライト
と称されるタイプの雲母を該マットにまぶし込みまたは
混入させて得られる材料が少なくとも一部に芯材として
用いられる。このような熱膨張性材料はインタラム(登
録商標)マットという商標で販売されており容易に入手
できる。このマット状の熱膨張性成形物の厚みは約5m
mであり、さらに断熱性を得るためには、マット状の成
形物を複数枚重ねるとよい。
A heat-expandable material comprising a ceramic fiber and an inorganic heat-expandable substance used as a core material in the present invention will be described according to Example 1. In the present invention, the ceramic fiber is, for example, SiO 2 —Al 2 O 3
Is a sheet formed into a mat shape by using an organic binder with an amorphous short fiber as a main component, and an inorganic heat-expandable substance, for example, mica of a type called vermiculite, is formed in the mat in the molding process of the mat. At least a part of the material obtained by dusting or mixing is used as the core material. Such a heat-expandable material is sold under the trademark Intalum (registered trademark) mat and is easily available. The thickness of this mat-like heat-expandable molded product is about 5 m.
m, and in order to obtain further heat insulation, it is advisable to stack a plurality of mat-shaped molded products.

【0007】この熱膨張性成形物は厚み方向で、600
℃の加熱において約3倍に膨張するという特徴を有して
おり、従来用いられてきた耐熱断熱材アスベスト、ガラ
ス繊維のウール、さらにはSiO2 −Al23 から成
る短繊維物(セラミックス繊維)のマットなどが600
〜1300℃の温度域において数%〜数十%収縮してい
たのに比べて大きな違いがある。ただし、断熱材全体と
しての膨張率を調節したいときや、特定の部位のみ膨張
させたいときには、熱膨張性成形物とこれらの汎用の繊
維質断熱材を併用することができる。
This heat-expandable molded product has a thickness of 600
It has the characteristic that it expands about 3 times when heated at ℃, and it is a heat-resistant heat-insulating material asbestos that has been used in the past, wool of glass fiber, and a short fiber material composed of SiO 2 -Al 2 O 3 (ceramic fiber). ) Mats etc. are 600
There is a big difference compared with the fact that the shrinkage is several percent to several tens percent in the temperature range of ˜1300 ° C. However, when it is desired to adjust the expansion coefficient of the heat insulating material as a whole or to expand only a specific part, the heat-expandable molded product and these general-purpose fibrous heat insulating materials can be used together.

【0008】さて、本発明で述べるところの熱膨張性成
形物も含めて、短繊維材料で構成される断熱材では、繊
維の飛散、欠落、さらにはダストの発生を惹き起こし、
実際の使用に際しては、はなはだ不都合である。
By the way, in the heat insulating material composed of the short fiber material including the heat-expandable molded article described in the present invention, the scattering and the loss of the fibers and the generation of dust are caused,
It is very inconvenient in actual use.

【0009】本発明の特徴は、この膨張性物質を少なく
とも一部に芯材として用い、その周囲を、SiO2 が9
6モル%以上かつTiO2 が4モル%以下の組成を有す
る石英ガラス質長繊維からなる織物あるいは編組物で包
んで成るところにあり、特に好ましくは前記石英ガラス
質長繊維が微細孔をもたない石英ガラス質単繊維から成
ることを特徴とするものである(以下、芯材を包む織物
あるいは編組物を外皮材という)。
A feature of the present invention is that the expansive substance is used at least in part as a core material, and the surrounding area is covered with SiO 2 of 9%.
The silica glass long fibers are preferably wrapped with a woven fabric or a braid composed of silica glass long fibers having a composition of 6 mol% or more and TiO 2 of 4 mol% or less, and particularly preferably the silica glass long fibers have fine pores. It is characterized by being made of non-quartz vitreous monofilament (hereinafter, a woven fabric or a braid that encloses the core material is referred to as an outer skin material).

【0010】石英ガラス質の長繊維としては、Eガラス
繊維を塩酸中に浸し、そのガラス中のアルカリ土類金属
を抽出し、見かけのSiO2 含有量を高めたリーチドE
ガラスあるいは高珪酸質ガラス繊維と称されるものがあ
る。しかしながら、このタイプの繊維(以下、リーチド
Eという)は、酸によって抽出されたアルカリ土類金属
の跡に数Å〜数十Åの微細孔が形成されているため、7
00℃近辺から、さらに高温に至る温度範囲で使用され
ると、7〜20%長さが収縮するという欠点があり、そ
れは、リーチドEの織物、編組物でも同様のことが言え
る。
As the quartz vitreous long fibers, Reached E obtained by immersing E glass fiber in hydrochloric acid and extracting the alkaline earth metal in the glass to increase the apparent SiO 2 content.
Some are called glass or high siliceous glass fibers. However, this type of fiber (hereinafter, Reached E) has several Å to several tens of Å micropores formed in the traces of the alkaline earth metal extracted by the acid.
When used in a temperature range from around 00 ° C to a higher temperature, there is a drawback that the length shrinks by 7 to 20%, and the same can be said for Reached E woven fabrics and braids.

【0011】従って、本発明で述べるところの膨張性成
形物を芯材として、その周囲をこのような収縮性を持つ
織物あるいは編組物で包含しても、芯材が膨張しようと
するのに対して、周囲の外皮材(織物、あるいは編組
物)が収縮しようとしているためにより高温域の使用で
は外皮材の破断や断熱材全体としての形の変形が生じ、
それによりできた隙間から熱がもれてくる現象すらも起
こり、断熱材としての機能を果たさない。もちろん、熱
膨張性の芯材ではなく、従来より用いられている耐熱短
繊維材料を芯材としても、これら自体も熱収縮性を有す
るので、外皮材にリーチドEを用いれば、断熱材の形の
変形、さらには隙間が容易に生じることは明らかであ
る。
Therefore, even if the expandable molded article described in the present invention is used as a core material and the periphery thereof is covered with a woven or braided material having such shrinkability, the core material tends to expand. As the surrounding skin material (woven fabric or braid) is about to shrink, the outer skin material may break or the shape of the heat insulating material may be deformed when used in a high temperature range.
Even the phenomenon that heat leaks from the gap created by it occurs, and it does not function as a heat insulating material. Of course, even if heat-resistant short-fiber materials that have been used in the past are used as core materials instead of heat-expandable core materials, they themselves also have heat-shrinkability. It is clear that the deformation and the gap are easily generated.

【0012】そこで本発明では、外皮材として用いる織
物、編組物を極めて収縮率の小さい、あるいはゼロない
し実質的にゼロ収縮(ゼロ膨張)の性質を有する石英ガ
ラス質長繊維で構成する。そのための組成としては、9
6モル%以上のSiO2 、かつ4モル%以下のTiO2
であることが必要である。
Therefore, in the present invention, the woven fabric or braid used as the outer cover material is made of quartz vitreous long fibers having a very small shrinkage ratio or having zero or substantially zero shrinkage (zero expansion). The composition for that is 9
6 mol% or more of SiO 2 and 4 mol% or less of TiO 2
It is necessary to be.

【0013】一般に(96モル%)SiO2 ・(4モル
%)TiO2 の組成からなる石英ガラスは、ゼロ膨張ガ
ラスとして知られているが、本発明では、このような膨
張特性を発現するTiO2 の添加量を4モル%以下に抑
えた石英ガラス長繊維、さらには、その織物あるいは編
組物が1000℃以上の高温で長時間使用されても、長
さ方向で5%以内でしか収縮しないことを見出したこと
によって提供されるものである。このようなコントロー
ルされたガラス組成を持つ石英ガラス長繊維を溶融法に
よって作ることは極めて難しい。
Quartz glass having a composition of (96 mol%) SiO 2. (4 mol%) TiO 2 is generally known as zero expansion glass, but in the present invention, TiO 2 exhibiting such expansion characteristics is obtained. Even if the silica glass filaments containing 2 mol% or less of 4 mol% or less and further the woven fabric or the braid thereof are used at a high temperature of 1000 ° C. or more for a long time, they shrink only within 5% in the length direction. It is provided by finding that. It is extremely difficult to produce fused silica long fibers having such a controlled glass composition by the melting method.

【0014】金属アルコキシドを主原料とするゾルゲル
法では、SiアルコキシドおよびTi有機金属化合物を
用意すれば良く、ガラス長繊維の作成は、米国特許48
38914号で述べられているように可能である。一
旦、この組成を有する石英ガラス質長繊維が得られれ
ば、その後は、通常のガラス長繊維と同様に、撚りをか
けてヤーンとし、さらに織物、編組物に加工できる。ま
た、かかるゾルゲル法で作られたガラス長繊維は実質的
に微細孔をもたない単繊維から成るものである。
In the sol-gel method using metal alkoxide as the main raw material, Si alkoxide and Ti organometallic compound may be prepared.
It is possible as described in 38914. Once a quartz vitreous long fiber having this composition is obtained, thereafter, it can be twisted into a yarn and processed into a woven fabric or a braid as in the case of a normal glass long fiber. Further, the long glass fiber produced by the sol-gel method is composed of a single fiber having substantially no pores.

【0015】以上述べたような、熱膨張性芯材と収縮率
の極めて小さい石英ガラス質長繊維を外皮材として用
い、実際に断熱材を形作るための手順を簡単に述べる。
A procedure for actually forming a heat insulating material using the thermally expandable core material and the silica glass long fibers having a very small shrinkage ratio as described above will be briefly described.

【0016】初めに、ブランケット、マットあるいはシ
ート状の形を持つ芯材を所定の寸法に切り出す。断熱材
全体としての所望する形状がドーナツ状であれば、帯状
に複数枚切断、折り曲げ、さらに、積層して厚みを得る
こともできる。また厚み方向で中央にヘコミを持つお椀
状であれば、外径は同一で内径の異なるリング状の芯材
を積層してもよいし、あるいは、デ スク状のものを複
数枚積層して、中央部を所定の寸法になるように削り取
ってもよい。
First, a blanket, mat or sheet-shaped core material is cut into a predetermined size. If the desired shape of the heat insulating material as a whole is a donut shape, it is possible to obtain a thickness by cutting and bending a plurality of strips and further stacking them. Also if bowl shape having a dent at the center in the thickness direction, to the outer diameter may be stacked inside diameter different ring-shaped core material in the same, or by laminating plural ones de Lee disk shape Alternatively, the central portion may be scraped off to have a predetermined size.

【0017】ただし、熱膨張性物質の特質として、マッ
トの厚み方向にしか膨張しないので、一定形状に切り出
すときは、断熱材として気密性が必要とされる方向に、
言い換えると膨張させようとする方向にマットの厚み方
向が揃うように切り出して積層しなければならない。も
ちろん、先述したように、ガラス質短繊維やセラミック
ス繊維のマットを別途切り出して、この熱膨張性マット
と積層し、芯材全体の熱膨張率を調節してもよく、ある
いは断熱材として使われるとき、高温側の方だけ熱膨張
性マットを用い、低温側は従来の繊維質断熱マットを用
いてもよい。要は、このような熱膨張性マットと汎用の
繊維質断熱マットを併用して、断熱材の膨張する部位や
膨張率を自由に設計できることである。
However, as a characteristic of the heat-expandable substance, since it expands only in the thickness direction of the mat, when it is cut into a certain shape, in a direction in which airtightness is required as a heat insulating material,
In other words, the mats must be cut out and laminated so that the thickness direction of the mat is aligned with the direction of expansion. Of course, as described above, a mat of glassy short fibers or ceramic fibers may be cut out separately and laminated with this thermally expandable mat to adjust the coefficient of thermal expansion of the whole core material, or used as a heat insulating material. At this time, the heat-expandable mat may be used only on the high temperature side, and the conventional fibrous heat insulating mat may be used on the low temperature side. The point is that such a heat-expandable mat and a general-purpose fibrous heat-insulating mat can be used in combination to freely design the area where the heat-insulating material expands and the expansion rate.

【0018】次に、外皮材となる織物、あるいはスリー
ブ状の編組物を切り開いたものを、所定の寸法にカット
する。このとき重要なことは芯材として用いる膨張性物
質の使用する温度に対する膨張率を見込んで、外皮材の
寸法取りをすることである。また次に述べる縫製加工に
よる縫い代も見込んでおかなければならない。
Next, a woven fabric as a skin material or a sleeve-shaped braid which is cut open is cut into a predetermined size. At this time, what is important is to dimension the outer skin material in consideration of the expansion coefficient with respect to the temperature at which the expansive substance used as the core material is used. In addition, the seam allowance due to the sewing process described below must be expected.

【0019】このように初期の状態で芯材の寸法が小さ
いことは、半導体分野での炉において、ウェハーを挿入
する入口側に設けられたスカベンジャーと呼ばれるステ
ンレス製のボックス内の狭い空間に手を突っ込んで、断
熱材を炉芯管に装着する作業も極めて容易となる。寸法
取りの上、カットされた織物あるいは編組物を次に、同
じ組成を持つ石英ガラス質長繊維からなるヤーンを縫い
糸として、縫製加工を行い、芯材の周囲を外皮材で包ん
だ断熱材ができあがる。この段階では、外皮材が芯材の
膨張分を見込んで包んでいるので、外皮材は芯材に対し
て寸法として余裕がある状態である。
As described above, the small size of the core material in the initial state means that in a furnace in the semiconductor field, a hand is placed in a narrow space inside a stainless box called a scavenger provided on the inlet side for inserting a wafer. The work of thrusting and attaching the heat insulating material to the furnace core tube becomes extremely easy. After sizing, the cut woven fabric or braid is then sewn using a yarn made of quartz vitreous long fibers having the same composition as a sewing thread, and a heat insulating material in which the core material is wrapped with an outer covering material is obtained. It's done. At this stage, since the outer skin material covers the expansion amount of the core material, the outer skin material is in a state in which there is a margin in terms of dimensions with respect to the core material.

【0020】[0020]

【実施例】【Example】

[実施例1]熱膨張性を有したマット(インタラム(登
録商標)マット厚み4.9mm)とSiO2 −Al2
3 を主成分とするセラミックス繊維マット(厚み6m
m)を用意した。内径270mm,外径350mm,厚
み60mmのドーナツ状の形状を作るべく、各マットを
幅60mmで帯状に切断し、図1に示すように積層し
た。
[Example 1] mat having a thermal expansion property (Intaramu ® mat thickness 4.9 mm) and SiO 2 -Al 2 O
Ceramic fiber mat mainly composed of 3 (thickness 6m
m) was prepared. In order to form a donut shape having an inner diameter of 270 mm, an outer diameter of 350 mm and a thickness of 60 mm, each mat was cut into strips with a width of 60 mm and laminated as shown in FIG.

【0021】即ち、図1の(1)は各マットを帯状に切
断したところであり、(2)は、それを折り曲げている
ところ、(3)は環状物にしたところ、(4)は各マッ
トの環状物を積層したところを示している。さらに
(4)の1はインタラムマットの層を、2はセラミック
ス繊維のマットの層を示す。
That is, (1) in FIG. 1 is a place where each mat is cut into strips, (2) is where it is bent, (3) is an annular product, and (4) is each mat. It shows that the circular objects are laminated. Further, in (4), 1 indicates an interram mat layer, and 2 indicates a ceramic fiber mat layer.

【0022】本実施例においてはドーナツ状環状物の半
径方向の内、外に向かって膨張させようとしているので
マットの厚み方向は環状物の半径方向に揃えてある。最
内筒と最外筒の層をインタラムマットの層とし、あとは
セラミックス繊維のマットと交互になるように積層す
る。使用するインタラムマットの層は4枚、セラミック
ス繊維のマットの層は3枚で、積層した厚みは約38m
mとなる。
In this embodiment, since the donut-shaped annular object is expanded inward and outward in the radial direction, the thickness direction of the mat is aligned with the radial direction of the annular object. Layers of the innermost cylinder and the outermost cylinder are used as layers of an interram mat, and the layers of ceramic mats are laminated alternately. There are 4 layers of interram mat and 3 layers of ceramic fiber mat, and the laminated thickness is about 38m.
m.

【0023】次に、この混合芯材を覆うべく0.12モ
ル%のTiO2 を含んだSiO2 が99.88モル%の
石英ガラス長繊維でできたスリーブ状編組物を用意し
た。このスリーブ状編組物の1100℃での熱処理時間
に対する長さ方向の収縮率を図2に示す。比較のため
に、次の比較例1で述べるリーチドE繊維からなるスリ
ーブ状編組物の熱的収縮も示してある。このスリーブ状
編組物は内径90mm、外径92mmの寸法を持つ。そ
して最終内径が270mm、最終外径が350mm、厚
み60mmとなるように形を整えながらスリーブ状編組
物の末端同士を、同一組成を持った石英ガラス質長繊維
のヤーンで縫合した。
Next, a sleeve-like braid made of quartz glass long fibers containing 99.88 mol% of SiO 2 containing 0.12 mol% of TiO 2 was prepared to cover the mixed core material. FIG. 2 shows the shrinkage ratio of this sleeve-like braid with respect to the heat treatment time at 1100 ° C. in the lengthwise direction. For comparison, the thermal shrinkage of the sleeve-like braid made of Reached E fibers described in Comparative Example 1 below is also shown. The sleeve-like braid has an inner diameter of 90 mm and an outer diameter of 92 mm. Then, the ends of the sleeve-like braid were sewn together with a yarn of quartz vitreous long fibers having the same composition while adjusting the shapes so that the final inner diameter was 270 mm, the final outer diameter was 350 mm, and the thickness was 60 mm.

【0024】次に、このリング状断熱材を1200℃の
均熱ゾーンをもって運転される半導体用Siウェハーの
拡散炉のSiC製炉芯管の両端に装着し、さらに、これ
を炉体内の孔に挿入した。この段階では、外皮材内部は
芯材ですべて充填されていないものの、芯材が膨張時に
は、この孔内を断熱材が隙間なく埋め、しかも炉芯管の
外周に隙間なく篏合するように設計してある。炉を12
00℃まで昇温したところ、断熱材の位置では1100
℃になり、中の芯材は半径方向で長さが1.5倍に膨張
し、さらに炉体内の壁に設けられた孔と、炉芯管の外周
とは完全に嵌合した。かかる状態で操作温度1200
℃、待機温度900℃の熱サイクルで、約2年間運転し
たが、断熱材の収縮もなく、常に気密シールのできた状
態を保つことができ、均熱ゾーンの乱れもなかった。
Next, the ring-shaped heat insulating material was attached to both ends of a SiC core tube of a diffusion furnace for a Si wafer for semiconductors operated in a soaking zone of 1200 ° C., and this was installed in a hole in the furnace body. Inserted. At this stage, the inside of the outer skin is not completely filled with the core material, but when the core material expands, the inside of this hole is filled with the heat insulating material without any gap, and moreover, the outer periphery of the furnace core tube is designed to fit tightly without any gap. I am doing it. Furnace 12
When the temperature was raised to 00 ° C, it was 1100 at the position of the heat insulating material.
C., and the core material therein expanded in length by a factor of 1.5 in the radial direction, and the holes provided in the wall inside the furnace body and the outer circumference of the furnace core tube were completely fitted. Operation temperature 1200 in this state
Although it was operated for about 2 years in a thermal cycle of ℃ and standby temperature of 900 ℃, there was no shrinkage of the heat insulating material, it was possible to always maintain a state where an airtight seal was formed, and there was no disturbance in the soaking zone.

【0025】[比較例1]芯材をSiO2 −Al23
を主成分とするセラミックス繊維、外皮材をリーチドE
繊維からなるスリーブ状編組物を用い、芯材もあらかじ
め最終寸法となるように切断、積層した以外は実施例1
と同様に一定形状の断熱材を作った。用いたリーチドE
繊維のスリーブ状編組物の熱収縮性を図2に示す。この
ように1100℃では15%近い線収縮を起こすもので
あることがわかる。このようにして得られた断熱材を実
施例1と同じ拡散炉に用いたところ、均熱ゾーンが12
00℃になって運転を始めた約1カ月後に、突然炉体内
の孔と環状断熱材の外周との間に約3mm幅の隙間が生
じ、クリーンルーム内の冷たい気流がヒーターとSiC
製炉芯管の間に流れ込み、炉芯管にクラックが生じた。
[Comparative Example 1] The core material is SiO 2 --Al 2 O 3
Reached E with ceramic fiber mainly composed of
Example 1 except that a sleeve-like braid made of fibers was used and the core material was also cut and laminated so as to have final dimensions in advance.
I made a heat insulating material of a certain shape as well. Reached E used
The heat shrinkability of the fiber sleeve-like braid is shown in FIG. Thus, it can be seen that at 1100 ° C., linear shrinkage of nearly 15% occurs. When the heat insulating material thus obtained was used in the same diffusion furnace as in Example 1, the soaking zone was 12
Approximately one month after starting operation at 00 ° C, a gap of about 3 mm was suddenly created between the hole in the furnace and the outer circumference of the ring-shaped heat insulating material, and the cold air flow in the clean room caused the heater and SiC to flow.
It flowed between the furnace core tubes and cracked in the furnace core tubes.

【0026】[比較例2]芯材として用いる材料を実施
例1と同じものとし、外皮材としてリーチドE繊維から
なる編組物を用いて一定形状を持つ断熱材を作成した。
ただし、リーチドEの編組物の線収縮が13%にも及
び、かつ芯材の膨張率を考慮して、初期の状態としては
外皮材の大きさは、芯材に対して、かなり大きめの寸法
で作る必要があった。この断熱材を実施例1と同じ拡散
炉に装着したところ、装着時点で、外皮材がかなり余裕
を持って作られているため、外皮材自身が所定の形状を
成すことができず、大きなヒダができてしまった。その
ままの状態で均熱ゾーンが1200℃となるように昇温
したところ、内部の芯材が均一に膨張できず、先に形成
されたヒダが、そのまま炉体内の壁の孔との間で隙間が
できてしまい、得られた均熱ゾーンは実施例1と比較し
て、約半分の長さでしか得られなかった。
[Comparative Example 2] The same material as that used in Example 1 was used, and a heat insulating material having a constant shape was prepared by using a braid made of Reached E fiber as a skin material.
However, the linear shrinkage of the Reached E braid reaches 13%, and in consideration of the expansion rate of the core material, the size of the outer skin material is considerably larger than the core material in the initial state. I had to make it. When this heat insulating material was installed in the same diffusion furnace as in Example 1, since the outer skin material was made with a considerable margin at the time of installation, the outer skin material itself could not form a predetermined shape and large pleats were formed. Has been created. When the temperature was raised so that the soaking zone reached 1200 ° C in that state, the core material inside could not expand uniformly, and the creases that had been formed earlier formed a gap between the holes in the wall of the furnace body. As a result, the soaking zone obtained was only half as long as in Example 1.

【0027】[0027]

【発明の効果】本発明による材料構成で最終的に縫製加
工された、一定形状を持つ断熱材を用いることによっ
て、各種工業炉、特に、半導体あるいは集積回路の製造
に用いられる炉において、長時間、高温で使用しても断
熱材の変形、破断や炉壁との間に空隙を生ぜず、気密性
を維持した状態で安定した運転ができ、また収縮した
り、劣化した断熱材を短い期間で取り替えることもなく
低コスト化につながる。
EFFECTS OF THE INVENTION By using a heat insulating material having a constant shape, which is finally sewn with the material composition according to the present invention, it is possible to use it for a long time in various industrial furnaces, in particular, furnaces used for manufacturing semiconductors or integrated circuits. Even when used at high temperature, heat insulation does not deform, break, or create voids with the furnace wall, stable operation is possible with airtightness maintained, and heat insulation that has shrunk or deteriorated is maintained for a short period of time. It will lead to cost reduction without replacement.

【図面の簡単な説明】[Brief description of drawings]

【図1】(1)〜(4)は実施例1の断熱材の芯材のつ
くり方を示す説明図。
1 (1) to (4) are explanatory views showing how to make a core material of a heat insulating material of Example 1. FIG.

【図2】実施例1のスリーブ状編組物の1100℃にお
ける熱処理時間と線収縮率の関係のグラフ。
FIG. 2 is a graph showing the relationship between the heat treatment time at 1100 ° C. and the linear shrinkage of the sleeve-like braid of Example 1.

【符号の説明】[Explanation of symbols]

1 インタラムマットの層 2 セラミックス繊維のマットの層 1 layer of interram mat 2 layer of mat of ceramic fiber

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】セラミックス繊維と無機質の熱膨張性物質
からなる熱膨張性材料とを少なくとも一部に用いた材料
を芯材として、該芯材をSiO2 が96モル%以上かつ
TiO2 が4モル%以下の組成を有する石英ガラス質長
繊維からなる織物または編組物で包んで成ることを特徴
とする膨張性繊維質断熱材。
1. A material comprising at least a part of a ceramic fiber and a heat-expandable material made of an inorganic heat-expandable material as a core material, the core material comprising SiO 2 of 96 mol% or more and TiO 2 of 4 or more. An expansive fibrous heat insulating material, characterized in that it is wrapped with a woven or braided silica glass filament having a composition of less than mol%.
【請求項2】石英ガラス質長繊維が微細孔をもたない単
繊維から成ることを特徴とする請求項1の膨張性繊維質
断熱材。
2. The expansive fibrous heat insulating material according to claim 1, wherein the quartz vitreous long fibers are composed of single fibers having no fine pores.
【請求項3】請求項1の膨張性繊維質断熱材からなる半
導体や集積回路製造に使用される拡散炉用またはCVD
炉用の高気密性断熱材。
3. A diffusion furnace or a CVD used for manufacturing a semiconductor or an integrated circuit comprising the expansive fibrous heat insulating material according to claim 1.
Highly airtight insulation for furnaces.
JP35225491A 1991-12-13 1991-12-13 Expansible fiber insulation material and high air tight insulation material Withdrawn JPH05164472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35225491A JPH05164472A (en) 1991-12-13 1991-12-13 Expansible fiber insulation material and high air tight insulation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35225491A JPH05164472A (en) 1991-12-13 1991-12-13 Expansible fiber insulation material and high air tight insulation material

Publications (1)

Publication Number Publication Date
JPH05164472A true JPH05164472A (en) 1993-06-29

Family

ID=18422804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35225491A Withdrawn JPH05164472A (en) 1991-12-13 1991-12-13 Expansible fiber insulation material and high air tight insulation material

Country Status (1)

Country Link
JP (1) JPH05164472A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997002218A1 (en) * 1995-06-30 1997-01-23 Minnesota Mining And Manufacturing Company Intumescent sheet material with glass fibers
JPH09145260A (en) * 1995-11-27 1997-06-06 Nippon Steel Chem Co Ltd Partition wall structure of industrial furnace and heat-resistant block used therefor
US5686039A (en) * 1995-06-30 1997-11-11 Minnesota Mining And Manufacturing Company Methods of making a catalytic converter or diesel particulate filter
US5853675A (en) * 1995-06-30 1998-12-29 Minnesota Mining And Manufacturing Company Composite mounting system
US5869010A (en) * 1995-06-30 1999-02-09 Minnesota Mining And Manufacturing Company Intumescent sheet material
FR2846732A1 (en) * 2002-11-04 2004-05-07 Espa Ventilation tube with insulating and covering layers used in aviation air conditioning system, includes quartz fiber wool in insulating layer
WO2013175562A1 (en) * 2012-05-22 2013-11-28 株式会社島津製作所 Semiconductor manufacturing apparatus
JP2014063794A (en) * 2012-09-20 2014-04-10 Shimadzu Corp Semiconductor manufacturing device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997002218A1 (en) * 1995-06-30 1997-01-23 Minnesota Mining And Manufacturing Company Intumescent sheet material with glass fibers
US5686039A (en) * 1995-06-30 1997-11-11 Minnesota Mining And Manufacturing Company Methods of making a catalytic converter or diesel particulate filter
US5853675A (en) * 1995-06-30 1998-12-29 Minnesota Mining And Manufacturing Company Composite mounting system
US5869010A (en) * 1995-06-30 1999-02-09 Minnesota Mining And Manufacturing Company Intumescent sheet material
JPH09145260A (en) * 1995-11-27 1997-06-06 Nippon Steel Chem Co Ltd Partition wall structure of industrial furnace and heat-resistant block used therefor
FR2846732A1 (en) * 2002-11-04 2004-05-07 Espa Ventilation tube with insulating and covering layers used in aviation air conditioning system, includes quartz fiber wool in insulating layer
US7509980B2 (en) 2002-11-04 2009-03-31 Espa Ventilation tubing in particular for an airconditioning system
WO2013175562A1 (en) * 2012-05-22 2013-11-28 株式会社島津製作所 Semiconductor manufacturing apparatus
JP2014063794A (en) * 2012-09-20 2014-04-10 Shimadzu Corp Semiconductor manufacturing device

Similar Documents

Publication Publication Date Title
US6737146B2 (en) Bedding mat for supporting an exhaust gas catalyst
US4888242A (en) Graphite sheet material
JPH05164472A (en) Expansible fiber insulation material and high air tight insulation material
US4998879A (en) High purity diffusion furnace components
KR910009176B1 (en) Heat insulation of high-temperature furnace
JPH0474600B2 (en)
KR100763430B1 (en) Heat insulating material
JP3595875B2 (en) Electric heater for semiconductor processing equipment
JP3307924B2 (en) Heat treatment equipment
US2301062A (en) Article made of sponge glass and method of manufacturing the same
US20020113058A1 (en) Base for an electric heater and method of manufacture
JP3783470B2 (en) Insulator, electric heating unit using the same, and manufacturing method thereof
JPS6283326A (en) Production of synthetic quartz tube
JPS60245215A (en) Vertical furnace
KR200389111Y1 (en) Heater assembly of heat treatment equipment
JP2577568B2 (en) Manufacturing method of reaction tube for heat treatment
JPS634166Y2 (en)
JP2002047014A (en) Thermal shielding cylinder, device and method of manufacturing glass preform provided with it
JPH01150096A (en) Conduit having heat-insulating function
KR100643661B1 (en) Heater assembly of heat treatment equipment and fabrication method thereof
JPH0454203Y2 (en)
JPH0454205Y2 (en)
JPH082955Y2 (en) Vertical ring furnace
JPH05164473A (en) Basic unit block aggregated insulation material for semiconductor heat treatment furnace and insulation method
JPS5832126Y2 (en) High temperature gas sealing material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990311