JPH05159244A - Magneto-resistance effect head - Google Patents

Magneto-resistance effect head

Info

Publication number
JPH05159244A
JPH05159244A JP32491091A JP32491091A JPH05159244A JP H05159244 A JPH05159244 A JP H05159244A JP 32491091 A JP32491091 A JP 32491091A JP 32491091 A JP32491091 A JP 32491091A JP H05159244 A JPH05159244 A JP H05159244A
Authority
JP
Japan
Prior art keywords
film
head
conductor layer
layer
amorphous soft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32491091A
Other languages
Japanese (ja)
Other versions
JP2692468B2 (en
Inventor
Kazuhiko Yamada
一彦 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP32491091A priority Critical patent/JP2692468B2/en
Publication of JPH05159244A publication Critical patent/JPH05159244A/en
Application granted granted Critical
Publication of JP2692468B2 publication Critical patent/JP2692468B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE:To provide the magneto-resistance effect head which obviates deterioration in magnetic characteristics even after a heating stage and has excellent linear responsiveness and high reproduction efficiency. CONSTITUTION:The magneto-resistance effect head has the structure laminated with the ferromagnetic magneto-resistance effect element 1 and an amorphous soft magnetic material later 5 via a nonmagnetic conductor layer and is formed with the nonmagnetic conductor layer consisting of a TiW layer 7. The deterioration in the characteristics of the MR element or the amorphous soft magnetic material layer in a heating stage during the production process of the MR head is averted by forming the TiW film having low diffusivity as the nonmagnetic conductor layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気記憶媒体に書き込ま
れた磁気的情報を、磁気抵抗効果を利用して読み出す強
磁性磁気抵抗効果素子(以下、MR素子と略記する)を
具備した磁気抵抗効果ヘッド(以下、MRヘッドと略記
する)に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive device having a ferromagnetic magnetoresistive effect element (hereinafter abbreviated as MR element) for reading out magnetic information written in a magnetic storage medium by utilizing a magnetoresistive effect. The present invention relates to an effect head (hereinafter abbreviated as MR head).

【0002】[0002]

【従来の技術】周知の如く、MR素子を磁気記憶媒体に
書き込まれた磁気的情報に対して、線形応答性を呈する
高効率の再生専用磁気ヘッドとして使用する場合には、
MR素子に流すセンス電流IとMR素子の磁化Mの成す
角度θ(以下、バイアス角度と呼ぶ)を所定の値(望ま
しくは45度)に設定するバイアス手段を具備しなけれ
ばならない。
As is well known, when an MR element is used as a highly efficient read-only magnetic head which exhibits a linear response to magnetic information written in a magnetic storage medium,
Bias means for setting an angle θ (hereinafter referred to as a bias angle) formed by the sense current I flowing through the MR element and the magnetization M of the MR element to a predetermined value (preferably 45 degrees) must be provided.

【0003】上述のバイアス手段としては、種々の方法
が開示されているが、この中で実開昭60−15951
8号公報あるいは特開昭63−237204号公報に開
示されたMRヘッドにおいては、MR素子上に非磁性導
体層と非晶質軟磁性体層(例えばCoZrMo膜)とを
順次積層した構造により良好なバイアス角度θが得ら
れ、線形応答性に優れたMRヘッドが実現できることが
示されている。即ち、図4に示したように、ガラス,フ
ェライト等からなる表面の滑らかな絶縁性基板(図示せ
ず)上に、スパッタ法ないしは蒸着法により、強磁性体
薄膜からなるMR素子1(例えば膜厚20〜50nmの
NiFe合金)を形成し、MR素子1上にTi,Mo,
Cr等の非磁性導体層2を同様の方法で形成し、更に非
磁性導体層2上に非晶質軟磁性体層5を同様な方法で形
成した構造を有するMRヘッドを開示している。ここで
6はMR素子1,非磁性導体層2及び非晶質軟磁性体層
5の積層体に通電するための端子である。
Various methods have been disclosed as the above-mentioned biasing means.
In the MR head disclosed in Japanese Patent Laid-Open No. 8 or Japanese Patent Laid-Open No. 63-237204, a structure in which a nonmagnetic conductor layer and an amorphous soft magnetic material layer (for example, CoZrMo film) are sequentially laminated on the MR element is preferable. It has been shown that a wide bias angle θ can be obtained and an MR head excellent in linear response can be realized. That is, as shown in FIG. 4, an MR element 1 (for example, a film) made of a ferromagnetic thin film is formed on an insulating substrate (not shown) having a smooth surface made of glass, ferrite or the like by a sputtering method or an evaporation method. NiFe alloy with a thickness of 20 to 50 nm) is formed, and Ti, Mo,
An MR head having a structure in which a non-magnetic conductor layer 2 such as Cr is formed by the same method and an amorphous soft magnetic layer 5 is formed on the non-magnetic conductor layer 2 by the same method is disclosed. Here, 6 is a terminal for energizing the laminated body of the MR element 1, the non-magnetic conductor layer 2 and the amorphous soft magnetic material layer 5.

【0004】この様なMRヘッドにおいては、端子6か
ら供給されるセンス電流Iは、MRヘッド1のみならず
非磁性導体層2及び非晶質軟磁性体層5にも分流する。
従って、この様な構造においては、MR素子1及び非磁
性導体層2に分流したセンス電流Iにより、非晶質軟磁
性体層5の面内を通り且つセンス電流Iの方向と垂直方
向の磁界が発生し、この磁界により非晶質軟磁性体層5
の磁化方向が回転する。この為、非晶質軟磁性体層5に
おける磁化は、非晶質軟磁性体層5の周囲に前記磁化の
方向とは逆方向の磁界を生じ、その一部はMR素子1に
印加される。一方、非晶質軟磁性体層5及び非磁性導体
層2に分流したセンス電流Iにより、MR素子1の面内
を通りセンス電流Iと垂直方向の磁界が生じ、この磁界
の方向は前述の非晶質軟磁性体層5の磁化によって発生
する磁界の方向と一致する。つまり、非晶質軟磁性体層
5の磁化によって発生する磁界とセンス電流Iによって
生じる磁界が、MR素子1にバイアス磁界として印加さ
れる。このバイアス磁界は、MR素子1の磁化をセンス
電流Iに対して回転させ、MR素子のバイアス角度θを
所定の値(理想的には45度)とし、線形応答性に優れ
たMRヘッドを実現する。
In such an MR head, the sense current I supplied from the terminal 6 is shunted not only to the MR head 1 but also to the non-magnetic conductor layer 2 and the amorphous soft magnetic layer 5.
Therefore, in such a structure, the sense current I shunted to the MR element 1 and the non-magnetic conductor layer 2 causes a magnetic field passing through the plane of the amorphous soft magnetic material layer 5 and perpendicular to the direction of the sense current I. Is generated, and this magnetic field causes the amorphous soft magnetic layer 5 to
The magnetization direction of rotates. Therefore, the magnetization in the amorphous soft magnetic layer 5 generates a magnetic field in the direction opposite to the direction of the magnetization around the amorphous soft magnetic layer 5, and a part of the magnetic field is applied to the MR element 1. . On the other hand, the sense current I shunted to the amorphous soft magnetic material layer 5 and the non-magnetic conductor layer 2 causes a magnetic field that passes through the plane of the MR element 1 and is perpendicular to the sense current I, and the direction of this magnetic field is as described above. It coincides with the direction of the magnetic field generated by the magnetization of the amorphous soft magnetic layer 5. That is, the magnetic field generated by the magnetization of the amorphous soft magnetic layer 5 and the magnetic field generated by the sense current I are applied to the MR element 1 as a bias magnetic field. This bias magnetic field rotates the magnetization of the MR element 1 with respect to the sense current I, and sets the bias angle θ of the MR element to a predetermined value (ideally 45 degrees) to realize an MR head with excellent linear response. To do.

【0005】[0005]

【発明が解決しようとする課題】ところで、前述したM
R素子1,非磁性導体層2及び非晶質軟磁性体層5を積
層した構造を有するMRヘッドにおいては、非磁性導体
層2をTi膜、あるいはMo膜、ないしはCr膜とした
場合、製造プロセス中の加熱工程(300〜350℃)
で非晶質軟磁性体層5あるいはMR素子1の磁気特性が
劣化し、MRヘッドの再生効率が低下するという問題が
あった。製造プロセス中の加熱工程は、非晶質軟磁性体
層5の磁気特性を改善するため、及び非晶質軟磁性体層
5の磁化容易軸方向とMR素子1の磁化容易軸方向を同
一方向に揃えて良好なバイアスレベルを実現するために
必要な工程で、本発明に関わるMRヘッドの製造プロセ
スでは必須の工程である。
By the way, the above-mentioned M
In the MR head having a structure in which the R element 1, the non-magnetic conductor layer 2 and the amorphous soft magnetic layer 5 are laminated, when the non-magnetic conductor layer 2 is a Ti film, a Mo film, or a Cr film, it is manufactured. Heating step during the process (300-350 ° C)
Therefore, there is a problem that the magnetic characteristics of the amorphous soft magnetic material layer 5 or the MR element 1 are deteriorated and the reproducing efficiency of the MR head is lowered. The heating step in the manufacturing process improves the magnetic properties of the amorphous soft magnetic layer 5, and the easy axis of magnetization of the amorphous soft magnetic layer 5 and the easy axis of the MR element 1 are in the same direction. In order to realize a good bias level, it is an essential step in the manufacturing process of the MR head according to the present invention.

【0006】本発明者の検討によれば、加熱工程におけ
る特性の劣化の原因は前述のMRヘッド製造プロセスの
加熱工程で、非磁性導体層2とMR素子1との界面、あ
るいは非磁性導体層2と非晶質軟磁性体層5との界面で
拡散が生じるためであることが明らかとなった。以下、
この点に関して詳細に言及する。
According to the study by the present inventor, the cause of the deterioration of the characteristics in the heating process is the interface between the non-magnetic conductor layer 2 and the MR element 1 or the non-magnetic conductor layer in the heating process of the MR head manufacturing process. It has been clarified that this is because diffusion occurs at the interface between 2 and the amorphous soft magnetic layer 5. Less than,
Reference will be made in detail in this regard.

【0007】図3はSi基板上に約50nmのNiFe
膜(MR素子1に対応する)及び約30nmのTi膜
(非磁性導体層2に対応する)を、この順序に積層した
試料の加熱処理前後のオージェ分析装置による深さ方向
の分析結果の例である。ここで、加熱処理条件は、30
0℃,1時間であり、加熱処理は真空中(真空度:2×
10-6Torr)で行った。図3(a)は、加熱処理前
のオージェ分析結果であるが、各元素の分布は深さ約3
0nmを境にして明瞭であり、NiFe膜とTi膜は殆
ど拡散していないと言える。一方、図3(b)は加熱処
理後の分析結果であるが、図3(a)に比較して各元素
の分布は深さ方向にブロードとなっており、特にTiは
深さ60nm程度まで拡散している。
FIG. 3 shows a NiFe film of about 50 nm on a Si substrate.
An example of the analysis result in the depth direction by the Auger analyzer before and after the heat treatment of the sample in which the film (corresponding to the MR element 1) and the Ti film of about 30 nm (corresponding to the non-magnetic conductor layer 2) are laminated in this order. Is. Here, the heat treatment condition is 30
It is 0 ° C. for 1 hour, and the heat treatment is performed in vacuum (vacuum degree: 2 ×
10 −6 Torr). FIG. 3A shows the Auger analysis result before the heat treatment, but the distribution of each element is about 3 depth.
It is clear at the boundary of 0 nm, and it can be said that the NiFe film and the Ti film are hardly diffused. On the other hand, FIG. 3B shows the analysis result after the heat treatment, but the distribution of each element is broader in the depth direction compared to FIG. 3A, and particularly Ti has a depth of about 60 nm. It is spreading.

【0008】また、膜厚約30nmのTi膜上に膜厚約
50nmのCoZrMo膜を積層した試料を同様に30
0℃,1時間、真空中(真空度:2×10-6Torr)
で加熱処理したあとにおいても同様なTiの拡散が認め
られた。
Further, a sample in which a CoZrMo film with a film thickness of about 50 nm is laminated on a Ti film with a film thickness of about 30 nm is similarly prepared with 30
In vacuum at 0 ° C for 1 hour (vacuum degree: 2 × 10 -6 Torr)
Similar diffusion of Ti was observed even after the heat treatment in (1).

【0009】以上のように、オージェ分析結果により、
MRヘッドの製造プロセス中の加熱工程により、非磁性
導体層2とMR素子1ないしは非磁性導体層2と非晶質
軟磁性体層5との間に拡散が生じ、これによりMR素子
1あるいは非晶質軟磁性体層5の磁気特性、例えば飽和
磁化,異方性磁界,抵抗変化率等が劣化したと考えられ
る。
As described above, according to the Auger analysis result,
Due to the heating step in the manufacturing process of the MR head, diffusion occurs between the non-magnetic conductor layer 2 and the MR element 1 or between the non-magnetic conductor layer 2 and the amorphous soft magnetic material layer 5, whereby the MR element 1 or It is considered that the magnetic characteristics of the crystalline soft magnetic material layer 5, for example, the saturation magnetization, the anisotropic magnetic field, the resistance change rate, and the like are deteriorated.

【0010】Ti膜の代わりにMo膜やCr膜を用いた
試料においても、ほぼ同様な分析結果が得られており、
これらの材料を非磁性導体層2として用いた場合の特性
劣化も拡散が原因と考えられる。
Approximately similar analysis results were obtained for samples using a Mo film or a Cr film instead of the Ti film.
The deterioration of the characteristics when these materials are used as the non-magnetic conductor layer 2 is also considered to be caused by diffusion.

【0011】従って、以上述べたような加熱工程での拡
散によるMR素子1ないしは非晶質軟磁性体層5の磁気
特性劣化を解決するためには、製造プロセスの加熱工程
を経ても拡散を生じ得ない材料を非磁性導体層2として
用いることが、問題点の本質的解決を図る上で重要であ
る。
Therefore, in order to solve the deterioration of the magnetic characteristics of the MR element 1 or the amorphous soft magnetic material layer 5 due to the diffusion in the heating step as described above, diffusion occurs even after the heating step of the manufacturing process. It is important to use a material that cannot be obtained as the non-magnetic conductor layer 2 in order to solve the problem.

【0012】本発明の目的は、加熱工程を経ても磁気特
性の劣化の無い、優れた線形応答性と高い再生効率を持
つ磁気抵抗効果ヘッドを提供することにある。
It is an object of the present invention to provide a magnetoresistive head having excellent linear response and high reproduction efficiency without deterioration of magnetic characteristics even after a heating process.

【0013】[0013]

【課題を解決するための手段】本発明は、強磁性磁気抵
抗効果素子と非晶質軟磁性体層とが非磁性導体層を介し
て積層された構造を有する磁気抵抗効果ヘッドにおい
て、前記非磁性導体層がTiW膜からなることを特徴と
する。
The present invention provides a magnetoresistive effect head having a structure in which a ferromagnetic magnetoresistive effect element and an amorphous soft magnetic material layer are laminated with a nonmagnetic conductor layer interposed therebetween. The magnetic conductor layer is made of a TiW film.

【0014】[0014]

【作用】図2はSi基板上に約50nmのNiFe膜
(MR素子1に対応する)及び約30nmのTiW膜
(非磁性導体層2に対応する)を、この順序に積層した
試料の加熱処理後のオージェ分析装置による深さ方向の
分析結果の例である。ここで、加熱処理条件は、350
℃,2時間であり、加熱処理は真空中(真空度:2×1
-6Torr)で行った。図2から明らかな通り、加熱
処理後においても各元素の分布は深さ約30nmを境に
して明瞭であり、NiFe膜とTiW膜は殆ど拡散して
いない。
FIG. 2 shows the heat treatment of a sample obtained by laminating a NiFe film (corresponding to the MR element 1) of about 50 nm and a TiW film (corresponding to the nonmagnetic conductor layer 2) of about 30 nm on a Si substrate in this order. It is an example of the analysis result of the depth direction by the Auger analyzer later. Here, the heat treatment condition is 350
℃, 2 hours, heat treatment in vacuum (vacuum degree: 2 × 1
0 −6 Torr). As is clear from FIG. 2, even after the heat treatment, the distribution of each element is clear at a depth of about 30 nm, and the NiFe film and the TiW film are hardly diffused.

【0015】この様に、TiW膜を非磁性導体層として
用いることにより、非磁性導体層とMR素子ないしは非
磁性導体層と非晶質軟磁性体層との間の拡散が防止で
き、MRヘッド作製プロセス中の加熱工程でのMR素子
あるいは非晶質軟磁性体層の特性劣化を回避することが
可能となる。
Thus, by using the TiW film as the non-magnetic conductor layer, diffusion between the non-magnetic conductor layer and the MR element or between the non-magnetic conductor layer and the amorphous soft magnetic layer can be prevented, and the MR head can be prevented. It is possible to avoid deterioration of the characteristics of the MR element or the amorphous soft magnetic material layer in the heating step during the manufacturing process.

【0016】[0016]

【実施例】図1は、本発明の一実施例を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.

【0017】図1において、ガラス等の非磁性基板(図
示せず)上にArガス雰囲気中のスパッタ法を用いてM
R素子1となる膜厚40nmのパーマロイ(Ni82%
−Fe18%、重量%)膜を成膜した。尚、蒸着時には
100Oeの磁界を永久磁石で印加しパーマロイ膜に一
軸異方性を付与した。
In FIG. 1, M is formed on a non-magnetic substrate (not shown) such as glass by a sputtering method in an Ar gas atmosphere.
40-nm-thick permalloy (Ni 82%)
-Fe 18%, weight%) film was formed. During deposition, a magnetic field of 100 Oe was applied by a permanent magnet to give uniaxial anisotropy to the permalloy film.

【0018】ついで、Arガスと窒素ガスの混合雰囲気
中(流量換算ではAr:100sccm、N2 :10s
ccm)でスパッタ法を用いて非磁性導体層となる膜厚
30nmのTiW膜7を前記パーマロイ膜上に成膜し
た。尚、成膜時には基板側に−50Vのバイアス電圧を
印加し、TiW膜中の不純物、特に酸素を除去してTi
W膜の比抵抗を小さくした。成膜したTiW膜の比抵抗
は約120μΩcmであった。また、TiW膜の組成
は、重量%でTi:20,W:80とした。
Next, in a mixed atmosphere of Ar gas and nitrogen gas (flow rate conversion: Ar: 100 sccm, N 2 : 10 s).
The TiW film 7 having a film thickness of 30 nm to be a non-magnetic conductor layer was formed on the permalloy film by a sputtering method at a ccm). During film formation, a bias voltage of -50 V is applied to the substrate side to remove impurities in the TiW film, particularly oxygen, to remove Ti.
The specific resistance of the W film was reduced. The specific resistance of the formed TiW film was about 120 μΩcm. Further, the composition of the TiW film was Ti: 20 and W: 80 in weight%.

【0019】更に、非晶質軟磁性体層5として膜厚30
nm、異方性磁界Hk5OeのCoZrMo膜(膜組成
はCo82%−Zr6%−Mo12%、原子%、であ
る)を前述のTiW膜7上にArガス雰囲気中のスパッ
タ法を用いて成膜した。
Further, the amorphous soft magnetic layer 5 has a film thickness of 30.
nm, an anisotropic magnetic field Hk5Oe of CoZrMo film (film composition: Co82% -Zr6% -Mo12%, atomic%) was formed on the above-mentioned TiW film 7 by a sputtering method in an Ar gas atmosphere. ..

【0020】その後、非晶質軟磁性体層5(CoZrM
o膜)に一軸異方性を付与するため、前述したパーマロ
イ膜,TiW膜,CoZrMo膜の積層体に対して、3
50℃,2時間,480Oeの磁界をパーマロイ膜の磁
化容易軸方向と同一方向に印加しながら、真空中で加熱
処理を行った。
Thereafter, the amorphous soft magnetic layer 5 (CoZrM
In order to impart uniaxial anisotropy to the (o film), the above-mentioned laminated body of the permalloy film, the TiW film, and the CoZrMo film has a thickness of 3
Heat treatment was performed in vacuum while applying a magnetic field of 480 Oe at 50 ° C. for 2 hours in the same direction as the easy axis of magnetization of the permalloy film.

【0021】ついで、この積層体上に所定形状のフォト
レジストパターンを形成し、Arガス雰囲気中でイオン
エッチングを行い、長さ50μm,幅5μmの矩形状の
パターンに加工した。ここで、エッチング条件は、加速
電圧:500V、Arガス圧力:0.1mtorrであ
る。
Next, a photoresist pattern having a predetermined shape was formed on this laminate, and ion etching was performed in an Ar gas atmosphere to form a rectangular pattern having a length of 50 μm and a width of 5 μm. Here, the etching conditions are an acceleration voltage of 500 V and an Ar gas pressure of 0.1 mtorr.

【0022】ついで、前述の積層体にセンス電流Iを供
給する端子6を集積化薄膜技術を用いて形成し、MRヘ
ッドを作製した、尚、端子6はTiとAuの積層蒸着膜
を使用し、膜厚は各々5nm,0.5μmである。
Next, an MR head was manufactured by forming a terminal 6 for supplying a sense current I to the above-mentioned laminated body by using an integrated thin film technique. The terminal 6 is a laminated vapor deposition film of Ti and Au. The film thicknesses are 5 nm and 0.5 μm, respectively.

【0023】以上のような構成を持つ本実施例によるM
Rヘッドにおいては、センス電流Iが5〜15mAでM
R素子1のバイアス角度θが略45度に設定できること
が確認され、良好な線形応答性と高い再生効率を有する
MRヘッドが実現された。
The M according to this embodiment having the above-mentioned configuration
In the R head, the sense current I is 5 to 15 mA and M
It was confirmed that the bias angle θ of the R element 1 could be set to about 45 degrees, and an MR head having good linear response and high reproduction efficiency was realized.

【0024】(比較例)実施例のTiW膜をTi膜とし
た以外は実施例と全く同様にしてMRヘッドを作製し
た。このMRヘッドにおいては、非晶質軟磁性体層に一
軸異方性を付与する350℃,2時間の加熱工程でMR
素子1となるパーマロイ膜あるいは非晶質軟磁性体層2
となるCoZrMo膜の磁気特性が劣化したため、セン
ス電流を35〜40mA程度流しても充分なバイアスが
MR素子に印加されず、本発明によるMRヘッドに比較
して、再生効率が30〜50%程度小さく、実用に供し
ないことが明らかになった。また、Cr膜,Mo膜を非
磁性導体層としたMRヘッドも作製したが、この比較例
で述べたMRヘッドと同様に充分なバイアスレベルが得
られず、やはり本発明の実施例で述べたMRヘッドに比
較して再生効率が小さかった。
(Comparative Example) An MR head was manufactured in exactly the same manner as in Example except that the TiW film in Example was replaced with a Ti film. In this MR head, the MR process is performed at 350 ° C. for 2 hours for imparting uniaxial anisotropy to the amorphous soft magnetic layer.
Permalloy film or amorphous soft magnetic layer 2 to be the element 1
Since the magnetic characteristics of the CoZrMo film, which has the following characteristics, are deteriorated, a sufficient bias is not applied to the MR element even when a sense current of about 35 to 40 mA is applied, and the reproducing efficiency is about 30 to 50% as compared with the MR head according to the present invention. It was revealed that it was small and not suitable for practical use. An MR head using a Cr film and a Mo film as a non-magnetic conductor layer was also manufactured, but a sufficient bias level could not be obtained like the MR head described in this comparative example, and the MR head was also described in the embodiment of the present invention. The reproduction efficiency was lower than that of the MR head.

【0025】尚、以上の説明においては、MR素子(パ
ーマロイ膜),TiW膜層,非晶質軟磁性体層をこの順
序で積層する例のみについて言及したが、非晶質軟磁性
体層,TiW膜層,MR素子の順序で積層したMRヘッ
ドにおいても優れた線形応答性と高い再生効率が得られ
た。また、非晶質軟磁性体層を成す材料はCoZrMo
膜に限定されるものではなく、例えばCoTaMo膜,
CoZrTa膜等を使用しても構わない。更に、実施例
中のTiW膜の成膜方法・成膜条件は一例であり、他の
方法・条件を用いても構わない。勿論この場合、TiW
膜の比抵抗が極端に大きいと導電性が損なわれたり、ジ
ュール熱による発熱の問題が生じるため、成膜した膜の
比抵抗の値に注意すべきである。TiW膜の比抵抗値に
ついては、本発明の適用されるMRヘッドの設計・仕様
やシートシンクの状態に大きく依存するため一概に言え
ないが200μΩcm以下の比抵抗であることが望まし
い。
In the above description, only the example in which the MR element (permalloy film), the TiW film layer, and the amorphous soft magnetic material layer are laminated in this order has been mentioned, but the amorphous soft magnetic material layer, An excellent linear response and high reproducing efficiency were obtained also in the MR head in which the TiW film layer and the MR element were laminated in this order. The material forming the amorphous soft magnetic layer is CoZrMo.
The film is not limited to a film, and for example, a CoTaMo film,
A CoZrTa film or the like may be used. Furthermore, the method and conditions for forming the TiW film in the examples are merely examples, and other methods and conditions may be used. Of course, in this case, TiW
If the resistivity of the film is extremely large, the conductivity is impaired and the problem of heat generation due to Joule heat occurs, so attention should be paid to the value of the resistivity of the film formed. The specific resistance value of the TiW film depends on the design and specifications of the MR head to which the present invention is applied and the state of the sheet sink, and therefore cannot be generally stated, but it is desirable that the specific resistance value is 200 μΩcm or less.

【0026】[0026]

【発明の効果】以上述べてきたように、本発明によれば
拡散性の低いTiW膜を非磁性導体層とする構成によ
り、MRヘッド製造プロセス中の加熱工程におけるMR
素子あるいは非晶質軟磁性体層の特性劣化を回避でき、
優れた線形応答性と高い再生効率を持つMRヘッドが実
現される。
As described above, according to the present invention, the TiW film having a low diffusivity is used as the non-magnetic conductor layer, so that the MR in the heating step in the MR head manufacturing process is improved.
It is possible to avoid deterioration of the characteristics of the element or the amorphous soft magnetic layer,
An MR head having excellent linear response and high reproduction efficiency is realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】本発明の作用を説明するための図である。FIG. 2 is a diagram for explaining the operation of the present invention.

【図3】従来技術の課題を説明するための図である。FIG. 3 is a diagram for explaining a problem of the conventional technique.

【図4】従来のMRヘッドの模式図である。FIG. 4 is a schematic view of a conventional MR head.

【符号の説明】[Explanation of symbols]

1 MR素子 2 非磁性導体層 5 非晶質軟磁性体層 6 端子 7 TiW膜 1 MR element 2 Non-magnetic conductor layer 5 Amorphous soft magnetic layer 6 Terminal 7 TiW film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】強磁性磁気抵抗効果素子と非晶質軟磁性体
層とが非磁性導体層を介して積層された構造を有する磁
気抵抗効果ヘッドにおいて、前記非磁性導体層がTiW
膜からなることを特徴とする磁気抵抗効果ヘッド。
1. A magnetoresistive effect head having a structure in which a ferromagnetic magnetoresistive effect element and an amorphous soft magnetic material layer are laminated via a nonmagnetic conductor layer, wherein the nonmagnetic conductor layer is TiW.
A magnetoresistive head comprising a film.
JP32491091A 1991-12-10 1991-12-10 Magnetoresistive head Expired - Fee Related JP2692468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32491091A JP2692468B2 (en) 1991-12-10 1991-12-10 Magnetoresistive head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32491091A JP2692468B2 (en) 1991-12-10 1991-12-10 Magnetoresistive head

Publications (2)

Publication Number Publication Date
JPH05159244A true JPH05159244A (en) 1993-06-25
JP2692468B2 JP2692468B2 (en) 1997-12-17

Family

ID=18170989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32491091A Expired - Fee Related JP2692468B2 (en) 1991-12-10 1991-12-10 Magnetoresistive head

Country Status (1)

Country Link
JP (1) JP2692468B2 (en)

Also Published As

Publication number Publication date
JP2692468B2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
JPH0950613A (en) Magnetoresistive effect element and magnetic field detecting device
JP2560482B2 (en) Magnetoresistive head
JP2701557B2 (en) Magnetoresistive element and method of manufacturing the same
JP2692468B2 (en) Magnetoresistive head
JPH11126932A (en) Spin valve type thin-film element and its manufacture
JPH05205225A (en) Magnetoresistance effect head
JP2699567B2 (en) Magnetoresistive head
JP3634997B2 (en) Manufacturing method of magnetic head
JP3131946B2 (en) Method of manufacturing magnetic head device having spin valve magnetoresistive head
JP3130407B2 (en) Manufacturing method of magnetic film and thin film magnetic head
JPH07118062B2 (en) Magnetoresistive head
JP2833586B2 (en) Magnetoresistive element and method of manufacturing the same
JPH07118060B2 (en) Magnetoresistive head
JP2853204B2 (en) Method of manufacturing magnetoresistive element
JPH0354713A (en) Magneto-resistance effect head
JPH065573B2 (en) Magnetoresistive effect head
JP3255901B2 (en) Method for producing exchange coupling membrane
JP2000031562A (en) Switched connection film and its manufacture, magneto- resistance effect element using the film, and thin-film magnetic head using the element
JP2867416B2 (en) Magnetoresistive head
JP3832446B2 (en) Magnetoresistive element and magnetic head
JP3048571B2 (en) Exchange coupling film, magnetoresistive element using this exchange coupling film, and thin film magnetic head using the magnetoresistive element
JP2751700B2 (en) Magnetoresistive head
JPH03108112A (en) Production of magneto-resistance effect head
JP3628887B2 (en) Magnetoresistive head manufacturing method and magnetoresistive head
JP3048572B2 (en) Magneto-resistance effect element and thin-film magnetic head using the magneto-resistance effect element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070905

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees