JPH07118060B2 - Magnetoresistive head - Google Patents

Magnetoresistive head

Info

Publication number
JPH07118060B2
JPH07118060B2 JP18675289A JP18675289A JPH07118060B2 JP H07118060 B2 JPH07118060 B2 JP H07118060B2 JP 18675289 A JP18675289 A JP 18675289A JP 18675289 A JP18675289 A JP 18675289A JP H07118060 B2 JPH07118060 B2 JP H07118060B2
Authority
JP
Japan
Prior art keywords
film
head
magnetic
layer
conductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18675289A
Other languages
Japanese (ja)
Other versions
JPH0349013A (en
Inventor
一彦 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP18675289A priority Critical patent/JPH07118060B2/en
Publication of JPH0349013A publication Critical patent/JPH0349013A/en
Publication of JPH07118060B2 publication Critical patent/JPH07118060B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は磁気記憶媒体に書き込まれた磁気的情報を、磁
気抵抗効果を利用して読み出す強磁性磁気抵抗効果素子
(以下、MR素子と略記する)を具備した磁気抵抗効果ヘ
ッド(以下、MRヘッドと略記する)に関するものであ
る。
The present invention relates to a ferromagnetic magnetoresistive effect element (hereinafter abbreviated as MR element) for reading out magnetic information written in a magnetic storage medium by utilizing a magnetoresistive effect. The present invention relates to a magnetoresistive effect head (hereinafter abbreviated as MR head).

(従来の技術) 周知の如く、MR素子を磁気記憶媒体に書き込まれた磁気
的情報に対して、線形応答性を呈する高効率の再生専用
磁気ヘッドとして使用する場合には、MR素子に流すセン
ス電流IとMR素子の磁化Mの成す角度θ(以下、バイア
ス角度と呼ぶ)を所定の値(望ましくは45度)に設定す
るバイアス手段を具備しなければならない。
(Prior Art) As is well known, when an MR element is used as a highly efficient read-only magnetic head that exhibits a linear response to magnetic information written in a magnetic storage medium, a sense applied to the MR element is sensed. Bias means for setting an angle θ (hereinafter referred to as a bias angle) formed by the current I and the magnetization M of the MR element to a predetermined value (preferably 45 degrees) must be provided.

上述のバイアス手段としては、種々の方法が開示されて
いるが、この中で実開昭60−159518号公報あるいは特開
昭63−237204号公報に開示されたMRヘッドにおいては、
MR素子上に非磁性導体層と非晶質軟磁性体層(例えばCo
ZrMo膜)とを順次積層した構造により良好なバイアス角
度θが得られ、線形応答性に優れたMRヘッドが実現でき
ることが示されている。即ち、第4図に示したように、
ガラス、フェライト等からなる表面の滑らかな絶縁性基
板(図示せず)上に、スパッタ法ないしは蒸着法によ
り、強磁性体薄膜からなるMR素子1(例えば膜厚200〜5
00ÅのNiFe合金)を形成し、前記MR素子1上にTi、Mo、
Cr等の非磁性導体層2を同様の方法で形成し、更に前記
非磁性導体層2上に非晶質軟磁性体層5を同様な方法で
形成した構造を有するMRヘッドを開示している。ここ
で、6はMR素子1、非磁性導体層2及び非晶質磁性体層
5の積層体に通電するための端子である。
Various methods have been disclosed as the above-mentioned bias means. Among them, in the MR head disclosed in Japanese Utility Model Laid-Open No. 60-159518 or Japanese Patent Laid-Open No. 63-237204,
Non-magnetic conductor layer and amorphous soft magnetic layer (eg Co
It has been shown that a structure in which a ZrMo film) is sequentially laminated provides a good bias angle θ, and an MR head with excellent linear response can be realized. That is, as shown in FIG.
An MR element 1 (for example, a film thickness of 200 to 5 having a thickness of 200 to 5) formed of a ferromagnetic thin film is formed on an insulating substrate (not shown) having a smooth surface made of glass, ferrite or the like by a sputtering method or an evaporation method.
00Å NiFe alloy) is formed, and Ti, Mo,
Disclosed is an MR head having a structure in which a non-magnetic conductor layer 2 such as Cr is formed by the same method, and an amorphous soft magnetic layer 5 is formed on the non-magnetic conductor layer 2 by the same method. . Here, 6 is a terminal for energizing the laminated body of the MR element 1, the non-magnetic conductor layer 2 and the amorphous magnetic layer 5.

この様なMRヘッドにおいては、端子6から供給されるセ
ンス電流Iは、MRヘッド1のみならず非磁性導体層2及
び非晶質磁性体層5にも分流する。従って、この様な構
造においては、MR素子1及び非磁性導体層2に分流した
センス電流Iにより、非晶質軟磁性体層5の面内を通り
且つセンス電流Iの方向と垂直方向の磁界が発生し、こ
の磁界により非晶質軟磁性体層5の磁化方向が回転す
る。このため、非晶質軟磁性体層5における磁化は、非
晶質軟磁性体層5の周囲に前記磁化の方向とは逆方向の
磁界を生じ、その一部はMR素子1に印加される。一方、
非晶質軟磁性体層5及び非磁性導体層2に分流したセン
ス電流Iより、MR素子1の面内を通りセンス電流Iと垂
直方向の磁界が生じ、この磁界の方向は前述の非晶質軟
磁性体層5の磁化によって発生する磁界の方向と一致す
る。つまり、非晶質軟磁性体層5の磁化によって発生す
る磁界とセンス電流Iによって生じる磁界が、MR素子1
にバイアス磁界として印加される。このバイアス磁界
は、MR素子1の磁化をセンス電流Iに対して回転させ、
MR素子のバイアス角度をθを所定の値(理想的には45
度)とし、線形応答性に優れたMRヘッドを実現する。
In such an MR head, the sense current I supplied from the terminal 6 is shunted not only to the MR head 1 but also to the non-magnetic conductor layer 2 and the amorphous magnetic layer 5. Therefore, in such a structure, the magnetic field in the direction perpendicular to the direction of the sense current I is passed by the sense current I shunted to the MR element 1 and the nonmagnetic conductor layer 2 through the plane of the amorphous soft magnetic layer 5. Occurs, and the magnetization direction of the amorphous soft magnetic layer 5 is rotated by this magnetic field. Therefore, the magnetization in the amorphous soft magnetic layer 5 generates a magnetic field in the direction opposite to the direction of the magnetization around the amorphous soft magnetic layer 5, and a part of the magnetic field is applied to the MR element 1. . on the other hand,
The sense current I shunted to the amorphous soft magnetic layer 5 and the non-magnetic conductor layer 2 causes a magnetic field in the direction perpendicular to the sense current I passing through the plane of the MR element 1. The direction of this magnetic field is the above-mentioned amorphous state. This coincides with the direction of the magnetic field generated by the magnetization of the soft magnetic material layer 5. That is, the magnetic field generated by the magnetization of the amorphous soft magnetic layer 5 and the magnetic field generated by the sense current I are the MR element 1.
Is applied as a bias magnetic field. This bias magnetic field rotates the magnetization of the MR element 1 with respect to the sense current I,
For the bias angle of the MR element, set θ to a predetermined value (ideally 45
To realize an MR head with excellent linear response.

(発明が解決しようとする課題) ところで、前述したMR素子1、非磁性導体層2及び非晶
質軟磁性体層5を積層した構造を有するMRヘッドにおい
ては、非磁性導体層2をTi膜、あるいはMo膜、ないしは
Cr膜とした場合、製造プロセス中の加熱工程(300〜350
℃)で非晶質軟磁性体層5あるいはMR素子1の磁気特性
が劣化し、MRヘッドの再生効率が低下するという問題点
があった。製造プロセス中の加熱工程は、非晶質軟磁性
体層5の磁気特性を改善するため、及び非晶質軟磁性体
層5の磁化容易軸方向とMR素子1の磁化容易軸方向を同
一方向に揃えて良好なバイアスレベルを実現するために
必要な工程で、本発明に関わるMRヘッドの製造プロセス
では必須の工程である。
(Problems to be Solved by the Invention) By the way, in the MR head having a structure in which the MR element 1, the non-magnetic conductor layer 2 and the amorphous soft magnetic layer 5 are laminated, the non-magnetic conductor layer 2 is a Ti film. , Or Mo film, or
When a Cr film is used, the heating step (300-350
There is a problem that the magnetic characteristics of the amorphous soft magnetic layer 5 or the MR element 1 are deteriorated at (.degree. C.) and the reproducing efficiency of the MR head is lowered. The heating step in the manufacturing process is performed to improve the magnetic characteristics of the amorphous soft magnetic layer 5, and the easy axis of magnetization of the amorphous soft magnetic layer 5 and the easy axis of the MR element 1 are in the same direction. This is a step required to realize a good bias level in line with the above, and is an essential step in the manufacturing process of the MR head according to the present invention.

本発明者の検討によれば、加熱工程における特性の劣化
の原因は前述のMRヘッド製造プロセスの加熱工程で、非
磁性導体層2とMR素子1との界面、あるいは非磁性体層
2と非晶質軟磁性体層5との界面で拡散が生じるためで
あることが明らかとなった。以下、この点に関して詳細
に言及する。
According to the study of the present inventor, the cause of the deterioration of the characteristics in the heating step is the interface between the non-magnetic conductor layer 2 and the MR element 1 or the non-magnetic layer 2 in the heating step of the MR head manufacturing process. It has been clarified that this is because diffusion occurs at the interface with the crystalline soft magnetic material layer 5. Hereinafter, details will be referred to in this regard.

第3図はSi基板上に約500ÅのNiFe膜(MR素子1に対応
する)及び約300ÅのTi膜(非磁性導体層2に対応す
る)を、この順序に積層した試料の加熱処理前後のオー
ジェ分析装置による深さ方向の分析結果の例である。こ
こで、加熱処理条件は、300℃、1時間であり、加熱処
理は真空中(真空度:2×10-6torr)で行った。第3図
(a)は、加熱処理前のオージェ分析結果であるが、各
元素の分布は深さ約300Åを境にして明瞭であり、NiFe
膜とTi膜は殆ど拡散していないと言える。一方、第3図
(b)は加熱処理後の分析結果であるが、第3図(a)
に比較して各元素の分布は深さ方向にブロードとなって
おり、特にTiは深さ600Å程度まで拡散している。
Fig. 3 shows a sample in which a NiFe film (corresponding to MR element 1) of approximately 500Å and a Ti film (corresponding to nonmagnetic conductor layer 2) of approximately 300Å are laminated in this order on a Si substrate before and after heat treatment. It is an example of the analysis result in the depth direction by the Auger analyzer. Here, the heat treatment condition was 300 ° C. for 1 hour, and the heat treatment was performed in vacuum (vacuum degree: 2 × 10 −6 torr). Fig. 3 (a) shows the Auger analysis results before the heat treatment. The distribution of each element is clear at a depth of about 300 Å.
It can be said that the film and the Ti film are hardly diffused. On the other hand, FIG. 3 (b) shows the analysis results after the heat treatment, and FIG. 3 (a)
Compared with, the distribution of each element is broad in the depth direction, and in particular, Ti diffuses to a depth of about 600Å.

又、膜厚約300ÅのTi膜上に膜厚約500ÅのCoZrMo膜を積
層した試料を同様に300℃、1時間、真空中(真空度:2
×10-6torr)で加熱処理したあとにおいても同様なTiの
拡散が認められた。
In addition, a sample in which a CoZrMo film having a film thickness of about 500Å is laminated on a Ti film having a film thickness of about 300Å is also subjected to vacuum (vacuum degree: 2
Similar diffusion of Ti was observed even after the heat treatment at × 10 -6 torr).

以上のように、オージェ分析結果により、MRヘッドの製
造プロセス中の加熱工程により、非磁性導体層2とMR素
子ないしは非磁性導体層2と非晶質軟磁性体層5との間
に拡散が生じ、これによりMR素子1あるいは非晶質軟磁
性体層5の磁気特性、例えば飽和磁化、異方性磁界、抵
抗変化率等が劣化したと考えられる。
As described above, according to the Auger analysis result, due to the heating step in the manufacturing process of the MR head, diffusion occurs between the non-magnetic conductor layer 2 and the MR element or between the non-magnetic conductor layer 2 and the amorphous soft magnetic layer 5. It is considered that the magnetic characteristics of the MR element 1 or the amorphous soft magnetic material layer 5, for example, the saturation magnetization, the anisotropic magnetic field, the resistance change rate, and the like are deteriorated due to the occurrence.

Ti膜の替わりにMo膜やCr膜を用いた試料においても、ほ
ぼ同様な分析結果が得られており、これらの材料を磁性
導体層2として用いた場合の特性劣化も拡散が原因と考
えられる。
Similar results were obtained for samples using Mo film or Cr film instead of Ti film, and it is considered that the deterioration of characteristics when using these materials as the magnetic conductor layer 2 is also caused by diffusion. .

従って、以上述べたような加熱工程での拡散によるMR素
子1ないしは非晶質軟磁性体層5の磁性特性劣化を解決
するためには、製造プロセスの加熱工程を経ても拡散を
生じ得ない材料を非磁性導体層2として用いることが、
問題点の本質的結果を図る上で重要である。
Therefore, in order to solve the deterioration of the magnetic characteristics of the MR element 1 or the amorphous soft magnetic material layer 5 due to the diffusion in the heating step as described above, a material that cannot cause the diffusion even after the heating step of the manufacturing process. Is used as the non-magnetic conductor layer 2,
It is important in achieving the essential consequences of the problem.

本発明の目的は、加熱工程を経ても磁気特性の劣化のな
い優れた線形応答性と高い再生効率を持つ磁気抵抗効果
ヘッドを提供することにある。
It is an object of the present invention to provide a magnetoresistive head having excellent linear response and high reproduction efficiency without deterioration of magnetic characteristics even after a heating process.

(課題を解決するための手段) 本発明によれば、強磁性磁気抵抗効果素子と非晶質軟磁
性体層とが非磁性導体層を介して積層された構造を有
し、しかも前記非磁性導体層が窒化ハフニウム膜(以
下、HfN膜と書く)からなることを特徴とする磁気抵抗
効果ヘッドが得られる。
(Means for Solving the Problems) According to the present invention, a ferromagnetic magnetoresistive effect element and an amorphous soft magnetic material layer are laminated with a nonmagnetic conductor layer interposed therebetween, A magnetoresistive head having a conductor layer made of a hafnium nitride film (hereinafter referred to as an HfN film) is obtained.

(作用) 第2図はSi基板上に約500ÅのNiFe膜(MR素子1に対応
する)及び約300ÅのHfN膜(非磁性導体層2に対応す
る)を、この順序に積層した試料の加熱処理後のオージ
ェ分析装置による深さ方向の分析結果の例である。ここ
で、加熱処理条件は、350℃、2時間であり、加熱処理
は真空中(真空度:2×10-6torr)で行った。第2図から
明らかな通り、加熱処理後においても各元素の分布深さ
約300Åを境にして明瞭であり、NiFe膜とHfN膜は殆ど拡
散していない。又、膜厚約300ÅのTi膜上に膜厚約500Å
のCoZrMo膜を積層した試料を350℃、2時間、真空中
(真空度:2×10-6torr)で加熱処理したあとにおいて
も、ほぼ同様な結果が得られた。
(Operation) Fig. 2 shows the heating of a sample in which a NiFe film (corresponding to MR element 1) of about 500Å and an HfN film (corresponding to nonmagnetic conductor layer 2) of about 300Å are laminated in this order on a Si substrate. It is an example of the analysis result of the depth direction by the Auger analyzer after processing. Here, the heat treatment condition was 350 ° C. for 2 hours, and the heat treatment was performed in vacuum (vacuum degree: 2 × 10 −6 torr). As is clear from FIG. 2, even after the heat treatment, the distribution depth of each element is clear at the boundary of about 300 Å, and the NiFe film and the HfN film are hardly diffused. In addition, a film thickness of about 500Å on a Ti film with a film thickness of about 300Å
Almost the same result was obtained even after the sample having the CoZrMo film laminated thereon was heat-treated at 350 ° C. for 2 hours in vacuum (vacuum degree: 2 × 10 −6 torr).

この様に、HfN膜を非磁性導体層として用いることによ
り、非磁性導体層とMR素子ないしは非磁性導体層と非晶
質磁性体層との間の拡散が防止でき、MRヘッド作製プロ
セス中の加熱工程でのMR素子あるいは非晶質軟磁性体層
の特性劣化を回避することが可能である。
As described above, by using the HfN film as the non-magnetic conductor layer, diffusion between the non-magnetic conductor layer and the MR element or between the non-magnetic conductor layer and the amorphous magnetic layer can be prevented, and the MR head manufacturing process can be performed. It is possible to avoid characteristic deterioration of the MR element or the amorphous soft magnetic material layer in the heating step.

(実施例) 第1図は、本発明の一実施例を示す図である。(Embodiment) FIG. 1 is a view showing an embodiment of the present invention.

第1図において、ガラス等の非磁性基板(図示せず)上
にArガス雰囲気中のスパッタ法を用いてMR素子1となる
膜厚400Åのパーマロイ(Ni82%−Fe18%、重量%)膜
を成膜した。尚、蒸着時には100Oeの磁界を永久磁石で
印加しパーマロイ膜に一軸異方性を付与した。
In FIG. 1, a 400 Å-thick permalloy (Ni82% -Fe18%, wt%) film to be the MR element 1 is formed on a non-magnetic substrate (not shown) such as glass by using a sputtering method in an Ar gas atmosphere. A film was formed. During deposition, a magnetic field of 100 Oe was applied by a permanent magnet to give uniaxial anisotropy to the permalloy film.

ついで、Arガスと窒素ガスの混合雰囲気中(流量換算で
Ar:100sccm、N2:6sccm)でスパッタ法を用いて非磁性導
体層2となる膜厚300ÅのHfN膜7を前記パーマロイ膜上
に成膜した。尚、成膜時には基板側に−80Vのバイアス
電圧を印加し、HfN膜中の不純物、特に酸素を除去してH
fN膜の比抵抗を小さくした。成膜したHfN膜の比抵抗は
約95μΩcmであった。
Then, in a mixed atmosphere of Ar gas and nitrogen gas (flow rate conversion
A HfN film 7 having a film thickness of 300 Å to be the non-magnetic conductor layer 2 was formed on the permalloy film by a sputtering method with Ar: 100 sccm, N 2 : 6 sccm). During film formation, a bias voltage of -80 V was applied to the substrate side to remove impurities in the HfN film, especially oxygen, and
The specific resistance of the fN film was reduced. The specific resistance of the formed HfN film was about 95 μΩcm.

更に、非晶質軟磁性体層5として膜厚300Å、異方性磁
界Hk5OeのCoZrMo膜から成る非晶質軟磁性体層5(膜組
成はCo82%−Zr6%−Mo12%、原子%、である)を前述
のHfN膜7上にArガス雰囲気中にスパッタ法を用いて成
膜した。
Furthermore, as the amorphous soft magnetic layer 5, the amorphous soft magnetic layer 5 (Co82% -Zr6% -Mo12%, atomic%, film thickness: 300Å, CoZrMo film of anisotropic magnetic field Hk5Oe is used. Was deposited on the above HfN film 7 in an Ar gas atmosphere by a sputtering method.

その後、非晶質軟磁性体層5(CoZrMo膜)に一軸異方性
を付与するため、前述したパーマロイ膜、HfN膜、CoZrM
o膜の積層体に対して、350℃、2時間、480Oeの磁界を
パーマロイ膜の磁化容易軸方向と同一方向に印加しなが
ら、真空中で加熱処理を行った。
After that, in order to impart uniaxial anisotropy to the amorphous soft magnetic layer 5 (CoZrMo film), the above-mentioned permalloy film, HfN film, CoZrM film
The film stack was subjected to heat treatment in vacuum at 350 ° C. for 2 hours while applying a magnetic field of 480 Oe in the same direction as the easy axis of magnetization of the permalloy film.

ついで、この積層体上に所定形状のフォトレジストパタ
ーンを形成し、Arガス雰囲気中でイオンエッチングを行
い、長さ50μm、幅5μmの矩形状のパターンに加工し
た。ここでエッチング条件は、加速電圧:500V、Arガス
圧力:0.1mtorrである。
Next, a photoresist pattern having a predetermined shape was formed on this laminate, and ion etching was performed in an Ar gas atmosphere to form a rectangular pattern having a length of 50 μm and a width of 5 μm. Here, the etching conditions are accelerating voltage: 500 V and Ar gas pressure: 0.1 mtorr.

ついで、前述の積層体にセンス電流Iを供給する端子6
を集積化薄膜技術を用いて形成し、MRヘッドを作製し
た。尚、端子6はTiとAuの積層蒸着膜を使用し、膜厚は
各々50Å、0.5μmである。
Then, a terminal 6 for supplying a sense current I to the above-mentioned laminated body.
Was formed by using the integrated thin film technology to fabricate an MR head. The terminal 6 uses a laminated vapor deposition film of Ti and Au, and the film thickness is 50Å and 0.5 μm, respectively.

以上のような構成を持つ本実施例によるMRヘッドにおい
ては、センス電流Iが5〜15mAでMR素子1のバイアス角
度θが略45度に設定できることが確認され、良好な線形
応答性と高い再生効率を有するMRヘッドが実現された。
In the MR head according to the present embodiment having the above-described structure, it was confirmed that the bias angle θ of the MR element 1 can be set to about 45 degrees when the sense current I is 5 to 15 mA, and good linear response and high reproduction are achieved. An MR head with efficiency was realized.

(比較例) HfN膜をTi膜とした以外は実施例と全く同様にしてMRヘ
ッドを作製した。このMRヘッドにおいては、非晶質軟磁
性体層に一軸異方性を付与する350℃、2時間の加熱工
程でMR素子1となるパーマロイ膜あるいは非晶質磁性体
層2となるCoZrMo膜の磁気特性が劣化したため、センス
電流を35〜40mA程度流しても充分なバイアスがMR素子に
印加されず、本発明によるMRヘッドに比較して、再生効
率が35〜50%程度小さく、実用に供しないことが明らか
となった。又、Cr膜、Mo膜をHfN膜の替わりとして用い
たMRヘッド作製したが、本比較例で述べたMRヘッドと同
様に充分なバイアスレベルが得られず、やはり本発明の
実施例を述べたMRヘッドに比較して再生効率が小さかっ
た。
(Comparative Example) An MR head was manufactured in exactly the same manner as in Example except that the HfN film was changed to the Ti film. In this MR head, a permalloy film to be the MR element 1 or a CoZrMo film to be the amorphous magnetic layer 2 is formed by a heating process at 350 ° C. for giving uniaxial anisotropy to the amorphous soft magnetic layer for 2 hours. Due to the deteriorated magnetic characteristics, sufficient bias is not applied to the MR element even when a sense current of about 35 to 40 mA is applied, and the reproducing efficiency is about 35 to 50% smaller than that of the MR head according to the present invention, which is suitable for practical use. It became clear that they would not. Further, an MR head using a Cr film and a Mo film as a substitute for the HfN film was manufactured, but a sufficient bias level was not obtained as in the MR head described in this comparative example, and the embodiment of the present invention was also described. The reproduction efficiency was lower than that of the MR head.

尚、以上の説明においてはMR素子(パーマロイ膜)、Hf
N膜層、非晶質軟磁性体層をこの順序で積層する例のみ
について言及したが、非晶質軟磁性体層、HfN膜層、MR
素子の順序で積層したMRヘッドにおいても優れた線形応
答性と高い再生効率が得られた。又、非晶質軟磁性体層
を成す材料はCoZrMo膜に限定されるものではなく、例え
ばCoTaMo膜、CoZrTa膜等を使用しても構わない。更に、
実施例中のHfN膜の成膜方法・成膜条件は一例であり、
他の方法・条件を用いても構わない。勿論この場合、Hf
N膜の比抵抗が極端に大きいと導電性が損なわれたり、
ジュール熱による発熱の問題が生じるため、成膜したHf
N膜の比抵抗の値に注意すべきである。HfN膜の比抵抗値
については、本発明の使用されるMRヘッドの設計・仕様
やヒートシンクの状態に大きく依存するため一概に言え
ないが200μΩcm以下の比抵抗であることが望ましい。
In the above description, MR element (permalloy film), Hf
Although only the example of stacking the N film layer and the amorphous soft magnetic layer in this order is mentioned, the amorphous soft magnetic layer, the HfN film layer, the MR
An excellent linear response and high reproduction efficiency were also obtained for MR heads stacked in the order of the elements. Further, the material forming the amorphous soft magnetic layer is not limited to the CoZrMo film, and for example, a CoTaMo film, a CoZrTa film or the like may be used. Furthermore,
The HfN film forming method and film forming conditions in the examples are examples.
Other methods and conditions may be used. Of course, in this case, Hf
If the specific resistance of the N film is extremely large, the conductivity may be impaired,
Since the problem of heat generation due to Joule heat occurs, the deposited Hf
Attention should be paid to the value of the specific resistance of the N film. The specific resistance value of the HfN film depends on the design and specifications of the MR head used in the present invention and the state of the heat sink, and cannot be generally stated, but a specific resistance value of 200 μΩcm or less is desirable.

(発明の効果) 以上述べてきたように、本発明によれば拡散性の低いHf
N膜を比磁性導体層とする構成により、MRヘッド製造プ
ロセス中の加熱工程におけるMR素子あるいは非晶質軟磁
性体層の特性劣化を回避でき、優れた線形応答性と高い
再生効率を持つMRヘッドが実現される。
(Effects of the Invention) As described above, according to the present invention, Hf having low diffusivity is used.
By using the N film as the specific magnetic conductor layer, it is possible to avoid deterioration of the characteristics of the MR element or the amorphous soft magnetic material layer during the heating process during the MR head manufacturing process, and to achieve excellent linear response and high reproduction efficiency. The head is realized.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す図、第2図は本発明の
作用を説明するための図である。第3図(a)(b)は
従来の技術の課題を説明するための図、第4図は従来の
MRヘッドの模式図である。 図において、1……MR素子、2……非磁性導体層、5…
…非晶質軟磁性体層、6……端子、7……窒化ハフニウ
ム層。
FIG. 1 is a diagram showing an embodiment of the present invention, and FIG. 2 is a diagram for explaining the operation of the present invention. 3 (a) and 3 (b) are views for explaining the problems of the conventional technique, and FIG.
It is a schematic diagram of an MR head. In the figure, 1 ... MR element, 2 ... Non-magnetic conductor layer, 5 ...
... Amorphous soft magnetic layer, 6 ... Terminal, 7 ... Hafnium nitride layer.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】強磁性磁気抵抗効果素子と非晶質軟磁性体
層とが非磁性導体層を介して積層された構造を有する磁
気抵抗効果ヘッドにおいて、前記非磁性導体層が窒化ハ
フニウム膜からなることを特徴とする磁気抵抗効果ヘッ
ド。
1. A magnetoresistive effect head having a structure in which a ferromagnetic magnetoresistive effect element and an amorphous soft magnetic material layer are laminated via a nonmagnetic conductor layer, wherein the nonmagnetic conductor layer is formed of a hafnium nitride film. A magnetoresistive effect head characterized in that
JP18675289A 1989-07-18 1989-07-18 Magnetoresistive head Expired - Fee Related JPH07118060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18675289A JPH07118060B2 (en) 1989-07-18 1989-07-18 Magnetoresistive head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18675289A JPH07118060B2 (en) 1989-07-18 1989-07-18 Magnetoresistive head

Publications (2)

Publication Number Publication Date
JPH0349013A JPH0349013A (en) 1991-03-01
JPH07118060B2 true JPH07118060B2 (en) 1995-12-18

Family

ID=16194025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18675289A Expired - Fee Related JPH07118060B2 (en) 1989-07-18 1989-07-18 Magnetoresistive head

Country Status (1)

Country Link
JP (1) JPH07118060B2 (en)

Also Published As

Publication number Publication date
JPH0349013A (en) 1991-03-01

Similar Documents

Publication Publication Date Title
JPH11175920A (en) Magneto-resistance effect type combined head and its manufacture
JPS59210630A (en) Method of producing magnetic thin film structure
JP3050189B2 (en) Magnetoresistive element and method of manufacturing the same
JP2560482B2 (en) Magnetoresistive head
JP2699567B2 (en) Magnetoresistive head
JPH07118060B2 (en) Magnetoresistive head
JP2692468B2 (en) Magnetoresistive head
JP3130407B2 (en) Manufacturing method of magnetic film and thin film magnetic head
JPH09305927A (en) Magnetic head and magnetic disk apparatus using the head
JPH07118062B2 (en) Magnetoresistive head
JP3071781B2 (en) Exchange coupling film, magnetoresistive element using the exchange coupling film, and thin-film magnetic head using the magnetoresistive element
JPH0945074A (en) Memory cell utilizing magnetoresistance effect and amplifying element
JP2569897B2 (en) Magnetoresistive head
JP2000268330A (en) Manufacture of magnetoresistance effect thin-film magnetic head
JPH05205225A (en) Magnetoresistance effect head
JPH065573B2 (en) Magnetoresistive effect head
JP2751700B2 (en) Magnetoresistive head
JP3255901B2 (en) Method for producing exchange coupling membrane
JPH0354713A (en) Magneto-resistance effect head
JP3048572B2 (en) Magneto-resistance effect element and thin-film magnetic head using the magneto-resistance effect element
JP2000113416A (en) Magnetoresistive head and its manufacturing method
JP2621601B2 (en) Magnetoresistive head
JPH03108112A (en) Production of magneto-resistance effect head
JP3891507B2 (en) Laminated film and magnetic element
Devasahayam et al. Ion beam deposition processes for improved hard bias magnetic and device properties in the abutted junction configuration

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees