JPH05156121A - Molding material of phenol resin - Google Patents
Molding material of phenol resinInfo
- Publication number
- JPH05156121A JPH05156121A JP32031391A JP32031391A JPH05156121A JP H05156121 A JPH05156121 A JP H05156121A JP 32031391 A JP32031391 A JP 32031391A JP 32031391 A JP32031391 A JP 32031391A JP H05156121 A JPH05156121 A JP H05156121A
- Authority
- JP
- Japan
- Prior art keywords
- molding material
- parts
- molding
- phenol resin
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000465 moulding Methods 0.000 title claims abstract description 54
- 239000000463 material Substances 0.000 title claims abstract description 42
- 239000005011 phenolic resin Substances 0.000 title claims abstract description 28
- 229920003986 novolac Polymers 0.000 claims abstract description 13
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 10
- 239000011256 inorganic filler Substances 0.000 claims abstract description 3
- 229910003475 inorganic filler Inorganic materials 0.000 claims abstract description 3
- -1 phenol compound Chemical class 0.000 claims description 11
- 150000002989 phenols Chemical class 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 5
- 239000010680 novolac-type phenolic resin Substances 0.000 claims description 4
- 229920001568 phenolic resin Polymers 0.000 abstract description 9
- IISBACLAFKSPIT-UHFFFAOYSA-N Bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 abstract description 8
- 229920005989 resin Polymers 0.000 abstract description 4
- 239000011347 resin Substances 0.000 abstract description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 abstract 1
- VTYYLEPIZMXCLO-UHFFFAOYSA-L calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 10
- VKYKSIONXSXAKP-UHFFFAOYSA-N Hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 6
- 229960004011 Methenamine Drugs 0.000 description 6
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 6
- 239000004312 hexamethylene tetramine Substances 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 229960003563 Calcium Carbonate Drugs 0.000 description 5
- 229910000019 calcium carbonate Inorganic materials 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000002023 wood Substances 0.000 description 5
- AXCZMVOFGPJBDE-UHFFFAOYSA-L Calcium hydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 4
- 239000000920 calcium hydroxide Substances 0.000 description 4
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 229920001187 thermosetting polymer Polymers 0.000 description 4
- 238000001721 transfer moulding Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- HCNHNBLSNVSJTJ-UHFFFAOYSA-N 1,1-Bis(4-hydroxyphenyl)ethane Chemical compound C=1C=C(O)C=CC=1C(C)C1=CC=C(O)C=C1 HCNHNBLSNVSJTJ-UHFFFAOYSA-N 0.000 description 1
- SDDLEVPIDBLVHC-UHFFFAOYSA-N 4,4'-cyclohexane-1,1-diyldiphenol Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)CCCCC1 SDDLEVPIDBLVHC-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N AI2O3 Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- PXKLMJQFEQBVLD-UHFFFAOYSA-N Bis(4-hydroxyphenyl)methane Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 1
- 235000010893 Bischofia javanica Nutrition 0.000 description 1
- 240000005220 Bischofia javanica Species 0.000 description 1
- ZFVMWEVVKGLCIJ-UHFFFAOYSA-N Bisphenol AF Chemical compound C1=CC(O)=CC=C1C(C(F)(F)F)(C(F)(F)F)C1=CC=C(O)C=C1 ZFVMWEVVKGLCIJ-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N Bisphenol S Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ノボラック型フェノー
ル樹脂とビフェノール化合物、ビスフェノール化合物な
どの2核体フェノール化合物を結合剤とした熱硬化性成
形材料に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermosetting molding material containing a novolac type phenol resin and a binuclear phenol compound such as a biphenol compound or a bisphenol compound as a binder.
【0002】[0002]
【従来の技術】熱硬化性樹脂成形材料の代表的なものと
してフェノール樹脂成形材料がある。フェノール樹脂成
形材料は機械的強度、耐熱性、電気特性などが優れてい
るため、機械部品、電気部品、自動車部品など広範囲の
用途に利用されている。2. Description of the Related Art A phenolic resin molding material is a typical thermosetting resin molding material. Phenolic resin molding materials have excellent mechanical strength, heat resistance, electrical characteristics, and the like, and are therefore used in a wide range of applications such as mechanical parts, electric parts, and automobile parts.
【0003】フェノール樹脂成形材料を成形する場合、
フェノール樹脂が縮合タイプの熱硬化性樹脂であるた
め、通常の熱可塑性樹脂の成形には見られない次のよう
な問題点がある。 (1)硬化時において、成形材料は溶融した後、溶融粘
度が高くなりゲル化し硬化に至るまで一定の時間が必要
であるため、その間に金型のパーティング面などからの
バリの発生が避けられない。 (2)硬化時にアンモニアなどのガスが発生するので、
金型のパーティング面にエアベントを設ける必要があ
り、ここでのバリの発生が特に大きい。 (3)成形材料は溶融してからゲル化まで粘度上昇し、
その時間は数十秒以上であるので成形サイクルが長くな
る。 特に、成形品に発生したバリは、その除去のために多大
の労力を要するため、この成形品のコストアップにな
り、フェノール樹脂成形材料が優れた特性を有しなが
ら、その需要拡大の大きな障害となっていた。When molding a phenolic resin molding material,
Since the phenolic resin is a condensation type thermosetting resin, there are the following problems that cannot be found in the usual molding of thermoplastic resins. (1) During curing, after the molding material has melted, the melt viscosity increases and it takes a certain amount of time for it to gel and harden, so avoid burrs from the parting surface of the mold during that time. I can't. (2) Since gas such as ammonia is generated during curing,
Since it is necessary to provide an air vent on the parting surface of the mold, the occurrence of burrs here is particularly large. (3) The viscosity of the molding material increases from melting to gelling,
Since the time is several tens of seconds or more, the molding cycle becomes long. In particular, burrs generated in molded products require a great deal of labor for their removal, which increases the cost of this molded product, and while phenolic resin molding materials have excellent properties, they are a major obstacle to the expansion of demand. It was.
【0004】[0004]
【発明が解決しようとする課題】従って、本発明は、成
形時のバリの発生を減少させることを主たる目的として
種々検討して完成されたもので、成形材料の溶融硬化時
において、急速にゲル化することによりバリの発生を抑
えることができたものである。Therefore, the present invention has been completed by various studies with the main purpose of reducing the occurrence of burrs during molding. When the molding material is melt-cured, the gel is rapidly formed. It was possible to suppress the generation of burrs.
【0005】[0005]
【課題を解決するための手段】本発明は、ノボラック型
フェノール樹脂、ビフェノール化合物又はビスフェノー
ル化合物などの2核体フェノール化合物、硬化剤、及び
有機質または無機質の充填材を主成分とするフェノール
樹脂成形材料を要旨とするものである。本発明におい
て、ノボラック型フェノール樹脂は通常のフェノール樹
脂成形材料に使用されているものであればよく、特に限
定されない。2核体フェノール化合物は、代表的なもの
としてビフェノール化合物及びビスフェノール化合物が
あるが、これらに限定されない。ビフェノール化合物
は、ビフェノール及びその誘導体があり、ビスフェノー
ル化合物は、例えば、ビスフェノールA、ビスフェノー
ルF、ビスフェノールAD、ビスフェノールAF、ビス
フェノールZ、ビスフェノールS、及びこれらの誘導体
などがある。これらの2核体フェノール化合物は、ノボ
ラック型フェノール樹脂と同様にヘキサメチレンテトラ
ミン(以下、ヘキサミンという)などの硬化剤と縮合反
応し硬化する。The present invention is directed to a phenol resin molding material containing a novolac type phenol resin, a binuclear phenol compound such as a biphenol compound or a bisphenol compound, a curing agent, and an organic or inorganic filler as main components. Is the gist. In the present invention, the novolac type phenol resin is not particularly limited as long as it is used in a usual phenol resin molding material. Typical binuclear phenol compounds include, but are not limited to, biphenol compounds and bisphenol compounds. Biphenol compounds include biphenol and derivatives thereof, and bisphenol compounds include, for example, bisphenol A, bisphenol F, bisphenol AD, bisphenol AF, bisphenol Z, bisphenol S, and derivatives thereof. These binuclear phenolic compounds undergo a condensation reaction with a curing agent such as hexamethylenetetramine (hereinafter referred to as hexamine) to cure, like the novolac type phenolic resin.
【0006】ノボラック型フェノール樹脂と2核体フェ
ノール化合物との配合割合は、特に限定されるものでは
ないが、通常95対5ないし5対95である。好ましい
配合割合は90対10ないし30対70である。ノボラ
ック型フェノール樹脂の割合が90%より多いと2核体
フェノール化合物配合の効果が小さく、30%より少な
いと硬化までに時間がかかり成形サイクルが長くなるこ
とがある。さらに好ましい範囲は70対30ないし50
対50である。本発明の成形材料を得るには、ノボラッ
ク型フェノール樹脂と2核体フェノール化合物、硬化剤
及び充填材等を混合し、通常の方法、即ちロール、押出
機、あるいはヘンシェルミキサーなどにより溶融混練し
た後粉砕することにより成形材料が得られる。しかし、
2核体フェノール化合物の割合が多い場合、融点が高
く、成形材料化が困難なこともあるので、2核体フェノ
ール化合物の種類及び量を適当に選択して、結合剤成分
の融点を低下させることにより成形材料化が容易にな
る。The mixing ratio of the novolac type phenol resin and the binuclear phenol compound is not particularly limited, but is usually 95: 5 to 5:95. A preferred mixing ratio is 90:10 to 30:70. If the proportion of the novolac type phenol resin is more than 90%, the effect of blending the binuclear phenol compound is small, and if it is less than 30%, it takes time to cure and the molding cycle may be long. A more preferred range is 70 to 30 to 50.
Pair 50. To obtain the molding material of the present invention, a novolac-type phenol resin is mixed with a binuclear phenol compound, a curing agent, a filler, etc., and the mixture is melted and kneaded by an ordinary method, that is, a roll, an extruder, a Henschel mixer, or the like. A molding material is obtained by crushing. But,
When the proportion of the binuclear phenol compound is high, the melting point is high and it may be difficult to form a molding material. Therefore, the melting point of the binder component is lowered by appropriately selecting the type and amount of the binuclear phenol compound. This facilitates forming into a molding material.
【0007】2核体フェノール化合物は結晶性であるの
で、ノボラック型フェノール樹脂にこれを配合した成形
材料は成形時加熱により溶融し、流動性のよい液状物に
なる。そして一定時間後速やかにに硬化反応が起こり、
ゲル化し硬化に至る。このことから、特に2核体フェノ
ール化合物の割合が多い場合、通常のフェノール樹脂成
形材料と同様にして成形材料化すると成形時低粘度の流
動状態が一定時間続くので、成形圧力を低くすることに
よりバリの発生を防止することができる。一方、硬化が
遅く、成形時低粘度の流動状態が長く続く場合、成形材
料化するとき、あるいは成形材料化した後加熱によりノ
ボラック型フェノール樹脂と2核体フェノール化合物と
硬化剤との反応を進ませ、硬化反応開始の少し前の段階
で停止させておけば、この成形材料を成形するとき加熱
により低粘度の液状物となり、その後速やかに硬化反応
が開始され、ゲル化に至る。従って、低い圧力で成形し
ても充填が短時間で終了し、速やかな硬化によりバリの
発生を防止することができる。さらに、成形サイクルの
短縮をも行うことができる。Since the binuclear phenolic compound is crystalline, the molding material obtained by blending the novolac type phenolic resin with the novolac type phenolic resin is melted by heating during molding and becomes a liquid material having good fluidity. And after a certain period of time a curing reaction occurs quickly,
It gels and hardens. From this, especially when the ratio of the binuclear phenolic compound is high, if a molding material is formed in the same manner as a normal phenolic resin molding material, a low-viscosity flow state during molding continues for a certain period of time. Burr can be prevented. On the other hand, when the curing is slow and the low-viscosity fluid state continues for a long time during molding, the reaction between the novolac phenolic resin, the binuclear phenolic compound and the curing agent proceeds when the material is used as a molding material or after the molding material is heated. No, if it is stopped at a stage slightly before the start of the curing reaction, when this molding material is molded, it becomes a low-viscosity liquid substance by heating, and then the curing reaction is started immediately and gelation occurs. Therefore, even if the molding is performed at a low pressure, the filling is completed in a short time, and the burrs can be prevented from being generated by the rapid curing. Further, the molding cycle can be shortened.
【0008】一方、ノボラック型フェノール樹脂の割合
が多い場合は通常のフェノール樹脂成形材料と同様にし
て製造することができるが、場合によっては、成形材料
化するとき、あるいは成形材料化した後加熱により反応
を進ませてもよい。On the other hand, when the proportion of the novolac type phenol resin is high, it can be produced in the same manner as a usual phenol resin molding material, but depending on the case, it may be heated at the time of forming the molding material or after forming the molding material. The reaction may proceed.
【0009】本発明の使用する充填材は、木粉、パルプ
粉、各種織物粉砕物、熱硬化性樹脂積層板・成形品の粉
砕物等の有機質の物、シリカ、アルミナ、ガラス、タル
ク、クレー、炭酸カルシウム、カーボン等の粉末、ガラ
ス繊維、カーボン繊維、マイカなどの無機質の物が使用
される。The filler used in the present invention is an organic substance such as wood powder, pulp powder, various crushed fabrics, crushed thermosetting resin laminates and molded products, silica, alumina, glass, talc, clay. Powders such as calcium carbonate and carbon, and inorganic substances such as glass fiber, carbon fiber and mica are used.
【0010】[0010]
【実施例】実施例において、「部」は重量部を示す。 [実施例1]ノボラック型フェノール樹脂(数平均分子
量 800、以下の実施例も同じ)22部、ビスフェノール
A22部、ヘキサミン7部、水酸化カルシウム3部、木
粉32部、炭酸カルシウム11部、離型剤3部を混合
し、ロールにて溶融混練し、冷却後粉砕して成形材料を
得た。 [実施例2]ノボラック型フェノール樹脂35部、ビス
フェノールA9部、ヘキサミン7部、水酸化カルシウム
3部、木粉32部、炭酸カルシウム11部、離型剤3部
を混合し、ロールにて溶融混練し、冷却後粉砕して成形
材料を得た。 [実施例3]ノボラック型フェノール樹脂13部、ビス
フェノールA31部、ヘキサミン7部、水酸化カルシウ
ム3部、木粉32部、炭酸カルシウム11部、離型剤3
部を混合し、ロールにて溶融混練した後、150℃で1
0分間加熱し、冷却後粉砕して成形材料を得た。EXAMPLES In the examples, “parts” means parts by weight. Example 1 Novolak type phenolic resin (number average molecular weight 800, the same in the following examples) 22 parts, bisphenol A 22 parts, hexamine 7 parts, calcium hydroxide 3 parts, wood flour 32 parts, calcium carbonate 11 parts, release 3 parts of the mold agent were mixed, melt-kneaded with a roll, cooled and pulverized to obtain a molding material. [Example 2] 35 parts of novolac type phenol resin, 9 parts of bisphenol A, 7 parts of hexamine, 3 parts of calcium hydroxide, 32 parts of wood powder, 11 parts of calcium carbonate, and 3 parts of release agent were mixed and melt-kneaded by a roll. Then, it was cooled and pulverized to obtain a molding material. [Example 3] 13 parts of novolac type phenol resin, 31 parts of bisphenol A, 7 parts of hexamine, 3 parts of calcium hydroxide, 32 parts of wood powder, 11 parts of calcium carbonate, release agent 3
Parts, and melt-kneading with a roll, then 1 at 150 ° C
It was heated for 0 minutes, cooled, and then pulverized to obtain a molding material.
【0011】[実施例4〜6]ビスフェノールAをビフ
ェノールに代えた以外は、それぞれ実施例1〜実施例3
と同様にして成形材料を得た。 [比較例1]ノボラック型フェノール樹脂44部、ヘキ
サミン7部、水酸化カルシウム3部、木粉32部、炭酸
カルシウム11部、離型剤3部を混合し、ロールにて溶
融混練し、冷却後粉砕して成形材料を得た。[Examples 4 to 6] Examples 1 to 3 except that bisphenol A was replaced with biphenol.
A molding material was obtained in the same manner as in. [Comparative Example 1] 44 parts of novolac type phenol resin, 7 parts of hexamine, 3 parts of calcium hydroxide, 32 parts of wood powder, 11 parts of calcium carbonate and 3 parts of release agent are mixed, melt-kneaded by a roll, and after cooling. It was crushed to obtain a molding material.
【0012】得られた成形材料について、それぞれ流動
性(高化式フローテスターによる粘度)を測定した。更
に、以下の条件にてトランスファ成形し、バリ発生の有
無を測定した。結果を表1に示す。 (トランスファ成形条件)タブレット化した20gの成
形材料を約100℃に余熱し、図1に示す形状のトラン
スファ成形金型を用い、ゲージ圧25kg/cm2(実施例
2、5及び比較例1は50kg/cm2)、温度200℃で3
分間成形した。バリの有無は金型エアベント部における
バリを目視して判定した。The fluidity (viscosity measured by a Koka type flow tester) was measured for each of the obtained molding materials. Furthermore, transfer molding was performed under the following conditions, and the presence or absence of burrs was measured. The results are shown in Table 1. (Transfer molding conditions) 20 g of tableting molding material was preheated to about 100 ° C. and a transfer molding die having the shape shown in FIG. 1 was used to measure a gauge pressure of 25 kg / cm 2 (Examples 2, 5 and Comparative Example 1 50kg / cm 2 ), at a temperature of 200 ℃ 3
Molded for minutes. The presence or absence of burrs was determined by visually observing burrs in the mold air vent.
【0013】[0013]
【表1】 [Table 1]
【0014】表1から、各実施例で得られた成形材料
は、比較例の従来のフェノール樹脂成形材料に比較して
流動性が良好である。成形時のバリは発生しないか非常
に少ないことがわかる。From Table 1, the molding materials obtained in the respective examples have better fluidity than the conventional phenol resin molding materials of the comparative examples. It can be seen that burrs do not occur or are extremely small during molding.
【0017】[0017]
【発明の効果】以上の実施例からも明らかなように、本
発明のフェノール樹脂成形材料は流動性が優れ、成形時
のバリの発生もないか少ないので、成形性の良好な成形
材料として幅広い利用が可能である。As is clear from the above examples, the phenol resin molding material of the present invention has excellent fluidity and has little or no burrs during molding, so that it can be widely used as a molding material having good moldability. It is available.
【図1】実施例で使用するトランスファ成形金型の概略
断面図。FIG. 1 is a schematic cross-sectional view of a transfer molding die used in an example.
【図2】図1のA−A断面図。FIG. 2 is a sectional view taken along line AA of FIG.
1 円形キャビティ 2 角形キャビティ 3,4,5 エアベント 6 ポット 7 プランジャ 1 Circular Cavity 2 Square Cavity 3,4,5 Air Vent 6 Pot 7 Plunger
Claims (2)
ール化合物又はビスフェノール化合物などの2核体フェ
ノール化合物、硬化剤、及び有機質または無機質の充填
材を主成分とするフェノール樹脂成形材料。1. A phenol resin molding material containing a novolac type phenol resin, a binuclear phenol compound such as a biphenol compound or a bisphenol compound, a curing agent, and an organic or inorganic filler as main components.
ェノール化合物との配合割合が95対5ないし30対7
0である請求項1記載のフェノール樹脂成形材料。2. The compounding ratio of the novolac type phenolic resin and the binuclear phenolic compound is 95: 5 to 30: 7.
The phenol resin molding material according to claim 1, which is 0.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32031391A JPH05156121A (en) | 1991-12-04 | 1991-12-04 | Molding material of phenol resin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32031391A JPH05156121A (en) | 1991-12-04 | 1991-12-04 | Molding material of phenol resin |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05156121A true JPH05156121A (en) | 1993-06-22 |
Family
ID=18120097
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32031391A Pending JPH05156121A (en) | 1991-12-04 | 1991-12-04 | Molding material of phenol resin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05156121A (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007254666A (en) * | 2006-03-24 | 2007-10-04 | Sumitomo Bakelite Co Ltd | Novolak type phenolic resin composition and thermosetting resin molding material |
JP2017522417A (en) * | 2014-03-14 | 2017-08-10 | エナジーツー・テクノロジーズ・インコーポレイテッドEnerg2 Technologies, Inc. | Novel method for sol-gel polymerization in the absence of solvent, and fabrication of variable carbon structure derived from sol-gel polymerization |
US9985289B2 (en) | 2010-09-30 | 2018-05-29 | Basf Se | Enhanced packing of energy storage particles |
US10141122B2 (en) | 2006-11-15 | 2018-11-27 | Energ2, Inc. | Electric double layer capacitance device |
US10147950B2 (en) | 2015-08-28 | 2018-12-04 | Group 14 Technologies, Inc. | Materials with extremely durable intercalation of lithium and manufacturing methods thereof |
US10195583B2 (en) | 2013-11-05 | 2019-02-05 | Group 14 Technologies, Inc. | Carbon-based compositions with highly efficient volumetric gas sorption |
US10287170B2 (en) | 2009-07-01 | 2019-05-14 | Basf Se | Ultrapure synthetic carbon materials |
US10490358B2 (en) | 2011-04-15 | 2019-11-26 | Basf Se | Flow ultracapacitor |
JP2019210316A (en) * | 2018-05-31 | 2019-12-12 | 住友ベークライト株式会社 | Phenolic resin composition and molding |
US10522836B2 (en) | 2011-06-03 | 2019-12-31 | Basf Se | Carbon-lead blends for use in hybrid energy storage devices |
JP2020105275A (en) * | 2018-12-26 | 2020-07-09 | 住友ベークライト株式会社 | Phenolic resin molding material and molded article |
US10763501B2 (en) | 2015-08-14 | 2020-09-01 | Group14 Technologies, Inc. | Nano-featured porous silicon materials |
US11174167B1 (en) | 2020-08-18 | 2021-11-16 | Group14 Technologies, Inc. | Silicon carbon composites comprising ultra low Z |
US11335903B2 (en) | 2020-08-18 | 2022-05-17 | Group14 Technologies, Inc. | Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low z |
US11401363B2 (en) | 2012-02-09 | 2022-08-02 | Basf Se | Preparation of polymeric resins and carbon materials |
US11495793B2 (en) | 2013-03-14 | 2022-11-08 | Group14 Technologies, Inc. | Composite carbon materials comprising lithium alloying electrochemical modifiers |
US11611071B2 (en) | 2017-03-09 | 2023-03-21 | Group14 Technologies, Inc. | Decomposition of silicon-containing precursors on porous scaffold materials |
US11639292B2 (en) | 2020-08-18 | 2023-05-02 | Group14 Technologies, Inc. | Particulate composite materials |
US11646419B2 (en) | 2022-08-17 | 2023-05-09 | Group 14 Technologies, Inc. | Materials with extremely durable intercalation of lithium and manufacturing methods thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54150456A (en) * | 1978-05-18 | 1979-11-26 | Hitachi Chem Co Ltd | Resin composition for self-curable mold |
JPS60139749A (en) * | 1983-12-27 | 1985-07-24 | Sumitomo Bakelite Co Ltd | Phenolic resin composition |
-
1991
- 1991-12-04 JP JP32031391A patent/JPH05156121A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54150456A (en) * | 1978-05-18 | 1979-11-26 | Hitachi Chem Co Ltd | Resin composition for self-curable mold |
JPS60139749A (en) * | 1983-12-27 | 1985-07-24 | Sumitomo Bakelite Co Ltd | Phenolic resin composition |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007254666A (en) * | 2006-03-24 | 2007-10-04 | Sumitomo Bakelite Co Ltd | Novolak type phenolic resin composition and thermosetting resin molding material |
US10141122B2 (en) | 2006-11-15 | 2018-11-27 | Energ2, Inc. | Electric double layer capacitance device |
US10600581B2 (en) | 2006-11-15 | 2020-03-24 | Basf Se | Electric double layer capacitance device |
US10287170B2 (en) | 2009-07-01 | 2019-05-14 | Basf Se | Ultrapure synthetic carbon materials |
US9985289B2 (en) | 2010-09-30 | 2018-05-29 | Basf Se | Enhanced packing of energy storage particles |
US10490358B2 (en) | 2011-04-15 | 2019-11-26 | Basf Se | Flow ultracapacitor |
US10522836B2 (en) | 2011-06-03 | 2019-12-31 | Basf Se | Carbon-lead blends for use in hybrid energy storage devices |
US11401363B2 (en) | 2012-02-09 | 2022-08-02 | Basf Se | Preparation of polymeric resins and carbon materials |
US11495793B2 (en) | 2013-03-14 | 2022-11-08 | Group14 Technologies, Inc. | Composite carbon materials comprising lithium alloying electrochemical modifiers |
US10814304B2 (en) | 2013-11-05 | 2020-10-27 | Group14 Technologies, Inc. | Carbon-based compositions with highly efficient volumetric gas sorption |
US10195583B2 (en) | 2013-11-05 | 2019-02-05 | Group 14 Technologies, Inc. | Carbon-based compositions with highly efficient volumetric gas sorption |
US10711140B2 (en) | 2014-03-14 | 2020-07-14 | Group14 Technologies, Inc. | Methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same |
JP2017522417A (en) * | 2014-03-14 | 2017-08-10 | エナジーツー・テクノロジーズ・インコーポレイテッドEnerg2 Technologies, Inc. | Novel method for sol-gel polymerization in the absence of solvent, and fabrication of variable carbon structure derived from sol-gel polymerization |
US10590277B2 (en) | 2014-03-14 | 2020-03-17 | Group14 Technologies, Inc. | Methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same |
US10763501B2 (en) | 2015-08-14 | 2020-09-01 | Group14 Technologies, Inc. | Nano-featured porous silicon materials |
US11611073B2 (en) | 2015-08-14 | 2023-03-21 | Group14 Technologies, Inc. | Composites of porous nano-featured silicon materials and carbon materials |
US10756347B2 (en) | 2015-08-28 | 2020-08-25 | Group14 Technologies, Inc. | Materials with extremely durable intercalation of lithium and manufacturing methods thereof |
US10784512B2 (en) | 2015-08-28 | 2020-09-22 | Group14 Technologies, Inc. | Materials with extremely durable intercalation of lithium and manufacturing methods thereof |
US10147950B2 (en) | 2015-08-28 | 2018-12-04 | Group 14 Technologies, Inc. | Materials with extremely durable intercalation of lithium and manufacturing methods thereof |
US10923722B2 (en) | 2015-08-28 | 2021-02-16 | Group14 Technologies, Inc. | Materials with extremely durable intercalation of lithium and manufacturing methods thereof |
US11495798B1 (en) | 2015-08-28 | 2022-11-08 | Group14 Technologies, Inc. | Materials with extremely durable intercalation of lithium and manufacturing methods thereof |
US10608254B2 (en) | 2015-08-28 | 2020-03-31 | Group14 Technologies, Inc. | Materials with extremely durable intercalation of lithium and manufacturing methods thereof |
US11437621B2 (en) | 2015-08-28 | 2022-09-06 | Group14 Technologies, Inc. | Materials with extremely durable intercalation of lithium and manufacturing methods thereof |
US11611071B2 (en) | 2017-03-09 | 2023-03-21 | Group14 Technologies, Inc. | Decomposition of silicon-containing precursors on porous scaffold materials |
JP2019210316A (en) * | 2018-05-31 | 2019-12-12 | 住友ベークライト株式会社 | Phenolic resin composition and molding |
JP2020105275A (en) * | 2018-12-26 | 2020-07-09 | 住友ベークライト株式会社 | Phenolic resin molding material and molded article |
US11492262B2 (en) | 2020-08-18 | 2022-11-08 | Group14Technologies, Inc. | Silicon carbon composites comprising ultra low Z |
US11335903B2 (en) | 2020-08-18 | 2022-05-17 | Group14 Technologies, Inc. | Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low z |
US11498838B2 (en) | 2020-08-18 | 2022-11-15 | Group14 Technologies, Inc. | Silicon carbon composites comprising ultra low z |
US11611070B2 (en) | 2020-08-18 | 2023-03-21 | Group14 Technologies, Inc. | Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low Z |
US11174167B1 (en) | 2020-08-18 | 2021-11-16 | Group14 Technologies, Inc. | Silicon carbon composites comprising ultra low Z |
US11639292B2 (en) | 2020-08-18 | 2023-05-02 | Group14 Technologies, Inc. | Particulate composite materials |
US11646419B2 (en) | 2022-08-17 | 2023-05-09 | Group 14 Technologies, Inc. | Materials with extremely durable intercalation of lithium and manufacturing methods thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH05156121A (en) | Molding material of phenol resin | |
JPH0610246B2 (en) | Heat resistant epoxy resin mold composition | |
JPH05156123A (en) | Molding material of phenol resin | |
JPH05163416A (en) | Phenolic resin molding material | |
JPH05163417A (en) | Phenolic resin molding material | |
JPH07113035A (en) | Phenolic resin molding material | |
JPH05156122A (en) | Thermosetting molding material | |
JPH05156120A (en) | Thermosetting molding material | |
JP2667753B2 (en) | Thermosetting molding material molding method | |
JPH05156119A (en) | Thermosetting molding material | |
WO2012039446A1 (en) | Phenol resin based molding material | |
JPH07278409A (en) | Phenolic resin molding material | |
JPH08302158A (en) | Phenol resin molding material | |
JPH07157632A (en) | Phenol resin composition | |
JP3121675B2 (en) | Phenolic resin molding material for low pressure molding | |
JPH0657098A (en) | Phenol resin molding material for low-pressure molding | |
JP3140868B2 (en) | Resol type phenolic resin molding material | |
JP3256007B2 (en) | Method for producing phenolic resin molding material | |
JP2001189333A (en) | Semiconductor device and manufacturing method therefor | |
JPH0925390A (en) | Phenol resin molding material | |
JPH0625509A (en) | Phenol resin molding material for low-pressure molding | |
JP3121674B2 (en) | Phenolic resin molding material for low pressure molding | |
JPH06329765A (en) | Preparation of epoxy resin composition, and sealed semiconductor device | |
JP2755902B2 (en) | Injection molding method of phenolic resin molding material | |
JPH08176402A (en) | Phenol resin molding material |