JPH05148489A - Production of pitch-based material and production of carbonaceous material with the same as raw material - Google Patents

Production of pitch-based material and production of carbonaceous material with the same as raw material

Info

Publication number
JPH05148489A
JPH05148489A JP4131032A JP13103292A JPH05148489A JP H05148489 A JPH05148489 A JP H05148489A JP 4131032 A JP4131032 A JP 4131032A JP 13103292 A JP13103292 A JP 13103292A JP H05148489 A JPH05148489 A JP H05148489A
Authority
JP
Japan
Prior art keywords
pitch
temperature
softening point
heat treatment
based material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4131032A
Other languages
Japanese (ja)
Other versions
JP2697482B2 (en
Inventor
Tomei Takegawa
東明 竹川
Ichiro Ueno
一郎 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP4131032A priority Critical patent/JP2697482B2/en
Publication of JPH05148489A publication Critical patent/JPH05148489A/en
Application granted granted Critical
Publication of JP2697482B2 publication Critical patent/JP2697482B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Working-Up Tar And Pitch (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To easily obtain a self-sinterable pitch-based material capable of giving isotropic carbonaceous materials of high density and high mechanical strength by hydrogenating pitch followed by heat treatment to regulate its softening point within a specified range and then by atomization and oxidation of the resultant pitch. CONSTITUTION:A coal-based pitch 120 deg.C in the softering point determined by mettler technique is mixed with petroleum-based residual oil, Mettler technique is mixed with petroleum-based residual oil, and an autoclave is then charged with the mixture followed by temperature raising to 420 deg.C in such a state as to maintain the pressure inside the autoclave at 5kg/cm<2>G to carry out hydrogenation. The resulting mixture is then put into a heat treatment unit where temperature is raised to 420 deg.C under a nitrogen gas stream to make a heat treatment of the mixture (pitch) to bring its softening point 5o 250-380 deg.C. The resulting pitch heat treated is atomized and then oxidized at 180-350 deg.C in an oxidative atmosphere into the objective pitch material. Thence, this material is molded into a form, which is, in turn, subjected to carbonization and graphitization, thus obtaining the other objective high-density, high-strength isotropic carbonaceous material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高密度・高強度の等
方性の炭素材を得るためのピッチ系素材の製造方法、及
びそのようなピッチ系素材を原料とした炭素材の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a pitch-based material for obtaining a high-density and high-strength isotropic carbon material, and a method for producing a carbon material using such a pitch-based material as a raw material. Regarding

【0002】[0002]

【従来技術】高密度等方性炭素材は放電加工用電極材や
アルミ蒸着用ルツボ、あるいは核融合炉用壁材として使
用されている。この高密度等方性炭素材を製造する場
合、一般に石油系コークスまたは石炭系コークスを微粉
砕して骨材として、それにバインダーを添加して成形す
る。成形は、性状の均質化を図るために通常は冷間静水
圧プレス(CIP)を用いて行う。得られた成形体は1
〜10℃/Hrという非常に遅い昇温速度で炭化され、そ
の後2000〜3000℃に昇温されて黒鉛化処理に供
される。
2. Description of the Related Art High-density isotropic carbon materials are used as electrode materials for electric discharge machining, crucibles for aluminum vapor deposition, or wall materials for fusion reactors. In the case of producing this high-density isotropic carbon material, petroleum-based coke or coal-based coke is generally pulverized into an aggregate, and a binder is added to the aggregate to form the aggregate. Molding is usually performed using a cold isostatic press (CIP) in order to homogenize the properties. The obtained compact is 1
It is carbonized at a very slow temperature rising rate of -10 ° C / Hr, then heated to 2000-3000 ° C and subjected to graphitization treatment.

【0003】この骨材とバインダーピッチを用いる2元
系の原料に対して、最近はフィラーの機能とバインダー
機能とを1種類の粒子で兼ねる自己焼結性原料が開発さ
れている。その中で、バルクメソフェーズは石油系ある
いは石炭系ピッチを350℃〜500℃の範囲で熱処理
して得られるもので、光学的異方性組織(液晶)が全面
的に展開したものである。そして、これが高密度等方性
炭素材の原料として使用される場合には、微粉砕してか
ら用いられる(特開昭59−164604)。このよう
な原料は、自己焼結性を保持しているため、成形するこ
とでそれ自身が相互に融着し、バインダー等の接着剤を
添加する必要がない。
In contrast to the binary raw material using the aggregate and the binder pitch, recently, a self-sintering raw material has been developed in which one kind of particles has both the function of the filler and the function of the binder. Among them, the bulk mesophase is obtained by heat-treating petroleum-based or coal-based pitch in the range of 350 ° C to 500 ° C, and has an optically anisotropic structure (liquid crystal) fully developed. When it is used as a raw material for a high-density isotropic carbon material, it is used after being pulverized (JP-A-59-164604). Since such raw materials retain their self-sintering properties, they are fused to each other by molding, and it is not necessary to add an adhesive such as a binder.

【0004】またこの自己焼結性原料としてメソカーボ
ンマイクロビーズ(MCB)を使用する方法が提案され
ている(特開昭49−2379)。MCBは、各種ピッ
チを熱処理する過程で生成してくる微小な10μm 程度
の直径を有する光学的に異方性の小球体である。MCB
は、ピッチを熱処理することにより、光学的等方性のピ
ッチマトリックスの中に発生する。発生したMCBはそ
のまま加熱を続けるとMCB同士が合体しバルクメソフ
ェーズになるため、微小なMCBが生成された段階で熱
処理を中止し、多量の溶媒を加えることで生成されたM
CBを取り出す。ただし、MCBだけでは自己焼結性が
不足であるとして、溶媒でマトリックスピッチからMC
Bを取り出す際に、マトリックスピッチのキノリン可溶
分から成るβ成分を主体とする部分をMCBの表面に付
着させることが提案されている(特開昭62−4170
7)。
Further, a method of using mesocarbon microbeads (MCB) as the self-sintering raw material has been proposed (JP-A-49-2379). MCB is an optically anisotropic small sphere having a minute diameter of about 10 μm which is generated during the heat treatment of various pitches. MCB
Are generated in the optically isotropic pitch matrix by heat treating the pitch. If the generated MCBs continue to be heated as they are, the MCBs coalesce to form a bulk mesophase, so the heat treatment is stopped at the stage where minute MCBs are generated, and M generated by adding a large amount of solvent.
Take out CB. However, assuming that MCB alone is insufficient in self-sinterability, a solvent is used to remove MC from the matrix pitch.
When B is taken out, it has been proposed to attach a portion mainly composed of a β component consisting of a quinoline-soluble component of the matrix pitch to the surface of MCB (JP-A-62-4170).
7).

【0005】[0005]

【発明が解決しようとする課題】コークスを微粉砕して
骨材とし、それにバインダーを添加してCIP成形・炭
化・黒鉛化処理する方法では、得られる炭素材の性状の
均一化を図るため、骨材コークスの粒度をできるだけ細
かくして用いる傾向がある。しかしながら、それに伴っ
て、微粒子同士を接着するために添加するバインダーの
必要量が増加してしまう。バインダー添加量が増加する
と炭化処理過程でバインダー成分が分解し成形体より揮
発してしまうため、炭化処理後の残炭歩留が低下し、成
形体の焼成後の密度が低下してしまう欠点がある。
In the method of finely crushing coke into an aggregate and adding a binder to the aggregate to perform CIP molding, carbonization and graphitization treatment, the properties of the obtained carbon material are made uniform, Aggregate coke tends to be used with the finest grain size. However, along with this, the required amount of the binder added to bond the fine particles to each other increases. When the amount of binder added increases, the binder component decomposes and volatilizes from the molded body during the carbonization process, which reduces the residual carbon yield after the carbonization process and reduces the density of the molded body after firing. is there.

【0006】このような傾向は、MCBの周りにマトリ
ックスピッチのβ成分を主体とする部分をバインダーと
して付着させる方法でも同様に見られる。つまりMCB
の粒径を均質化のために小さくすればするほどMCB同
士を接着するバインダーとなるβ成分主体のマトリック
スピッチを多く残存させる必要があるが、それに伴って
炭化処理後の残炭歩留が低下し成形体の焼成後の密度が
低下してしまう。このような密度の低下は気孔率の増加
と対応しており、強度低下にも結び付くことになる。
[0006] Such a tendency is similarly observed in a method in which a portion mainly composed of the β component of the matrix pitch is attached as a binder around the MCB. That is MCB
As the particle size of carbon is reduced for homogenization, it is necessary to leave a large amount of matrix pitch mainly composed of β component that serves as a binder for bonding MCBs, but the yield of carbon residue after carbonization is reduced accordingly. However, the density of the molded body after firing is reduced. Such a decrease in density corresponds to an increase in porosity, which leads to a decrease in strength.

【0007】以上のような密度の低下すなわち気孔率の
増加を改善するため、炭化工程や黒鉛化工程で処理体に
ピッチを含浸して再加熱処理することがしばしば行われ
ている。しかしこの方法は工程として繁雑であり経済的
でない。
In order to improve the above-mentioned decrease in density, that is, increase in porosity, it is often practiced to impregnate the treated body with pitch in the carbonization step or the graphitization step and reheat it. However, this method is complicated and uneconomical.

【0008】この発明はかかる事情に鑑みてなされたも
のであって、比較的簡便な工程によって高密度・高強度
の等方性の炭素材を得ることができる自己焼結性を有す
るピッチ系素材の製造方法、及びそれを原料として用い
た炭素材の製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and is a pitch-based material having self-sintering property, which makes it possible to obtain an isotropic carbon material having high density and high strength by a relatively simple process. It is an object of the present invention to provide a method for producing the above and a method for producing a carbon material using the same as a raw material.

【0009】[0009]

【課題を解決するための手段及び作用】この発明は、上
記目的を達成するために、第1に、ピッチを水素化し、
熱処理してその軟化点を250〜380℃の範囲にし、
このピッチに対し、さらに微細化処理及び酸化処理を施
すことを特徴とするピッチ系素材の製造方法を提供す
る。
In order to achieve the above object, the present invention firstly hydrogenates a pitch,
Heat treatment to bring its softening point to the range of 250-380 ° C.,
Provided is a method for manufacturing a pitch-based material, which is characterized in that the pitch is further subjected to a refinement treatment and an oxidation treatment.

【0010】第2に、軟化点が250〜380℃で、ナ
フテン基が導入された合成ピッチに対し、微細化処理及
び酸化処理を施すことを特徴とするピッチ系素材の製造
方法を提供する。
Secondly, there is provided a method for producing a pitch-based material, characterized in that a synthetic pitch having a softening point of 250 to 380 ° C. and having a naphthene group introduced therein is subjected to a refining treatment and an oxidation treatment.

【0011】第3に、上記いずれかのピッチ系素材を準
備する工程と、このピッチ系素材を成形して成形体を得
る工程と、この成形体を炭化焼成して焼結体を得る工程
と、この焼結材を黒鉛化処理する工程とを有することを
特徴とする炭素材の製造方法を提供する。
Thirdly, a step of preparing any one of the above pitch-based materials, a step of molding the pitch-based material to obtain a molded body, and a step of carbonizing and firing the molded body to obtain a sintered body. And a step of graphitizing this sintered material, to provide a method for producing a carbon material.

【0012】本願発明者等が比較的簡便な工程によって
高密度・高強度の等方性の炭素材を得ることができる自
己焼結性原料としてのピッチ系素材を得るべく鋭意検討
を重ねた結果、ピッチを水素化し、熱処理した後、微粒
化し、さらに酸化処理したピッチ系素材を自己焼結性を
有する原料として用いればよいことを見出した。すなわ
ち、このように処理されたピッチ素材は、良好な自己焼
結性及び充填性を有しており、炭化焼成時の残炭歩留り
が高いので、比較的簡便な工程によって高密度・高強度
の等方性の炭素材を得ることができる。この発明はこの
ような知見に基づいて完成されたものである。以下、こ
の発明を詳細に説明する。
As a result of earnest studies by the inventors of the present application to obtain a pitch-based material as a self-sintering raw material capable of obtaining a high-density and high-strength isotropic carbon material by a relatively simple process It has been found that a pitch-based material obtained by hydrogenating pitch, heat-treating it, then atomizing it, and further oxidizing it can be used as a raw material having self-sinterability. That is, the pitch material treated in this way has good self-sinterability and filling properties, and has a high residual coal yield during carbonization and firing. It is possible to obtain an isotropic carbon material. The present invention has been completed based on such knowledge. The present invention will be described in detail below.

【0013】この発明のピッチ素材を製造するために用
いるピッチ原料としては、石炭系残油、石油系残油のい
ずれでもよい。使用されるピッチ原料の軟化点は40℃
以上250℃以下が好ましい。この範囲よりも低いと熱
処理したピッチの歩留が低下し、またこの範囲よりも高
いと高温度になるまでピッチ原料が溶解しないため、溶
剤と混合させたり、あるいは反応器の中で流動化を図る
ことが困難となる。より好ましい軟化点の範囲は80℃
〜150℃である。
The pitch raw material used for producing the pitch raw material of the present invention may be either coal-based residual oil or petroleum-based residual oil. The softening point of the pitch raw material used is 40 ° C.
The temperature is preferably 250 ° C or higher and 250 ° C or lower. If it is lower than this range, the yield of the heat-treated pitch decreases, and if it is higher than this range, the pitch raw material does not dissolve until it reaches a high temperature, so it may be mixed with a solvent or fluidized in the reactor. It becomes difficult to plan. The more preferable softening point range is 80 ° C.
~ 150 ° C.

【0014】水素化処理は、水素ガス雰囲気下で好まし
くは350〜450℃の温度で3時間以下の時間保持す
ることによって達成される。この範囲の温度まで昇温し
た後、保持せずに直ちに降温してもよい。この際に、触
媒として、Ni、Co、Mo等で構成されるもの、又は
赤泥、硫黄等を用いても良い。この場合に、水素ガス雰
囲気であれば大気圧下、加圧下のいずれでもよく、それ
ぞれに応じた効果を得ることができる。
The hydrotreatment is accomplished by holding under a hydrogen gas atmosphere, preferably at a temperature of 350 to 450 ° C. for a time of 3 hours or less. After raising the temperature to this range, the temperature may be lowered immediately without holding. At this time, a catalyst composed of Ni, Co, Mo, or the like, or red mud, sulfur, or the like may be used as the catalyst. In this case, the hydrogen gas atmosphere may be either under atmospheric pressure or under pressure, and effects corresponding to each may be obtained.

【0015】また、この水素化処理は予め移行可能な水
素を保持した溶媒と当該ピッチとを混合して、350〜
450℃の温度で3時間以下の時間保持(保持しない場
合も含む)するものであっても良い。
Further, in this hydrogenation treatment, a solvent which holds hydrogen which can be transferred in advance is mixed with the pitch and the temperature is adjusted to 350-
It may be held at a temperature of 450 ° C. for 3 hours or less (including the case where it is not held).

【0016】水素ガスを用いる場合でも移行可能な水素
を保持した溶媒を用いる場合でも、上記範囲より低い温
度では十分な水素がピッチ原料に移行せず、また、この
範囲以上の温度ではピッチに移行した水素が再度脱離し
てしまうため好ましくない。
Whether hydrogen gas is used or a solvent that retains transferable hydrogen is used, sufficient hydrogen does not transfer to the pitch raw material at a temperature lower than the above range, and it transfers to the pitch at a temperature higher than this range. It is not preferable because the generated hydrogen is desorbed again.

【0017】得られた水素化ピッチをさらに熱処理する
ことにより、その軟化点が250℃以上380℃以下に
なるようにする。より好ましくは280〜350℃とな
るように調製する。これは、炭化焼成時の残炭歩留を向
上させると同時に適正なバインダー性能を保持させるた
めである。
The resulting hydrogenated pitch is further heat-treated so that its softening point is 250 ° C. or higher and 380 ° C. or lower. More preferably, the temperature is adjusted to 280 to 350 ° C. This is to improve the residual coal yield at the time of carbonization and to maintain the proper binder performance.

【0018】このようにして熱処理して得られたピッチ
は所定の粒度に微粒子化される。この際の方法は特に限
定されず、機械的粉砕や高温下でのアトマイズ等の方法
を採用することができるが、成形時の充填性能を向上さ
せるためには粒子をより球状化することができるアトマ
イズによる方法が好ましい。
The pitch obtained by heat treatment in this way is atomized to a predetermined particle size. The method at this time is not particularly limited, and methods such as mechanical pulverization and atomization at high temperature can be adopted, but the particles can be made more spherical in order to improve the filling performance during molding. The method by atomization is preferable.

【0019】この微粒子化ピッチは続いて酸化処理され
る。これにより粒子の接着性能を十分なものとすること
ができる。この酸化処理は空気中で行ってもよいし、酸
素雰囲気中で行ってもよい。この酸化処理は180〜3
50℃の温度範囲で行うことが好ましい。これは、この
温度より低い場合には十分酸化されず、また、この温度
よりも高い場合には酸化が進み過ぎ、十分な粒子の接着
性能が確保できないからである。以上のような工程によ
り、所期の特性を有するピッチ系素材が製造される。
This finely divided pitch is subsequently subjected to an oxidation treatment. This makes it possible to obtain sufficient particle adhesion performance. This oxidation treatment may be performed in air or in an oxygen atmosphere. This oxidation treatment is 180-3
It is preferably carried out in the temperature range of 50 ° C. This is because if it is lower than this temperature, it is not sufficiently oxidized, and if it is higher than this temperature, the oxidation proceeds too much and sufficient particle adhesion performance cannot be secured. Through the above steps, a pitch-based material having desired characteristics is manufactured.

【0020】この発明においては、合成ピッチを用いて
ピッチ系素材を得ることもできる。すなわち、例えば予
めナフテン基が導入されている軟化点250〜380℃
の範囲の合成ピッチを用いることにより、上述した水素
化処理と熱処理を省くことが可能であり、上記微粒化工
程以降の工程のみを実施すれば良い。この場合において
も、酸化処理は180〜350℃の温度範囲で行うこと
が好ましい。このような方法によっても、所期の特性を
有するピッチ系素材が製造される。
In the present invention, a pitch-based material can be obtained by using a synthetic pitch. That is, for example, a softening point in which a naphthene group is introduced in advance 250 to 380 ° C.
By using the synthetic pitch in the range of, it is possible to omit the above-mentioned hydrogenation treatment and heat treatment, and it is sufficient to perform only the steps after the atomization step. Also in this case, it is preferable to perform the oxidation treatment in the temperature range of 180 to 350 ° C. By such a method, the pitch-based material having desired characteristics can be manufactured.

【0021】ここで用いるナフテン基が導入されている
ピッチとしては、例えばナフタリンをHF−BF3 等の
超強酸性触媒で合成したピッチを用いることができる。
なお、ここでいう軟化点はメトラー法によって得られる
軟化点のことである。
As the pitch having a naphthene group introduced therein, for example, a pitch obtained by synthesizing naphthalene with a super strong acid catalyst such as HF-BF 3 can be used.
The softening point here is the softening point obtained by the Mettler method.

【0022】以上のようにして得られたピッチ系素材は
自己焼結性材料として用いられ、公知の方法により成形
され、炭化焼成され、黒鉛化処理され、これによって所
望の等方性炭素材が得られる。このようにして炭素材を
製造することにより、比較的簡便な工程にもかかわら
ず、高密度化及び高強度化を図ることができる。
The pitch-based material obtained as described above is used as a self-sintering material, molded by a known method, carbonized and fired, and graphitized to obtain a desired isotropic carbon material. can get. By manufacturing the carbon material in this manner, it is possible to achieve high density and high strength despite the relatively simple process.

【0023】[0023]

【実施例】【Example】

(実施例1) (Example 1)

【0024】メトラー法による軟化点が120℃の石炭
系ピッチ100重量部に石油系FCC残油を170重量
部混合した。この混合物をオートクレーブに装入し、オ
ートクレーブ内を5kg/cm2 Gに維持した状態で420
℃まで昇温し、その温度で30分間保持することにより
水素化処理した。その後回収したすべての試料を熱処理
装置に装入し、窒素ガス流通下で420℃まで昇温し、
その温度で70、100、120分間保持する熱処理を
行って軟化点が夫々270、300、325℃になるよ
うにした。この熱処理を施したピッチをアトマイズによ
り平均粒子径10μmまで微粒子化処理した。得られた
微粒子ピッチを200、250、300℃の各温度で2
0分間酸化処理し、ピッチ系素材を得た。
170 parts by weight of petroleum-based FCC residual oil was mixed with 100 parts by weight of coal-based pitch having a softening point of 120 ° C. by the Mettler method. This mixture was placed in an autoclave, and the inside of the autoclave was 5 kg / cm 2 420 with G maintained
The temperature was raised to 0 ° C., and the temperature was maintained for 30 minutes for hydrotreatment. After that, all the collected samples were charged into a heat treatment apparatus, heated to 420 ° C. under a nitrogen gas flow,
The softening points were set to 270, 300, and 325 ° C., respectively, by performing heat treatment for holding at that temperature for 70, 100, and 120 minutes. The heat-treated pitch was atomized by atomization to an average particle diameter of 10 μm. The obtained fine particle pitch is 2 at each temperature of 200, 250 and 300 ° C.
Oxidation treatment was performed for 0 minutes to obtain a pitch-based material.

【0025】次いで、上述のようにして得られた微粒の
ピッチ系素材をゴム型に装入し、1.0T/cm2 でCI
P成形した。この成形体を炭化処理炉へ入れ1000℃
で焼成した後、さらに黒鉛化炉で2400℃まで昇温し
て黒鉛化処理を施した。最終的に得られた炭素材は50
mmφ×50mmの大きさであった。得られた試料の嵩密度
と曲げ強度とを評価した。その結果を表1に示す。な
お、表1には熱処理ピッチの軟化点及び酸化処理温度を
併記している。
Next, the fine pitch-based material obtained as described above is charged into a rubber mold and 1.0 T / cm 2 At CI
P-molded. This molded body is put in a carbonization furnace and the temperature is 1000 ° C.
After firing in, the temperature was further raised to 2400 ° C. in a graphitization furnace to perform graphitization treatment. The finally obtained carbon material is 50
The size was mmφ × 50 mm. The bulk density and bending strength of the obtained sample were evaluated. The results are shown in Table 1. Table 1 also shows the softening point of the heat treatment pitch and the oxidation treatment temperature.

【0026】[0026]

【表1】 (比較例1)[Table 1] (Comparative Example 1)

【0027】メトラー法による軟化点が120℃のピッ
チを熱処理装置に装入し、窒素ガス流通下で420℃ま
で昇温し、その温度で45、55、65分間保持する熱
処理を行って軟化点が夫々270、300、325℃程
度になるように熱処理した。その熱処理ピッチをアトマ
イズにより平均粒子径10μmまで微粒子化した。得ら
れた微粒子ピッチを200、250、300℃の各温度
で20分間酸化処理しピッチ系素材を得た。
A pitch having a softening point of 120 ° C. measured by the METTLER method is charged into a heat treatment apparatus, heated to 420 ° C. under a nitrogen gas flow, and heat treated by holding at that temperature for 45, 55, and 65 minutes to perform the softening point. Were heat-treated at temperatures of about 270, 300, and 325 ° C., respectively. The heat-treated pitch was atomized to have an average particle diameter of 10 μm by atomization. The fine particle pitch thus obtained was subjected to oxidation treatment at each temperature of 200, 250 and 300 ° C. for 20 minutes to obtain a pitch-based material.

【0028】次いで、上述のようにして得られた微粒の
ピッチ系素材をゴム型に装入し、1.0T/cm2 でCI
P成形した。この成形体を炭化処理炉へ入れ1000℃
で焼成し、その後さらに黒鉛化炉で2400℃まで昇温
して黒鉛化処理を施した。最終的に得られた炭素材は5
0mmφ×50mmの大きさであった。得られた試料の嵩密
度と曲げ強度とを評価した。その結果を表2に示す。な
お、表2には熱処理ピッチの軟化点及び酸化処理温度を
併記している。
Then, the fine pitch type material obtained as described above is charged into a rubber mold, and 1.0 T / cm 2 At CI
P-molded. This molded body is put in a carbonization furnace and the temperature is 1000 ° C.
Then, the temperature was raised to 2400 ° C. in a graphitization furnace for graphitization. The carbon material finally obtained is 5
The size was 0 mmφ × 50 mm. The bulk density and bending strength of the obtained sample were evaluated. The results are shown in Table 2. Table 2 also shows the softening point of the heat treatment pitch and the oxidation treatment temperature.

【0029】[0029]

【表2】 [Table 2]

【0030】表1及び表2から明らかなように、水素化
処理を行っていない比較例1の場合には、いずれの条件
においても嵩密度が低く、それに伴って曲げ強度が小さ
いことが確認された。これに対して、水素化処理を行っ
た実施例1では比較例よりも嵩密度が高く、大きい曲げ
強度を示した。特に、酸化処理温度が250℃の場合に
高い曲げ強度を示した。 (実施例2)
As is clear from Tables 1 and 2, it was confirmed that in Comparative Example 1 in which no hydrogenation treatment was carried out, the bulk density was low and the bending strength was low accordingly under any conditions. It was On the other hand, in Example 1 in which the hydrogenation treatment was performed, the bulk density was higher and the bending strength was higher than that in Comparative Example. Particularly, when the oxidation treatment temperature was 250 ° C., high bending strength was exhibited. (Example 2)

【0031】メトラー法による軟化点が120℃のピッ
チ50重量部に石油系FCC残油を50重量部混合し
た。この混合物をオートクレーブに装入し、自生圧下で
420℃まで昇温しその温度で30分間保持した。その
後回収したすべての試料を熱処理装置に装入し、窒素ガ
ス流通下で420℃まで昇温し、その温度で85分間保
持する熱処理を行って軟化点が300℃程度になるよう
にした。この熱処理を施したピッチをアトマイズにより
平均粒子径10μmに微粒子化した。得られた微粒子ピ
ッチを250℃で15分間酸化処理し、ピッチ系素材を
得た。
50 parts by weight of petroleum-based FCC residual oil was mixed with 50 parts by weight of a pitch having a softening point of 120 ° C. by the Mettler method. This mixture was charged into an autoclave, heated to 420 ° C. under autogenous pressure, and kept at that temperature for 30 minutes. After that, all the collected samples were placed in a heat treatment apparatus, heated to 420 ° C. under a nitrogen gas flow, and heat-treated at that temperature for 85 minutes so that the softening point became about 300 ° C. The heat-treated pitch was atomized into fine particles with an average particle diameter of 10 μm by atomization. The obtained fine particle pitch was oxidized at 250 ° C. for 15 minutes to obtain a pitch-based material.

【0032】次いで、上述のようにして得られた微粒の
ピッチ系素材をゴム型に装入し、1.5T/cm2 でCI
P成形した。この成形体を炭化処理炉へ入れ1000℃
で焼成した後、さらに黒鉛化炉で2200℃まで昇温し
て黒鉛化処理を施した。最終的に得られた炭素材は50
mmφ×50mmの大きさであった。得られた試料の嵩密度
と曲げ強度とを評価した。その結果を表3に示す。 (実施例3)
Then, the fine pitch type material obtained as described above is charged into a rubber mold, and 1.5 T / cm 2 At CI
P-molded. This molded body is put in a carbonization furnace and the temperature is 1000 ° C.
After firing in, the temperature was further raised to 2200 ° C. in a graphitization furnace for graphitization. The finally obtained carbon material is 50
The size was mmφ × 50 mm. The bulk density and bending strength of the obtained sample were evaluated. The results are shown in Table 3. (Example 3)

【0033】メトラー法による軟化点が120℃のピッ
チ50重量部に石油系FCC残油を50重量部混合し
た。この混合物をオートクレーブに装入し、オートクレ
ーブ内を5kg/cm2 Gに維持した状態で420℃まで昇
温し、その温度で30分間保持した。その後回収したす
べての試料を熱処理装置に装入し、窒素ガス流通下で4
20℃まで昇温し、その温度で100分間保持する熱処
理を行って軟化点が300℃程度になるようにした。こ
の熱処理を施したピッチをアトマイズにより平均粒子径
10μmまで微粒子化した。得られた微粒子ピッチを2
50℃で15分間酸化処理し、ピッチ系素材を得た。
50 parts by weight of a pitch having a softening point of 120 ° C. by the Mettler method was mixed with 50 parts by weight of petroleum FCC residual oil. This mixture was placed in an autoclave, and the inside of the autoclave was 5 kg / cm 2 While maintaining G, the temperature was raised to 420 ° C. and the temperature was maintained for 30 minutes. After that, put all the collected samples into the heat treatment equipment and
The temperature was raised to 20 ° C., and a heat treatment was carried out at that temperature for 100 minutes so that the softening point became about 300 ° C. The heat-treated pitch was atomized to an average particle size of 10 μm by atomization. The obtained fine particle pitch is 2
It was oxidized at 50 ° C. for 15 minutes to obtain a pitch-based material.

【0034】次いで、上述のようにして得られた微粒の
ピッチ系素材をゴム型に装入し、1.5T/cm2 でCI
P成形した。この成形体を炭化処理炉へ入れ1000℃
で焼成し、その後さらに黒鉛化炉で2200℃まで昇温
して黒鉛化処理を施した。最終的に得られた炭素材は5
0mmφ×50mmの大きさであった。得られた試料の嵩密
度と曲げ強度とを評価した。その結果を表3に示す。 (比較例2)
Then, the fine pitch-based material obtained as described above is charged into a rubber mold and 1.5 T / cm 2 At CI
P-molded. This molded body is put in a carbonization furnace and the temperature is 1000 ° C.
Then, the temperature was raised to 2200 ° C. in a graphitization furnace to perform graphitization. The carbon material finally obtained is 5
The size was 0 mmφ × 50 mm. The bulk density and bending strength of the obtained sample were evaluated. The results are shown in Table 3. (Comparative example 2)

【0035】メトラー法による軟化点が120℃のピッ
チを熱処理装置に装入し、窒素ガス流通下で420℃ま
で昇温しその温度で55分間保持する熱処理を行って軟
化点が300℃程度になるように熱処理した。その熱処
理ピッチをアトマイズにより平均粒子径10μmまで微
粒子化した。得られた微粒子ピッチを250℃で15分
間酸化処理し炭素材用原料とした。
A pitch having a softening point of 120 ° C. according to the METTLER method is charged into a heat treatment apparatus, heated to 420 ° C. under a nitrogen gas flow, and heat-treated at that temperature for 55 minutes to make the softening point about 300 ° C. Was heat-treated so that The heat-treated pitch was atomized to have an average particle diameter of 10 μm by atomization. The fine particle pitch obtained was subjected to an oxidation treatment at 250 ° C. for 15 minutes to obtain a carbon material raw material.

【0036】次いで、得られた酸化処理微粒ピッチをゴ
ム型に装入し、1.5T/cm2 でCIP成形した。この
成形体を炭化処理炉へ入れ1000℃で焼成し、その後
さらに黒鉛化炉で2200℃まで昇温して黒鉛化処理を
施した。最終的に得られた製品は50mmφ×50mmの大
きさであった。得られた試料の嵩密度と曲げ強度とを評
価した。得られた結果を表3に示す。なお、表3には熱
処理ピッチの軟化点及び酸化処理温度を併記している。
Next, the obtained oxidized fine particle pitch was charged into a rubber mold, and 1.5 T / cm 2 Was CIP molded. This molded body was put into a carbonization treatment furnace and fired at 1000 ° C., and then further heated to 2200 ° C. in a graphitization furnace for graphitization treatment. The finally obtained product had a size of 50 mmφ × 50 mm. The bulk density and bending strength of the obtained sample were evaluated. The results obtained are shown in Table 3. Table 3 also shows the softening point of the heat treatment pitch and the oxidation treatment temperature.

【0037】[0037]

【表3】 この表3に示すように、実施例2,3はいずれも嵩密度
が1.95g/cm3 を超える高い値となり、曲げ強度も
1000kg/cm2 を超えた高い値となった。これに対
し、水素化処理を行わなかった比較例2では、嵩密度が
実施例と比較して低く、曲げ強度も実施例の半分以下の
値となった。 (実施例4)
[Table 3] As shown in Table 3, in both Examples 2 and 3, the bulk density was 1.95 g / cm 3. And a bending strength of 1000 kg / cm 2 It became a high value that exceeded. On the other hand, in Comparative Example 2 in which the hydrogenation treatment was not performed, the bulk density was lower than that in the example, and the bending strength was half or less than that in the example. (Example 4)

【0038】ナフタレンをHF/BF3 触媒を用いて重
合した合成ピッチであって、メトラー法による軟化点が
300℃のものを平均粒子径まで微粒子化した。得られ
た微粒子ピッチを200、250、300℃の各温度で
15分間酸化処理し、ピッチ系素材を得た。
A synthetic pitch obtained by polymerizing naphthalene using an HF / BF 3 catalyst and having a softening point of 300 ° C. by the Mettler method was finely divided to an average particle size. The fine particle pitch thus obtained was subjected to an oxidation treatment at temperatures of 200, 250 and 300 ° C. for 15 minutes to obtain a pitch-based material.

【0039】次いで、上述のようにして得られた微粒の
ピッチ系素材をゴム型に装入し、1.5T/cm2 でCI
P成形した。この成形体を炭化処理炉へ入れ1000℃
で焼成し、その後さらに黒鉛化炉で2200℃まで昇温
して黒鉛化処理を施した。最終的に得られた炭素材は5
0mmφ×50mmの大きさであった。得られた試料の嵩密
度と曲げ強度とを評価した。その結果を表4に示す。な
お、表43には熱処理ピッチの軟化点及び酸化処理温度
を併記している。
Then, the fine pitch-based material obtained as described above is charged into a rubber mold, and 1.5 T / cm 2 At CI
P-molded. This molded body is put in a carbonization furnace and the temperature is 1000 ° C.
Then, the temperature was raised to 2200 ° C. in a graphitization furnace to perform graphitization. The carbon material finally obtained is 5
The size was 0 mmφ × 50 mm. The bulk density and bending strength of the obtained sample were evaluated. The results are shown in Table 4. Table 43 also shows the softening point of the heat treatment pitch and the oxidation treatment temperature.

【0040】[0040]

【表4】 [Table 4]

【0041】表4から明らかなように、ナフテン基が導
入された合成ピッチであって軟化点が本発明の範囲内で
あれば、嵩密度が高く、大きな曲げ強度が得られること
が確認された。以上の結果から、本発明の有効性が確認
された。
As is clear from Table 4, it was confirmed that the bulk density is high and a large bending strength can be obtained when the synthetic pitch has a naphthene group introduced and the softening point is within the range of the present invention. .. From the above results, the effectiveness of the present invention was confirmed.

【0042】なお、上記実施例では、石油系FCC残油
を移行可能な水素を保持した溶媒として用いて水素化処
理を行ったが、水素ガス雰囲気下での水素化処理でも同
様の効果を得ることができた。
In the above example, the petroleum FCC residual oil was used as the solvent holding the transferable hydrogen to carry out the hydrogenation treatment, but the same effect can be obtained by the hydrogenation treatment in a hydrogen gas atmosphere. I was able to do it.

【0043】[0043]

【発明の効果】この発明によれば、比較的簡便な工程に
よって高密度・高強度の等方性の炭素材を得ることがで
きる自己焼結性を有するピッチ系素材の製造方法、及び
それを原料として用いた炭素材の製造方法が提供され
る。
According to the present invention, there is provided a method for producing a pitch-based material having self-sinterability capable of obtaining a high-density and high-strength isotropic carbon material by a relatively simple process, and a method therefor. A method for producing a carbon material used as a raw material is provided.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C10C 3/14 6958−4H Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location C10C 3/14 6958-4H

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ピッチを水素化し、熱処理してその軟化
点を250〜380℃の範囲にし、このピッチに対し、
さらに微細化処理及び酸化処理を施すことを特徴とする
ピッチ系素材の製造方法。
1. A pitch is hydrogenated and heat-treated to bring its softening point to a range of 250 to 380 ° C.
A method for producing a pitch-based material, which is characterized by further subjecting it to a refinement treatment and an oxidation treatment.
【請求項2】 軟化点が250〜380℃で、ナフテン
基が導入された合成ピッチに対し、微細化処理及び酸化
処理を施すことを特徴とするピッチ系素材の製造方法。
2. A method for producing a pitch-based material, characterized in that a synthetic pitch having a softening point of 250 to 380 ° C. and having a naphthene group introduced therein is subjected to a refining treatment and an oxidation treatment.
【請求項3】 前記酸化処理は、酸化雰囲気中180〜
350℃の温度範囲で行うことを特徴とする請求項1又
は2に記載のピッチ系素材の製造方法。
3. The oxidation treatment is performed in an oxidizing atmosphere in a range of 180 to
The method for producing a pitch-based material according to claim 1 or 2, which is performed in a temperature range of 350 ° C.
【請求項4】請求項1、2又は3に記載のピッチ系素材
を準備する工程と、このピッチ系素材を成形して成形体
を得る工程と、この成形体を炭化焼成して焼結体を得る
工程と、この焼結体を黒鉛化処理する工程とを有するこ
とを特徴とする炭素材の製造方法。
4. A step of preparing the pitch-based material according to claim 1, 2 or 3, a step of shaping the pitch-based material to obtain a shaped body, and a carbonized and fired body of the shaped body. And a step of subjecting this sintered body to a graphitization treatment, the method for producing a carbon material.
JP4131032A 1991-05-22 1992-05-22 Method for producing pitch-based material and method for producing carbon material using the same as raw material Expired - Lifetime JP2697482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4131032A JP2697482B2 (en) 1991-05-22 1992-05-22 Method for producing pitch-based material and method for producing carbon material using the same as raw material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11753191 1991-05-22
JP3-117531 1991-05-22
JP4131032A JP2697482B2 (en) 1991-05-22 1992-05-22 Method for producing pitch-based material and method for producing carbon material using the same as raw material

Publications (2)

Publication Number Publication Date
JPH05148489A true JPH05148489A (en) 1993-06-15
JP2697482B2 JP2697482B2 (en) 1998-01-14

Family

ID=26455624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4131032A Expired - Lifetime JP2697482B2 (en) 1991-05-22 1992-05-22 Method for producing pitch-based material and method for producing carbon material using the same as raw material

Country Status (1)

Country Link
JP (1) JP2697482B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120464A (en) * 2007-10-23 2009-06-04 Kobe Steel Ltd Method for producing carbon material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120464A (en) * 2007-10-23 2009-06-04 Kobe Steel Ltd Method for producing carbon material

Also Published As

Publication number Publication date
JP2697482B2 (en) 1998-01-14

Similar Documents

Publication Publication Date Title
JP2697482B2 (en) Method for producing pitch-based material and method for producing carbon material using the same as raw material
JP3094502B2 (en) Manufacturing method of carbon material
JP2910002B2 (en) Special carbon material kneading method
JP2652909B2 (en) Method for producing isotropic high-strength graphite material
JPS63151610A (en) Raw material composition for producing large-sized carbonaceous material
JP3198123B2 (en) Method for producing isotropic high-strength graphite material
JP2806408B2 (en) Self-fusing carbonaceous powder and high density carbon material
JPS61251504A (en) Production of formed graphite
JPH0825815B2 (en) Method for producing carbon-carbon composite material
JP2918008B2 (en) Self-fusing carbonaceous powder and high density carbon material
JP2924062B2 (en) Production method of raw material powder for carbon material
JP2924061B2 (en) Production method of raw material powder for carbon material
JP2808807B2 (en) Production method of raw material powder for carbon material
JPH0791107B2 (en) Method for producing isotropic graphite material having high density and high strength
JPS6235964B2 (en)
JPH0764528B2 (en) Method for producing high-quality carbonaceous compact
JPS6270216A (en) Production of coke for isotropic carbon material
JPH01239058A (en) Production of isotropic high-density carbon material
JPS6272508A (en) Preparation of starting material for high density isotropic carbon material
JPH0329001B2 (en)
JPS63242911A (en) Production of raw material for carbon material
JPH0158124B2 (en)
JPS63242912A (en) Carbonaceous powder for carbon material and production thereof
JPH05330914A (en) Production of carbonaceous material having highly mirror finished surface
JPH03170311A (en) Production of high-density isotropic carbon material