JP2009120464A - Method for producing carbon material - Google Patents

Method for producing carbon material Download PDF

Info

Publication number
JP2009120464A
JP2009120464A JP2008102138A JP2008102138A JP2009120464A JP 2009120464 A JP2009120464 A JP 2009120464A JP 2008102138 A JP2008102138 A JP 2008102138A JP 2008102138 A JP2008102138 A JP 2008102138A JP 2009120464 A JP2009120464 A JP 2009120464A
Authority
JP
Japan
Prior art keywords
raw material
coal
carbonized
ashless coal
carbonized raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008102138A
Other languages
Japanese (ja)
Other versions
JP5128351B2 (en
Inventor
Maki Hamaguchi
眞基 濱口
Noriyuki Okuyama
憲幸 奥山
Nobuyuki Komatsu
信行 小松
Atsushi Furuya
敦志 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008102138A priority Critical patent/JP5128351B2/en
Publication of JP2009120464A publication Critical patent/JP2009120464A/en
Application granted granted Critical
Publication of JP5128351B2 publication Critical patent/JP5128351B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a carbon material capable of economically obtaining in a high yield a high-purity carbon material having ≤60% in porosity and having a significantly low ash concentration using an ashless coal as a material, and to provide a method for producing a carbon material capable of economically obtaining in a high yield a high-purity carbon material having a densely and significantly low ash concentration and capable of obtaining the carbon material while keeping a predetermined shape. <P>SOLUTION: The method for producing a carbon material comprises an ashless coal producing step (S1) for producing an ashless coal, a carbonizing raw material producing step (S2) comprising mixing an ashless coal with an organic solvent to extract a component soluble in the organic solvent from the ashless coal and then separating the resulting material into a liquid part containing a soluble component and a non-liquid part containing a component insoluble in an organic solvent to make the non-liquid part as a carbonizing raw material, a molding step (S3) for molding the carbonizing raw material into agglomerates, and a carbonization step (S4) for carbonizing the carbonizing raw material by heat-treating in an inert atmosphere, in which the ratio of the produced carbonizing raw material is defined to a predetermined ratio. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、石炭を原料として、灰分の極めて少ない、炭素を主成分とする材料を製造する炭素材料の製造方法に関する。   The present invention relates to a carbon material production method for producing a carbon-based material with a very low ash content using coal as a raw material.

炭素製品は、耐熱性、化学的安定性、機械的強度等に優れており、導電性もあるという特徴を有することから、構造材、製鉄用コークスをはじめとする冶金工業用還元剤、導電材料、あるいは産業機械部品材料等として広く利用されている。この炭素製品を製造するための炭素材料は、有機質原料(炭素材料原料)を塊状に成形し、この成形体を高温で加熱処理して炭素化することにより製造される。ここで、炭素材料を製造するための炭素材料原料に求められる特性は、その用途により多少異なるが、一般的に、塊状に成形して成形体とすることができること(ただし、粉末のまま炭素化して、粉末状炭素として使用するのではない場合)、炭素収率が高いこと、得られる炭素材料の性質が優れていること、等が挙げられる。   Carbon products are excellent in heat resistance, chemical stability, mechanical strength, etc., and also have electrical conductivity, so structural materials, reducing agents for metallurgical industry including coke for iron making, conductive materials Or widely used as industrial machine parts materials. The carbon material for producing this carbon product is produced by forming an organic raw material (carbon material raw material) into a lump shape, and heat-treating this formed body at a high temperature to carbonize it. Here, although the characteristics required for the carbon material raw material for producing the carbon material are slightly different depending on the application, generally, it can be formed into a lump and formed into a molded body (however, it is carbonized as a powder) And when it is not used as powdered carbon), the carbon yield is high, and the properties of the resulting carbon material are excellent.

ここで、炭素材料の製造方法としては、石炭を原料とすることが考えられる。しかし、石炭のうち、粘結性のない石炭は脆いために成形がしにくく、成形できたとしても、熱処理すると粉化してしまう。逆に、粘結性のある石炭は成形することは容易であるが、熱処理過程で膨張したり、溶融・変形したりしてしまう。そのため、石炭を何らかの方法で加工しなければ炭素材料原料として用いることはできない。   Here, as a method for producing the carbon material, it is conceivable to use coal as a raw material. However, among coals, non-caking coals are brittle and difficult to form, and even if formed, they will be pulverized when heat-treated. Conversely, caking coal is easy to mold, but expands, melts or deforms during the heat treatment. Therefore, unless the coal is processed by any method, it cannot be used as a carbon material raw material.

そこで、炭素材料原料として、骨材としてのコークス粉(石炭コークスや石油コークス)、および成形用バインダーとしてのタールやピッチが用いられている。コークスは石油を乾留して製造されるものであり、揮発分が1質量%と少なく、溶融することなく炭素化し、固定炭素(炭素収率)が90質量%程度と高いことが特徴である。タールやピッチは、乾留工程での副原料であり、固定炭素はコークスほど高くはないが、加熱すると溶融する性質があり、コークス粒子をつなぐ役割(バインダーの役割)を果たす。   Therefore, coke powder (coal coke or petroleum coke) as an aggregate and tar or pitch as a molding binder are used as a carbon material raw material. Coke is produced by dry distillation of petroleum, characterized by having a low volatile content of 1% by mass, carbonizing without melting, and a high fixed carbon (carbon yield) of about 90% by mass. Tar and pitch are auxiliary materials in the carbonization process, and fixed carbon is not as high as coke, but has a property of melting when heated, and plays a role of connecting coke particles (role of binder).

しかし、原料がコークスだけでは、塊状に成形することができず、タールやピッチだけでは、成形はできても、炭素化するために加熱すると溶融して形を失ってしまう。そのため、コークスとバインダー(ピッチおよび/またはタール)を混練して成形した後、不活性ガス雰囲気中で1000℃以上の高温で熱処理して炭素化、さらに黒鉛化するのが炭素材料の典型的な製造プロセスである。   However, if the raw material is coke alone, it cannot be formed into a lump, but if it is only tar or pitch, it can be formed but melts and loses its shape when heated for carbonization. For this reason, it is typical for carbon materials to be formed by kneading coke and binder (pitch and / or tar) and then heat-treating them at a high temperature of 1000 ° C. or higher in an inert gas atmosphere to carbonize and graphitize them. It is a manufacturing process.

ここで、例えば、石炭コークスは、製鉄用コークスを製造する際の未利用成分であり、石油コークスは、石油精製プロセスの副生成物であり、また、タールやピッチ類も、石炭や石油精製工業の副生成物である。このように、これらいずれの原料も、他の製造プロセスの未利用成分や副生成物であるため、その成分中に灰分を含み(例えば、コークスでは10質量%前後の灰分を含む)、これを使って製造される炭素材料も灰分を含むことが避けられない。しかし、この灰分は炭素材料の特性を劣化させるので、成分中に含まれることは好ましくない。なお、乾留は1000℃以上の高温で熱処理するプロセスであるため、大量のエネルギーを必要とし、炭素製造工程では、再び1000℃以上の熱処理を行うことから、高温での2度の熱処理をすることになり、非効率的である。   Here, for example, coal coke is an unused component when producing iron-making coke, petroleum coke is a by-product of the oil refining process, and tar and pitch are also used in coal and oil refining industry. Is a by-product of As described above, since any of these raw materials is an unused component or a by-product of another manufacturing process, it contains ash in the component (for example, coke contains about 10% by mass of ash). It is inevitable that the carbon material produced using ash also contains ash. However, since this ash content deteriorates the characteristics of the carbon material, it is not preferable to be contained in the component. In addition, since carbonization is a process of heat treatment at a high temperature of 1000 ° C. or higher, a large amount of energy is required, and in the carbon production process, heat treatment at 1000 ° C. or higher is performed again. And is inefficient.

また、他の炭素材料原料としては、溶剤抽出炭や石炭液化生成物が知られている。しかし、前者は、石炭と同等の灰分を含むという問題があり、後者は、炭素収率が低いという問題がある上、製造プロセス自体が実用化されていない。   As other carbon material raw materials, solvent-extracted coal and coal liquefaction products are known. However, the former has a problem of containing ash equivalent to coal, and the latter has a problem of low carbon yield, and the production process itself has not been put into practical use.

前記したように、炭素材料中の灰分含有率は低いほうが好ましいが、粗原料が石炭や石油等の天然物である以上、一定の灰分を含むことは避けられない(例えば、石炭には数質量%から多い場合には10質量%以上の灰分が含まれる)。したがって、極めて高純度の炭素材料が必要な場合は、塩素等のハロゲンガスで炭素材料を熱処理して、灰分を揮発性の金属ハロゲン化物に転換して除去する処理が行われる。しかし、この処理には多くの費用がかかり、非経済的である。   As described above, it is preferable that the ash content in the carbon material is low. However, as long as the raw material is a natural product such as coal or petroleum, it is unavoidable to contain a certain amount of ash. % To more than 10% by mass of ash). Therefore, when an extremely high-purity carbon material is required, heat treatment is performed on the carbon material with a halogen gas such as chlorine to convert ash to volatile metal halides and remove the ash. However, this process is expensive and uneconomical.

ここで、新しい石炭改質法として、非水素供与性溶剤を用いて石炭を抽出処理する技術が開示されている(例えば、特許文献1、2参照)。この改質法は、非水素供与性の芳香族化合物を溶媒とし、例えば、400℃、1MPa程度の比較的温和な条件で処理するために、従来の溶剤抽出炭や液化生成物に比べると処理コストや設備コストが格段に小さい。そして、このようにして得られた改質炭(無灰炭、すなわちハイパーコール)の特徴は、灰分濃度が0.3質量%以下と極めて低いことと、200〜300℃程度の比較的低い温度で溶融することである。そこで、この特性を生かしてコークス製造用バインダーとしての応用開発が進められており、また、近年においては、この無灰炭を炭素材料原料として用いることで炭素材料を製造することが試みられている。
特開2006−70183号公報 特開2007-161926号公報
Here, as a new coal reforming method, a technique for extracting coal using a non-hydrogen-donating solvent is disclosed (for example, see Patent Documents 1 and 2). This reforming method uses a non-hydrogen-donating aromatic compound as a solvent, and is treated at a relatively mild condition of, for example, 400 ° C. and 1 MPa, so that it is treated as compared with conventional solvent-extracted charcoal and liquefied products. Costs and equipment costs are much smaller. And the characteristic of the modified coal (ashless coal, ie, hyper coal) obtained in this way is that the ash concentration is as low as 0.3% by mass or less and a relatively low temperature of about 200 to 300 ° C. It is to melt at. Therefore, application development as a binder for coke production has been advanced taking advantage of this characteristic, and in recent years, attempts have been made to produce a carbon material by using this ashless coal as a carbon material raw material. .
JP 2006-70183 A JP 2007-161926 A

石炭を溶剤抽出し、灰分と非溶解性の石炭成分を除去することにより製造される、いわゆる無灰炭は、石炭由来の瀝青物でありながら、灰分を実質的に含まないため、高純度の炭素材料原料として好適と考えられる。しかし、この無灰炭は炭素材料原料を熱処理して炭素化する炭素化工程で激しく発泡するため、気孔率(気孔の含有率)が80%以上と極めて多孔質の、製鉄用コークスとしても不適な炭素材料しか得られないという問題や、炭素収率が60質量%前後以下と必ずしも高くないという問題があった。
また、近年においては、炭素材料を塊状の成形体として得る場合、成形体が炭素化の熱処理により膨張することなく、所定の形状を維持した状態で炭素化材料を得ることができる技術の開発への要請も強まっている。さらに、炭素材料をより経済的に得ることへの要請もある。
So-called ashless coal, which is produced by solvent extraction of coal and removing ash and non-soluble coal components, is a bituminous material derived from coal, but does not substantially contain ash. It is considered suitable as a carbon material raw material. However, since this ashless coal foams violently in the carbonization process in which the carbon material raw material is heat treated, the porosity (porosity content) is 80% or more, and it is not suitable as an iron-making coke. There is a problem that only a carbon material can be obtained, and a problem that the carbon yield is not necessarily as high as about 60% by mass or less.
Further, in recent years, when obtaining a carbon material as a massive molded body, development of a technique that can obtain a carbonized material while maintaining a predetermined shape without the molded body expanding due to a heat treatment for carbonization. The demand for is also growing. Furthermore, there is a demand for obtaining carbon materials more economically.

本発明は、前記問題点に鑑みてなされたものであり、その目的は、無灰炭を原料として、気孔率が60%以下、かつ、極めて灰分濃度の低い高純度の炭素材料を、高収率で、経済的に得ることができる炭素材料の製造方法を提供することにある。
また、緻密で、かつ、極めて灰分濃度の低い高純度の炭素材料を、高収率で、経済的に得ることができると共に、所定の形状を維持した状態で炭素材料を得ることができる炭素材料の製造方法を提供することにある。
The present invention has been made in view of the above problems, and its purpose is to produce a high-purity carbon material having a porosity of 60% or less and an extremely low ash concentration using ashless coal as a raw material. It is to provide a method for producing a carbon material that can be obtained economically at a high rate.
In addition, a carbon material capable of obtaining a dense and highly pure carbon material having a very low ash concentration in a high yield and economically, and capable of obtaining a carbon material in a state in which a predetermined shape is maintained. It is in providing the manufacturing method of.

本発明者らが種々検討した結果、無灰炭を炭素材料原料として用いるときの問題、すなわち、炭素化工程で激しく発泡してしまい、気孔率が低く、緻密で強い炭素材料を得がたいこと、および、炭素収率が60質量%前後以下と必ずしも高くないことの原因は、無灰炭に含まれる比較的軽質な成分(以下、適宜、軽質成分という)にあることが判明した。このような軽質成分は、炭素化処理の初期過程で揮発したり、分解したりするため、発泡の原因となりやすく、しかも炭素化工程で系外に散逸するため、炭素収率の低下を招く。そこで、このような軽質成分を効果的に除去するために、本発明者らは、無灰炭と有機溶剤とを混合して有機溶剤に可溶な成分(軽質成分)を抽出することにより、前記問題点を解決できることを見出し、本発明に到達するに至った。さらに、軽質成分の除去により、炭素材料原料の軟化温度を上げることができ、所定の形状を維持した状態で炭素材料が得られることを見出し、本発明に到達するに至った。   As a result of various studies by the present inventors, problems when using ashless coal as a carbon material raw material, that is, foaming vigorously in the carbonization process, low porosity, it is difficult to obtain a dense and strong carbon material, and It has been found that the reason why the carbon yield is not necessarily as high as about 60% by mass or less is due to a relatively light component (hereinafter referred to as a light component as appropriate) contained in ashless coal. Such a light component volatilizes or decomposes in the initial stage of the carbonization treatment, so that it easily causes foaming and dissipates out of the system in the carbonization step, resulting in a decrease in carbon yield. Therefore, in order to effectively remove such light components, the present inventors mixed ashless coal and an organic solvent to extract a component soluble in the organic solvent (light component), The present inventors have found that the above problems can be solved and have reached the present invention. Furthermore, it has been found that the removal of the light components can increase the softening temperature of the carbon material raw material, and the carbon material can be obtained in a state in which the predetermined shape is maintained, and the present invention has been reached.

すなわち、本発明に係る炭素材料の製造方法の第1の形態は、無灰炭製造工程と、炭素化原料製造工程と、炭素化工程と、を含み、前記炭素化原料製造工程で製造される炭素化原料の割合が、前記炭素化原料製造工程で混合される無灰炭に対し40〜90質量%であることを特徴とする。   That is, the 1st form of the manufacturing method of the carbon material which concerns on this invention includes an ashless coal manufacturing process, a carbonization raw material manufacturing process, and a carbonization process, and is manufactured at the said carbonization raw material manufacturing process. The ratio of a carbonized raw material is 40-90 mass% with respect to the ashless coal mixed at the said carbonized raw material manufacturing process, It is characterized by the above-mentioned.

このような製造方法によれば、無灰炭製造工程において、石炭が改質されることで、改質炭である無灰炭が製造される。また、炭素化原料製造工程において、まず、前記無灰炭製造工程で製造された無灰炭と有機溶剤とが混合されて混合物となり、前記無灰炭から前記有機溶剤に可溶な可溶成分が抽出される。次に、抽出後の混合物が、前記可溶成分を含む液部と、前記有機溶剤に不溶な成分を含む非液部とに分離され、前記非液部が炭素化原料となる。そして、炭素化工程において、前記炭素化原料製造工程で製造された炭素化原料が不活性雰囲気で熱処理されて炭素化される。また、前記炭素化原料製造工程で製造される炭素化原料の割合を所定範囲に規定することで、炭素化工程における熱処理での発泡が抑制され、気孔率が概ね60%以下で、見掛け比重が概ね0.6g/cm以上の炭素材料を得ることができるとともに、炭素収率の向上や経済性の向上を図ることができ、また、成形性が低下しない。 According to such a manufacturing method, ashless coal which is reformed coal is manufactured by modifying coal in the ashless coal manufacturing process. In the carbonization raw material production process, first, the ashless coal produced in the ashless coal production process and the organic solvent are mixed to form a mixture, and the soluble component soluble in the organic solvent from the ashless coal Is extracted. Next, the mixture after extraction is separated into a liquid part containing the soluble component and a non-liquid part containing a component insoluble in the organic solvent, and the non-liquid part becomes a carbonization raw material. And in the carbonization process, the carbonization raw material manufactured at the said carbonization raw material manufacturing process is heat-processed by inert atmosphere, and is carbonized. Further, by defining the ratio of the carbonized raw material produced in the carbonized raw material production process within a predetermined range, foaming in the heat treatment in the carbonization process is suppressed, the porosity is approximately 60% or less, and the apparent specific gravity is A carbon material of approximately 0.6 g / cm 3 or more can be obtained, and the carbon yield and economy can be improved, and the moldability does not deteriorate.

また、本発明に係る炭素材料の製造方法の第1の形態では、前記炭素化原料製造工程の後に、前記炭素化原料製造工程で製造された炭素化原料を塊状に成形する成形工程を含み、前記炭素化工程において、前記成形工程で成形された成形体を不活性雰囲気で熱処理して炭素化させてもよい。
このような製造方法によれば、炭素化原料を塊状に成形した成形体として得ることができる。
Moreover, in the 1st form of the manufacturing method of the carbon material which concerns on this invention, after the said carbonization raw material manufacturing process, the shaping | molding process which shape | molds the carbonization raw material manufactured at the said carbonization raw material manufacturing process in the lump form, In the carbonization step, the molded body molded in the molding step may be carbonized by heat treatment in an inert atmosphere.
According to such a manufacturing method, it can obtain as a molded object which shape | molded the carbonization raw material in the lump shape.

本発明に係る炭素材料の製造方法の第2の形態は、無灰炭製造工程と、炭素化原料製造工程と、成形工程と、炭素化工程と、を含み、前記炭素化原料製造工程で製造される炭素化原料の割合が、前記炭素化原料製造工程で混合される無灰炭に対し40〜90質量%、かつ前記炭素化原料の軟化温度が350℃以上であり、前記成形工程で成形された成形体中における炭素化原料の割合が、80質量%以上であることを特徴とする。   The 2nd form of the manufacturing method of the carbon material which concerns on this invention includes an ashless-coal manufacturing process, a carbonization raw material manufacturing process, a formation process, and a carbonization process, and is manufactured by the said carbonization raw material manufacturing process. The ratio of the carbonized raw material to be produced is 40 to 90% by mass with respect to the ashless coal mixed in the carbonized raw material production process, and the softening temperature of the carbonized raw material is 350 ° C. or higher, and the molding process is performed. The ratio of the carbonized raw material in the formed body is 80% by mass or more.

このような製造方法によれば、無灰炭製造工程において、石炭が改質されることで、改質炭である無灰炭が製造される。また、炭素化原料製造工程において、まず、前記無灰炭製造工程で製造された無灰炭と有機溶剤とが混合されて混合物となり、前記無灰炭から前記有機溶剤に可溶な可溶成分が抽出される。次に、抽出後の混合物が、前記可溶成分を含む液部と、前記有機溶剤に不溶な成分を含む非液部とに分離され、前記非液部が炭素化原料となる。さらに、成形工程において、前記炭素化原料製造工程で製造された炭素化原料が、成形原料の主成分として塊状に成形される。そして、炭素化工程において、前記成形工程で成形された成形体が不活性雰囲気で熱処理されて炭素化される。また、前記炭素化原料製造工程で製造される炭素化原料の割合や軟化温度を所定に規定することで、炭素化工程における熱処理での発泡の抑制作用や、炭素収率の向上作用をより一層高いものとすることができ、また、成形性が低下しない。さらに、成形体中における炭素化原料の割合を所定範囲に規定することで、成形が容易になり、炭素化工程における熱処理で、成形体が膨張したり、気孔が生成したりすることがない。これにより気孔率が概ね30%以下で、見掛け比重が概ね1.0g/cm以上の炭素材料を得ることができる。 According to such a manufacturing method, ashless coal which is reformed coal is manufactured by modifying coal in the ashless coal manufacturing process. In the carbonization raw material production process, first, the ashless coal produced in the ashless coal production process and the organic solvent are mixed to form a mixture, and the soluble component soluble in the organic solvent from the ashless coal Is extracted. Next, the mixture after extraction is separated into a liquid part containing the soluble component and a non-liquid part containing a component insoluble in the organic solvent, and the non-liquid part becomes a carbonization raw material. Furthermore, in the forming step, the carbonized raw material manufactured in the carbonized raw material manufacturing step is formed into a lump as the main component of the forming raw material. In the carbonization step, the molded body molded in the molding step is heat-treated in an inert atmosphere and carbonized. In addition, by prescribing the ratio and softening temperature of the carbonized raw material produced in the carbonized raw material production process to a predetermined level, the effect of suppressing foaming in the heat treatment in the carbonization process and the effect of improving the carbon yield are further improved. It can be made high, and the moldability does not deteriorate. Furthermore, by defining the ratio of the carbonized raw material in the molded body within a predetermined range, molding becomes easy, and the molded body does not expand or pores are not generated by the heat treatment in the carbonization process. Thereby, a carbon material having a porosity of about 30% or less and an apparent specific gravity of about 1.0 g / cm 3 or more can be obtained.

そして、本発明に係る炭素材料の製造方法においては、前記有機溶剤として、含酸素有機溶剤を用いることが好ましい。
このような製造方法によれば、無灰炭中に含まれる軽質成分のうちでも極性成分が効率的に除去される。
In the method for producing a carbon material according to the present invention, it is preferable to use an oxygen-containing organic solvent as the organic solvent.
According to such a manufacturing method, polar components are efficiently removed among light components contained in ashless coal.

本発明に係る炭素材料の製造方法によれば、無灰炭に含まれる比較的軽質な成分を除去することで、気孔率が低い炭素材料を、高収率で、経済的に製造することができる。また、石炭を改質して得られた無灰炭を原料として用いるため、製造される炭素材料は、極めて灰分濃度の低い高純度なものとなる。   According to the method for producing a carbon material according to the present invention, it is possible to economically produce a carbon material having a low porosity in a high yield by removing a relatively light component contained in ashless coal. it can. Moreover, since ashless coal obtained by reforming coal is used as a raw material, the produced carbon material has a high purity with a very low ash concentration.

本発明に係る他の炭素材料の製造方法によれば、無灰炭に含まれる比較的軽質な成分を除去することで、比較的緻密な炭素材料を、高収率で、経済的に製造することができる。また、石炭を改質して得られた無灰炭を原料として用いるため、製造される炭素材料は、極めて灰分濃度の低い高純度なものとなる。さらに、成形体とした炭素材料を、所定の形状を維持した状態で得ることができる。   According to the method for producing another carbon material according to the present invention, a relatively light component contained in ashless coal is removed to produce a relatively dense carbon material economically with a high yield. be able to. Moreover, since ashless coal obtained by reforming coal is used as a raw material, the produced carbon material has a high purity with a very low ash concentration. Furthermore, the carbon material made into a molded body can be obtained in a state where a predetermined shape is maintained.

また、本発明に係る炭素材料の製造方法で得られた炭素材料は、従来の無灰炭をそのまま炭素化して得られる多孔質で脆い炭素材料とは異なり、気孔率が60%以下に抑制されているので、製鉄等冶金用コークスとしても好適である。さらに、本発明においては、2段階の溶剤分別により石炭を処理するため、褐炭等の劣質炭を原料としても製鉄コークスに相当する炭素材料を製造することができる。なお、褐炭や亜瀝青炭などの劣質炭は熱流動性が低いため、そのまま炭化処理しても固めることができない。   In addition, the carbon material obtained by the method for producing a carbon material according to the present invention has a porosity of 60% or less, unlike a porous and brittle carbon material obtained by carbonizing a conventional ashless coal as it is. Therefore, it is also suitable as coke for metallurgy such as iron making. Furthermore, in the present invention, since the coal is processed by two-stage solvent fractionation, a carbon material corresponding to iron-making coke can be produced using inferior coal such as lignite as a raw material. Inferior coals such as lignite and sub-bituminous coal have low thermal fluidity and cannot be hardened even if carbonized as they are.

次に、図面を参照して本発明に係る炭素材料の製造方法ついて詳細に説明する。なお、参照する図面において、図1は、本発明の第1実施形態に係る炭素材料の製造方法の工程を説明するフローチャート、図2は、本発明の第2実施形態に係る炭素材料の製造方法の工程を説明するフローチャートである。   Next, a method for producing a carbon material according to the present invention will be described in detail with reference to the drawings. In the drawings to be referred to, FIG. 1 is a flowchart for explaining the steps of the carbon material manufacturing method according to the first embodiment of the present invention, and FIG. 2 is the carbon material manufacturing method according to the second embodiment of the present invention. It is a flowchart explaining the process of.

[第1実施形態]
まず、本発明に係る炭素材料の製造方法についての第1実施形態について説明する。
図1に示すように、炭素材料の製造方法は、無灰炭製造工程(S1)と、炭素化原料製造工程(S2)と、炭素化工程(S4)と、を含むものである。また、必要に応じて、炭素化原料製造工程(S2)の後に、成形工程(S3)を含めてもよい。
以下、各工程について説明する。
[First Embodiment]
First, 1st Embodiment about the manufacturing method of the carbon material which concerns on this invention is described.
As shown in FIG. 1, the manufacturing method of a carbon material includes an ashless coal manufacturing process (S1), a carbonized raw material manufacturing process (S2), and a carbonization process (S4). Moreover, you may include a shaping | molding process (S3) after a carbonization raw material manufacturing process (S2) as needed.
Hereinafter, each step will be described.

<無灰炭製造工程(S1)>
無灰炭製造工程(S1)は、石炭を改質して、改質炭である無灰炭を製造する工程である。
なお、本発明でいう無灰炭とは、いわゆるハイパーコールのことであり、石炭を溶剤抽出し、灰分と非溶解性の石炭成分を除去することにより製造されたものである。この無灰炭は、灰分が極めて少なく(灰分濃度0.3質量%以下)、水分は概ね0.5質量%以下である。
<Ashless coal manufacturing process (S1)>
The ashless coal production step (S1) is a step of reforming coal to produce ashless coal that is a modified coal.
In addition, the ashless coal as used in the field of this invention is what is called hyper coal, and is manufactured by solvent-extracting coal and removing ash and an insoluble coal component. This ashless coal has very little ash (ash content of 0.3% by mass or less), and water content is generally 0.5% by mass or less.

無灰炭を得る方法は、公知の方法を用いることができ、溶剤種や製造条件は、石炭の性状や炭素材料原料の設計を鑑みて、適宜選択されるものである。しかし、より高効率、かつ安価に無灰炭を得るため、例えば、次の方法により無灰炭を製造することが好ましい。その方法では、まず、石炭と非水素供与性溶剤とを混合した混合物(スラリー)を加熱して、非水素供与性溶剤に可溶な石炭成分を抽出する。次に、抽出後のスラリーを液部と非液部に分離し、前記液部から、前記非水素供与性溶剤を分離することで無灰炭を製造する。   A publicly known method can be used as a method for obtaining ashless coal, and the solvent species and production conditions are appropriately selected in view of the properties of coal and the design of the carbon material raw material. However, in order to obtain ashless coal more efficiently and inexpensively, for example, it is preferable to produce ashless coal by the following method. In the method, first, a mixture (slurry) in which coal and a non-hydrogen donating solvent are mixed is heated to extract coal components that are soluble in the non-hydrogen donating solvent. Next, the slurry after extraction is separated into a liquid part and a non-liquid part, and the non-hydrogen donating solvent is separated from the liquid part to produce ashless coal.

無灰炭の原料とする石炭(以下、原料石炭ともいう)は、劣質炭を使用することが好ましい。安価な劣質炭を使用することにより、無灰炭をさらに安価に製造することができるため、さらに経済性の向上を図ることができる。しかし、用いる石炭は、劣質炭に限るものではなく、必要に応じて、粘結炭を使用しても良い。   The coal used as the raw material for ashless coal (hereinafter also referred to as raw material coal) is preferably inferior quality coal. By using inexpensive inferior coal, ashless coal can be produced at a lower cost, so that the economy can be further improved. However, the coal used is not limited to inferior coal, and caking coal may be used as necessary.

なお、ここでの劣質炭とは、非微粘結炭、一般炭、低品位炭(褐炭、亜瀝青炭等)等の石炭をいう。低品位炭には、例えば、褐炭、亜炭、亜瀝青炭等がある。また、例えば、褐炭には、ビクトリア炭、ノースダコタ炭、ベルガ炭等があり、亜瀝青炭には、西バンコ炭、ビヌンガン炭、サマランガウ炭等がある。低品位炭は前記例示のものに限定されず、多量の水分を含有し、脱水することが望まれる石炭は、いずれも本発明のいう低品位炭に含まれる。
なお、石炭はできるだけ小さい粒子に粉砕しておくのが好ましく、粒径1mm以下とするのが好ましい。
In addition, inferior coal here means coal, such as a non-slightly caking coal, a general coal, a low grade coal (brown coal, subbituminous coal, etc.). Examples of the low-grade coal include lignite, lignite, and sub-bituminous coal. Further, for example, lignite coal includes Victoria coal, North Dakota coal, Berga coal, and sub-bituminous coal includes West Banco coal, Vinungan coal, Samarangau coal, and the like. The low-grade coal is not limited to those exemplified above, and any coal containing a large amount of water and desired to be dehydrated is included in the low-grade coal referred to in the present invention.
The coal is preferably pulverized into as small particles as possible, and preferably has a particle size of 1 mm or less.

非水素供与性溶剤は、主に石炭の乾留生成物から精製した、2環芳香族を主とする溶剤である石炭誘導体である。この非水素供与性溶剤は、加熱状態でも安定であり、石炭との親和性に優れているため、溶剤に抽出される可溶成分(ここでは石炭成分)の割合(以下、抽出率ともいう)が高く、また、蒸留等の方法で容易に回収可能な溶剤である。非水素供与性溶剤の主たる成分としては、2環芳香族であるナフタレン、メチルナフタレン、ジメチルナフタレン、トリメチルナフタレン等が挙げられ、その他、非水素供与性溶剤の成分としては、脂肪族側鎖をもつナフタレン類、アントラセン類、フルオレン類、また、これにビフェニルや長鎖脂肪族側鎖をもつアルキルベンゼンが含まれる。   The non-hydrogen donating solvent is a coal derivative which is a solvent mainly composed of a bicyclic aromatic and purified mainly from a coal carbonization product. This non-hydrogen-donating solvent is stable even in a heated state and has excellent affinity with coal. Therefore, the proportion of soluble components (herein, coal components) extracted into the solvent (hereinafter also referred to as extraction rate) In addition, it is a solvent that can be easily recovered by a method such as distillation. The main components of the non-hydrogen donating solvent include bicyclic aromatic naphthalene, methyl naphthalene, dimethyl naphthalene, trimethyl naphthalene and the like, and the other components of the non-hydrogen donating solvent have an aliphatic side chain. Naphthalenes, anthracenes, fluorenes, and also include biphenyl and alkylbenzenes with long-chain aliphatic side chains.

非水素供与性溶剤を使用して加熱抽出することにより、石炭の抽出率を高めることができる。また、極性溶剤とは違い、容易に溶剤を回収することができるため、溶剤を循環使用しやすい。さらに、高価な水素や触媒等を用いる必要がないため、安価なコストで石炭を可溶化して無灰炭を得ることができ、経済性の向上を図ることができる。   The extraction rate of coal can be increased by heat extraction using a non-hydrogen-donating solvent. In addition, unlike polar solvents, the solvent can be easily recovered, so that it is easy to circulate the solvent. Furthermore, since it is not necessary to use expensive hydrogen, a catalyst, or the like, coal can be solubilized at low cost to obtain ashless coal, and economic efficiency can be improved.

溶剤に対する石炭濃度は、原料石炭の種類にもよるが、乾燥炭基準で10〜50質量%の範囲が好ましく、20〜35質量%の範囲がより好ましい。溶剤に対する石炭濃度が10質量%未満であると、溶剤の量に対し、溶剤に抽出する石炭成分の割合が少なくなり、経済的ではない。一方、石炭濃度は高いほど好ましいが、50質量%を超えると、調製したスラリーの粘度が高くなり、スラリーの移動や後記する液部と非液部との分離が困難となりやすい。   Although the coal density | concentration with respect to a solvent is based also on the kind of raw material coal, the range of 10-50 mass% is preferable on a dry coal basis, and the range of 20-35 mass% is more preferable. When the coal concentration with respect to the solvent is less than 10% by mass, the proportion of the coal component extracted into the solvent decreases with respect to the amount of the solvent, which is not economical. On the other hand, the higher the coal concentration, the better. However, when it exceeds 50% by mass, the viscosity of the prepared slurry becomes high, and it becomes difficult to move the slurry and separate the liquid part and the non-liquid part described later.

スラリーの加熱温度は、300〜450℃の範囲とするのが好ましい。加熱温度をこの範囲とすることにより、石炭を構成する分子間の結合が緩み、緩和な熱分解が起こり、抽出率が最も高くなる。加熱温度が300℃未満であると、石炭を構成する分子間の結合を弱めるのに不十分となりやすく、抽出率が向上しにくい。一方、450℃を超えると、石炭の熱分解反応が非常に活発になり、生成した熱分解ラジカルの再結合が起こるため、抽出率が向上しにくく、また、石炭の変質が起こりにくくなる。なお、好ましくは、300〜400℃である。   The heating temperature of the slurry is preferably in the range of 300 to 450 ° C. By setting the heating temperature within this range, the bonds between the molecules constituting the coal are loosened, mild thermal decomposition occurs, and the extraction rate becomes the highest. When the heating temperature is less than 300 ° C., it tends to be insufficient to weaken the bonds between the molecules constituting the coal, and the extraction rate is difficult to improve. On the other hand, when the temperature exceeds 450 ° C., the pyrolysis reaction of coal becomes very active and recombination of the generated pyrolysis radicals occurs, so that the extraction rate is hardly improved and the alteration of coal is difficult to occur. In addition, Preferably, it is 300-400 degreeC.

加熱時間(抽出時間)は、溶解平衡に達するまでの時間が規準であるが、それを実現することは経済的に不利である。従って、石炭の粒子径、溶剤の種類などの条件によって異なるので一概には言えないが、通常は10〜60分程度である。加熱時間が10分未満であると、石炭成分の抽出が不十分となりやすく、一方、60分を超えても、それ以上抽出が進行しないため、経済的ではない。   The heating time (extraction time) is a criterion for reaching the dissolution equilibrium, but it is economically disadvantageous to realize it. Therefore, since it varies depending on conditions such as the particle diameter of coal and the type of solvent, it cannot be generally stated, but it is usually about 10 to 60 minutes. If the heating time is less than 10 minutes, the extraction of the coal component tends to be insufficient, while if it exceeds 60 minutes, the extraction does not proceed any further, which is not economical.

非水素供与性溶剤に可溶な石炭成分の抽出は、不活性ガスの存在下で行うことが好ましい。酸素に接触すると、発火する恐れがあるため危険であり、また、水素を用いた場合には、コストが高くなるためである。
用いる不活性ガスとしては、安価な窒素を用いることが好ましいが、特に限定されるものではない。また、圧力は、抽出の際の温度や用いる溶剤の蒸気圧にもよるが、1.0〜2.0MPaが好ましい。圧力が溶剤の蒸気圧より低い場合には、溶剤が揮発して液相に閉じ込められず、抽出できない。溶剤を液相に閉じ込めるには、溶剤の蒸気圧より高い圧力が必要となる。一方、圧力が高すぎると、機器のコスト、運転コストが高くなり、経済的ではない。
The extraction of the coal component soluble in the non-hydrogen donating solvent is preferably performed in the presence of an inert gas. This is because contact with oxygen is dangerous because it may ignite, and when hydrogen is used, the cost increases.
As the inert gas to be used, inexpensive nitrogen is preferably used, but is not particularly limited. The pressure is preferably 1.0 to 2.0 MPa, although it depends on the temperature at the time of extraction and the vapor pressure of the solvent used. When the pressure is lower than the vapor pressure of the solvent, the solvent is volatilized and is not trapped in the liquid phase and cannot be extracted. In order to confine the solvent in the liquid phase, a pressure higher than the vapor pressure of the solvent is required. On the other hand, if the pressure is too high, the cost of the equipment and the operating cost increase, which is not economical.

このようにして石炭成分を抽出した後のスラリーを液部と非液部に分離する。
ここで、液部とは、溶剤に抽出された石炭成分を含む溶液をいい、非液部とは、溶剤に不溶な石炭成分(灰分を含む石炭すなわち灰炭)を含む溶質をいう。
Thus, the slurry after extracting a coal component is isolate | separated into a liquid part and a non-liquid part.
Here, the liquid part means a solution containing a coal component extracted into a solvent, and the non-liquid part means a solute containing a coal component insoluble in the solvent (coal containing ash, that is, ash coal).

スラリーを液部と非液部とに分離する方法としては、各種の濾過方法や遠心分離による方法が一般的に知られている。しかしながら、濾過による方法ではフィルタの頻繁な交換が必要であり、また、遠心分離による方法では未溶解石炭成分による閉塞が起こりやすく、これらの方法を工業的に実施するのは困難である。従って、流体の連続操作が可能であり、低コストで大量の処理にも適している重力沈降法を用いることが好ましい。これにより、重力沈降槽の上部からは、溶剤に抽出された石炭成分を含む溶液である液部(以下、上澄み液ともいう)を、重力沈降槽の下部からは溶剤に不溶な石炭成分を含む溶質である非液部(以下、固形分濃縮液ともいう)を得ることができる。   As a method for separating the slurry into a liquid part and a non-liquid part, various filtration methods and centrifugal separation methods are generally known. However, the filtration method requires frequent replacement of the filter, and the centrifugation method tends to cause clogging with undissolved coal components, making it difficult to implement these methods industrially. Therefore, it is preferable to use a gravity sedimentation method that allows continuous operation of fluid and is suitable for a large amount of processing at low cost. Thereby, from the upper part of the gravity sedimentation tank, a liquid part (hereinafter also referred to as a supernatant liquid) containing a coal component extracted into the solvent is contained, and from the lower part of the gravity sedimentation tank, a coal component insoluble in the solvent is contained. A non-liquid part (hereinafter also referred to as a solid content concentrate) which is a solute can be obtained.

そして、この液部から、非水素供与性溶剤を分離することにより、無灰炭を得る。
上澄み液(液部)から溶剤を分離する方法は、一般的な蒸留法や蒸発法(スプレードライ法等)等を用いることができ、上澄み液からは、実質的に灰分を含まない無灰炭を得ることができる。この無灰炭は、灰分含有量が0.3質量%以下と、灰分をほとんど含まず、水分は概ね0.5質量%以下であり、また原料石炭よりも高い発熱量を示す。従って、この無灰炭を炭素化することで、極めて灰分濃度の低い高純度の炭素材料を得ることができる。
And ashless coal is obtained by isolate | separating a non-hydrogen donating solvent from this liquid part.
As a method for separating the solvent from the supernatant liquid (liquid part), a general distillation method or evaporation method (spray drying method, etc.) can be used. From the supernatant liquid, ashless coal substantially free of ash Can be obtained. This ashless coal has an ash content of 0.3% by mass or less, almost no ash, moisture content of approximately 0.5% by mass or less, and a higher calorific value than raw coal. Therefore, by carbonizing this ashless coal, a high-purity carbon material having an extremely low ash concentration can be obtained.

<炭素化原料製造工程(S2)>
炭素化原料製造工程(S2)は、前記無灰炭製造工程(S1)で製造された無灰炭と有機溶剤とを混合して混合物とし、前記無灰炭から前記有機溶剤に可溶な可溶成分を抽出し、抽出後の混合物を、前記可溶成分を含む液部と、前記有機溶剤に不溶な成分を含む非液部とに分離して、前記非液部を炭素化原料とする工程である。
<Carbonization raw material manufacturing process (S2)>
In the carbonization raw material production step (S2), the ashless coal produced in the ashless coal production step (S1) and an organic solvent are mixed to form a mixture, which is soluble in the organic solvent from the ashless coal. A soluble component is extracted, and the mixture after extraction is separated into a liquid part containing the soluble component and a non-liquid part containing a component insoluble in the organic solvent, and the non-liquid part is used as a carbonization raw material. It is a process.

この炭素化原料製造工程(S2)の目的は、無灰炭に含まれる、有機溶剤に可溶な軽質成分を除去し、有機溶剤に不溶な成分である炭素化原料のみを取得することにある。前記したように、この軽質成分は、炭素材料の高密度化を妨げる原因となり、また、炭素収率が低下する原因となる。よって、この炭素化原料製造工程(S2)により、無灰炭に含まれる軽質成分を除去する。   The purpose of this carbonized raw material manufacturing step (S2) is to remove only light components soluble in organic solvents contained in ashless coal and obtain only carbonized raw materials that are insoluble in organic solvents. . As described above, this light component prevents the carbon material from being densified, and also causes the carbon yield to decrease. Therefore, the light component contained in ashless coal is removed by this carbonization raw material manufacturing process (S2).

炭素化原料製造工程(S2)の条件設定の要点は、どの程度の割合で軽質成分(溶剤可溶成分)を除去するかということである。この割合は、原料の無灰炭の特性や、炭素材料やその製造プロセスに求められる要求によって変わるので、一義的に決めることはできない。しかしながら、典型的な、無灰炭、炭素材料、製造プロセスを想定し、軽質成分を除去する割合(以下、除去率ともいう)は10〜60質量%、すなわち、製造される炭素化原料(不溶成分)の割合(以下、取得率ともいう)が、当該工程に供される無灰炭(当該工程で混合される無灰炭)に対し、40〜90質量%とする((炭素化原料質量/仕込み無灰炭質量=40〜90質量%))。好ましくは、除去率20〜40質量%(取得率:60〜80質量%)である。   The point of setting the conditions in the carbonized raw material production step (S2) is how much light components (solvent soluble components) are removed. Since this ratio varies depending on the characteristics of the raw ashless coal and the requirements required for the carbon material and its manufacturing process, it cannot be determined uniquely. However, assuming a typical ashless coal, carbon material, and production process, the light component removal rate (hereinafter also referred to as the removal rate) is 10 to 60% by mass, that is, the carbonized raw material to be produced (insoluble) The ratio of the component (hereinafter also referred to as the acquisition rate) is 40 to 90% by mass ((mass of carbonization raw material) with respect to the ashless coal supplied to the process (the ashless coal mixed in the process). / Massed ashless coal mass = 40-90 mass%)). The removal rate is preferably 20 to 40% by mass (acquisition rate: 60 to 80% by mass).

取得率が90質量%を超えると、発泡の抑制効果や、炭素収率の向上効果が不十分となる。また、気孔率が大きく(概ね60%を超える)、見掛け比重が低く(概ね0.6g/cm未満)なる。一方、取得率が40質量%未満では、有効成分(炭素化原料)の収率が低下して製品が高くなるため、非経済的であることに加えて、成形性が低下するという問題が生じる。ただし、収率の低下を甘受するならば、成形性の低下は、適当なバインダーを適当量添加することで回避することは可能である。 When the acquisition rate exceeds 90% by mass, the effect of suppressing foaming and the effect of improving the carbon yield become insufficient. In addition, the porosity is large (generally over 60%) and the apparent specific gravity is low (generally less than 0.6 g / cm 3 ). On the other hand, if the acquisition rate is less than 40% by mass, the yield of the active ingredient (carbonized raw material) decreases and the product becomes high, which causes the problem that in addition to being uneconomical, the moldability decreases. . However, if the decrease in yield is acceptable, the decrease in moldability can be avoided by adding an appropriate amount of an appropriate binder.

なお、取得率の調整は、溶剤の種類、溶剤と無灰炭の比率、温度、圧力、処理時間等を適宜調節することにより行うことができる。一般的な指針としては、高沸点の芳香族溶剤、無灰炭に対して大量の溶剤、高い温度、長時間の処理等の条件により、より高い割合で軽質成分が溶解するので、取得率は小さい値となる。ただし、原料石炭の性質や無灰炭の製造条件によってその効果は異なるので、一概に指摘することはできない。   In addition, adjustment of an acquisition rate can be performed by adjusting suitably the kind of solvent, the ratio of a solvent and ashless coal, temperature, pressure, processing time, etc. As a general guideline, light components dissolve at a higher rate depending on conditions such as high boiling point aromatic solvent, ashless coal, large amount of solvent, high temperature, long time treatment, etc. Small value. However, the effect varies depending on the nature of the raw coal and the production conditions of ashless coal, and cannot be pointed out in general.

炭素化原料製造工程(S2)では、まず、無灰炭と有機溶剤とを混合して混合物(スラリー)とし、無灰炭から有機溶剤に可溶な可溶成分を抽出する。
ここで、石炭類の抽出率は、溶剤の種類、つまり溶剤の溶解力に大きく影響される。したがって、溶剤を選択した時点で、どの程度の軽質成分を除去できるかが概ね決定される。
In the carbonized raw material production step (S2), first, ashless coal and an organic solvent are mixed to form a mixture (slurry), and soluble components soluble in the organic solvent are extracted from the ashless coal.
Here, the extraction rate of coals is greatly influenced by the type of solvent, that is, the dissolving power of the solvent. Therefore, when the solvent is selected, it is generally determined how much light components can be removed.

炭素化原料製造工程(S2)で用いる有機溶剤は、石炭抽出によく用いられるものの中から選べばよく、ベンゼン、N−メチル−2−ピロリジノン、ピリジン、キノリン、アントラセン油、クレオソート油、テトラヒドロフラン、アセトン、メチルエチルケトン、ジオキサン、メタノール、フェノール(含水)、クレゾール、メチルナフタレン(異性体混合物でもよい)、ジメチルナフタレン(異性体混合物でもよい)等が好適である。なお、これらのうち2種以上を混合して用いてもよい。   The organic solvent used in the carbonized raw material production step (S2) may be selected from those often used for coal extraction, such as benzene, N-methyl-2-pyrrolidinone, pyridine, quinoline, anthracene oil, creosote oil, tetrahydrofuran, Acetone, methyl ethyl ketone, dioxane, methanol, phenol (hydrous), cresol, methylnaphthalene (may be an isomer mixture), dimethylnaphthalene (may be an isomer mixture) and the like are preferable. In addition, you may mix and use 2 or more types among these.

前記の有機溶剤のうち、テトラヒドロフラン、アセトン、メチルエチルケトン、ジオキサン、メタノール、フェノール(含水)、クレゾール等の含酸素有機溶剤を用いることが特に好ましい。これらの含酸素有機溶剤を用いると、無灰炭中の軽質成分のうちでも極性成分を効率的に除去できると考えられる。極性成分は、一般に含酸素官能基などヘテロ元素から構成されるので、比較的低温で分解して発泡の原因となり、また、低い炭素収率の原因になる可能性があると考えられる。   Among the above organic solvents, it is particularly preferable to use an oxygen-containing organic solvent such as tetrahydrofuran, acetone, methyl ethyl ketone, dioxane, methanol, phenol (containing water), cresol and the like. When these oxygen-containing organic solvents are used, it is considered that polar components can be efficiently removed even among light components in ashless coal. Since the polar component is generally composed of a hetero element such as an oxygen-containing functional group, it is considered that the polar component decomposes at a relatively low temperature to cause foaming and may cause a low carbon yield.

前記したように、溶剤を選択した時点で、どの程度の軽質成分を除去できるかが概ね決定されるが、抽出率(除去率)(ここでは、溶剤に抽出される軽質成分の割合をいう)は、抽出温度を変えることによっても大きく変化させることができる。つまり、低温ほど溶解力は低下し、高温ほど逆に溶解力は増大するという現象を利用して、抽出率を変えることができる。   As described above, when the solvent is selected, it is generally determined how much light component can be removed, but the extraction rate (removal rate) (here, the proportion of the light component extracted into the solvent). Can be greatly changed by changing the extraction temperature. That is, the extraction rate can be changed by utilizing the phenomenon that the dissolving power decreases as the temperature decreases, and the dissolving power increases as the temperature increases.

また、溶剤と無灰炭の混合比率や、抽出時間を変化させることでも抽出率は変えることができる。例えば、溶解力の大きな溶剤を無灰炭に対して比較的少量使用することで溶解量を減少させたり、抽出時間を短くすることで溶解量を減少させたりすることができる。しかし、このような方法は、抽出の選択性を低下させるのであまり好ましくない。
つまり、無灰炭構成成分のうち、相対的に溶けやすい成分(一般に、比較的に低分子量(軽質)の成分か、アルキル基等の側鎖を多く有する成分)を溶かすというよりも、物質移動の制限で抽出が制限されるからである。すなわち、溶剤量が過少の場合には溶剤と接触する粒子表面の分子が優先的に溶解するうちに溶解度が飽和に達するため(粒子の表面だけが溶けて溶解平衡に達する)、本来抽出されるような軽質成分が比較的多量に残ってしまう。また、抽出時間が短すぎる場合にも、同様なことが起きる。
The extraction rate can also be changed by changing the mixing ratio of the solvent and ashless coal or the extraction time. For example, the amount of dissolution can be reduced by using a relatively small amount of a solvent having a high dissolving power with respect to ashless coal, or the amount of dissolution can be reduced by shortening the extraction time. However, such a method is less preferred because it reduces the selectivity of extraction.
In other words, mass transfer rather than dissolving relatively easily dissolved components (generally components with relatively low molecular weight (light) or having many side chains such as alkyl groups) among ashless coal components. This is because the extraction is limited by this limitation. That is, when the amount of the solvent is too small, the solubility reaches saturation while molecules on the particle surface in contact with the solvent preferentially dissolve (only the surface of the particle dissolves and reaches a dissolution equilibrium), so it is originally extracted. Such a light component remains in a relatively large amount. The same thing happens when the extraction time is too short.

抽出方法の一例としては、最も単純な方法として、無灰炭粉末と有機溶剤を容器に入れてスラリーを形成させ、所定時間かき混ぜるという方法が挙げられる。必要に応じて、加熱してもよい。雰囲気は無灰炭の酸化、燃焼、爆発を避けるため不活性雰囲気とするのが好ましい。また、前記無灰炭製造工程(S1)で説明したとおり、不活性ガスとしては、窒素を用いることが好ましいが、特に限定されるものではない。さらに、抽出は常圧で行えばよいが、溶剤の沸点より高い温度にする場合には、加圧下で行う。なお、抽出方法は、溶剤に可溶な成分を抽出でき、軽質成分を除去できるものであれば特に制限されるものではない。   As an example of the extraction method, as the simplest method, there is a method in which ashless coal powder and an organic solvent are put in a container to form a slurry and stirred for a predetermined time. You may heat as needed. The atmosphere is preferably an inert atmosphere in order to avoid oxidation, combustion and explosion of ashless coal. In addition, as described in the ashless coal production step (S1), nitrogen is preferably used as the inert gas, but is not particularly limited. Further, the extraction may be performed at normal pressure, but when the temperature is higher than the boiling point of the solvent, the extraction is performed under pressure. The extraction method is not particularly limited as long as a component soluble in a solvent can be extracted and a light component can be removed.

抽出時間は、抽出速度に応じて適宜選択されるが、通常5〜120分程度、より好ましくは20〜60分とする。抽出時間が5分未満では、軽質成分の抽出が不十分となりやすく、一方、120分を超えると、それ以上抽出が進行しないため、経済的ではない。   The extraction time is appropriately selected according to the extraction speed, but is usually about 5 to 120 minutes, more preferably 20 to 60 minutes. If the extraction time is less than 5 minutes, extraction of light components tends to be insufficient. On the other hand, if the extraction time exceeds 120 minutes, the extraction does not proceed any further, which is not economical.

無灰炭と有機溶剤の比率は、3〜20(有機溶剤/無灰炭(質量比))が好適である。比率が3未満の場合、スラリーを形成することが困難となりやすく、一方、20を超えても特性上の不都合は生じないが、大量の溶剤を使用することになり、経済的ではない。   The ratio of ashless charcoal to organic solvent is preferably 3 to 20 (organic solvent / ashless charcoal (mass ratio)). If the ratio is less than 3, it tends to be difficult to form a slurry. On the other hand, if it exceeds 20, there is no inconvenience in characteristics, but a large amount of solvent is used, which is not economical.

次に、このようにして軽質成分を抽出した後の混合物(スラリー)を、前記可溶成分を含む液部と前記有機溶剤に不溶な成分を含む非液部に分離する。
ここで、液部とは、溶剤に抽出された軽質成分を含む溶液をいい、非液部とは、溶剤に不溶な成分(炭素化原料)を含む溶質をいう。
Next, the mixture (slurry) after extracting the light components in this way is separated into a liquid part containing the soluble component and a non-liquid part containing a component insoluble in the organic solvent.
Here, a liquid part means the solution containing the light component extracted by the solvent, and a non-liquid part means the solute containing the component (carbonization raw material) insoluble in the solvent.

混合物(スラリー)を液部と非液部とに分離する方法としては、各種の濾過方法や遠心分離による方法が一般的に知られているが、特に限定されるものではない。
また、非液部に残留する溶剤を除去するために、さらに、得られた非液部(炭素化原料)を乾燥させる乾燥処理を行ってもよい。乾燥は、窒素雰囲気中や減圧下で、必要により加熱しながら保持することで行うことができる。
このような方法により、軽質成分が除去された炭素化原料粉末が得られる。
As a method for separating the mixture (slurry) into a liquid part and a non-liquid part, various filtration methods and centrifugal separation methods are generally known, but are not particularly limited.
Moreover, in order to remove the solvent remaining in the non-liquid part, a drying process for drying the obtained non-liquid part (carbonized raw material) may be further performed. Drying can be carried out by holding in a nitrogen atmosphere or under reduced pressure while heating if necessary.
By such a method, a carbonized raw material powder from which light components have been removed is obtained.

このようにして得られた炭素化原料粉末は、粉末状の炭素材料を製造する場合には、そのまま炭素化すればよいが、必要に応じて、炭素化する前に、塊状に成形して成形体としてもよい。
<成形工程(S3)>
成形工程(S3)は、前記炭素化原料製造工程(S2)の後に、前記炭素化原料製造工程(S2)で製造された炭素化原料粉末を塊状に成形する工程である。
前記炭素化原料粉末の成形は公知の方法により行うことができる。例えば、圧縮成形や、2ロール式タブレット成形等である。なお、微粉砕して高圧プレスすれば比較的容易に成形体を得ることができる。また、適当なバインダー化合物を用いてもよい。バインダーとしては、タール、ピッチ、無灰炭そのもの、樹脂等、公知のものを使用することができる。このうち、無灰炭そのものは、灰分含有率が小さいため最も好ましい。成形体中におけるバインダー化合物の割合は、20質量%未満が好適である。さらに炭素繊維等の適当な充填材や、無灰炭製造工程(S1)で副生する形質分や残渣炭等を添加混合して用いてもよい。
The carbonized raw material powder thus obtained may be carbonized as it is when producing a powdered carbon material, but if necessary, it is molded into a lump before being carbonized. It may be a body.
<Molding step (S3)>
The forming step (S3) is a step of forming the carbonized raw material powder produced in the carbonized raw material production step (S2) into a lump after the carbonized raw material production step (S2).
The carbonization raw material powder can be formed by a known method. For example, compression molding, two-roll tablet molding, or the like. A compact can be obtained relatively easily by pulverizing and high-pressure pressing. Moreover, you may use a suitable binder compound. As the binder, known materials such as tar, pitch, ashless coal itself, and resin can be used. Of these, ashless coal itself is most preferred because of its low ash content. The ratio of the binder compound in the molded body is preferably less than 20% by mass. Further, an appropriate filler such as carbon fiber, or a trait or by-product charcoal produced as a by-product in the ashless coal manufacturing step (S1) may be added and mixed.

<炭素化工程(S4)>
炭素化工程(S4)は、前記炭素化原料製造工程(S2)で製造された炭素化原料、または前記成形工程(S3)で成形された成形体を不活性雰囲気で熱処理して炭素化させる工程である。
炭素化処理の方法や条件は、特に制限はなく、公知の技術を用いて行うことができる。典型的には、窒素やアルゴン等の不活性雰囲気中で、1000℃以上、必要に応じて2000℃以上に加熱処理する。また、昇温速度は、0.1〜5℃/分程度とする。この炭素化処理は熱間静水圧プレス装置等を用いて、加圧下で行ってもよい。
<Carbonization process (S4)>
The carbonization step (S4) is a step of carbonizing the carbonized raw material manufactured in the carbonized raw material manufacturing step (S2) or the molded body molded in the molding step (S3) by heat treatment in an inert atmosphere. It is.
The method and conditions for the carbonization treatment are not particularly limited, and can be performed using a known technique. Typically, heat treatment is performed at 1000 ° C. or higher and, if necessary, 2000 ° C. or higher in an inert atmosphere such as nitrogen or argon. Moreover, a temperature increase rate shall be about 0.1-5 degreeC / min. This carbonization treatment may be performed under pressure using a hot isostatic pressing apparatus or the like.

[第2実施形態]
次に、本発明に係る炭素材料の製造方法についての第2実施形態について説明する。
炭素化工程(S1)において、成形体を熱処理した場合、成形体が膨張し、炭素化原料の形状がくずれることがある。しかし、本発明に係る第2実施形態によれば、緻密で、かつ、極めて灰分濃度の低い高純度の炭素材料を高収率で得ることができると共に、成形体が熱処理により膨張することなく、所定の形状を維持した状態で炭素材料を得ることができる。なお、この場合、成形体は、熱処理によりやや収縮した状態となり、緻密となる。
[Second Embodiment]
Next, a second embodiment of the carbon material manufacturing method according to the present invention will be described.
In the carbonization step (S1), when the molded body is heat-treated, the molded body may expand and the shape of the carbonized raw material may be damaged. However, according to the second embodiment of the present invention, it is possible to obtain a high-purity carbon material that is dense and has an extremely low ash concentration, and that the molded body does not expand due to heat treatment. The carbon material can be obtained while maintaining a predetermined shape. In this case, the molded body is slightly shrunk by heat treatment and becomes dense.

図2に示すように、炭素材料の製造方法は、無灰炭製造工程(S11)と、炭素化原料製造工程(S12)と、成形工程(S13)と、炭素化工程(S14)と、を含むものである。
以下、各工程について説明する。
なお、無灰炭製造工程(S11)、炭素化工程(S14)については、前記第1実施形態(S1、S4)と同様であるので、ここでは、説明を省略する。
As shown in FIG. 2, the carbon material manufacturing method includes an ashless coal manufacturing process (S11), a carbonized raw material manufacturing process (S12), a molding process (S13), and a carbonization process (S14). Is included.
Hereinafter, each step will be described.
Note that the ashless coal production step (S11) and the carbonization step (S14) are the same as those in the first embodiment (S1, S4), and thus the description thereof is omitted here.

<炭素化原料製造工程(S12)>
炭素化原料製造工程(S12)は、前記無灰炭製造工程(S11)で製造された無灰炭と有機溶剤とを混合して混合物とし、前記無灰炭から前記有機溶剤に可溶な可溶成分を抽出し、抽出後の混合物を、前記可溶成分を含む液部と、前記有機溶剤に不溶な成分を含む非液部とに分離して、前記非液部を炭素化原料とする工程である。
<Carbonization raw material manufacturing process (S12)>
In the carbonization raw material production step (S12), the ashless coal produced in the ashless coal production step (S11) and an organic solvent are mixed to form a mixture, and the ashless coal is soluble in the organic solvent. A soluble component is extracted, and the mixture after extraction is separated into a liquid part containing the soluble component and a non-liquid part containing a component insoluble in the organic solvent, and the non-liquid part is used as a carbonization raw material. It is a process.

なお、以下に説明するように、炭素化原料の軟化温度が350℃以上であること以外については、前記第1実施形態の炭素化原料製造工程(S2)と同様であるので、ここでは、炭素化原料の軟化温度について説明する。   As described below, the carbonization raw material is the same as the carbonization raw material manufacturing step (S2) of the first embodiment except that the softening temperature of the carbonization raw material is 350 ° C. or higher. The softening temperature of the chemical raw material will be described.

第2実施形態では、前記のとおり、得られた炭素材料を塊状に成形し、炭素化工程(S14)で熱処理しても、この成形した形状が維持されていることを目的とする。
無灰炭製造工程(S11)で製造・回収された無灰炭は、石炭から残渣炭と灰分が除去されたものであり、通常300℃以下、ときには200℃以下の温度で軟化溶融する。このような低温で軟化する性質では、炭素化工程(S14)による熱処理で軟化溶融してしまう場合があり、成形体の形状がくずれてしまうことがある。
In the second embodiment, as described above, the obtained carbon material is molded into a lump shape, and the molded shape is maintained even if heat treatment is performed in the carbonization step (S14).
The ashless coal produced and recovered in the ashless coal production step (S11) is obtained by removing residual coal and ash from the coal, and is usually softened and melted at a temperature of 300 ° C or lower, sometimes 200 ° C or lower. With such a property of softening at a low temperature, the heat treatment by the carbonization step (S14) may cause softening and melting, and the shape of the molded body may be damaged.

ここで、炭素化反応の初期反応であるアルキル基の脱離や脱水素反応は概ね400℃前後で開始する。したがって、軟化温度が350℃以上、好ましくは400℃より高ければ、炭素化工程(S14)で制御された速度で昇温して熱処理することにより、成形体が軟化溶融することなく炭素化させることができる。これにより、成形体をその形状を維持したまま炭素に変換させることができる。そして、気孔率が概ね30%以下で、見掛け比重が概ね1.0g/cm以上の炭素材料を得ることができる。
従って、炭素化原料の軟化温度が350℃以上であることを必要とする。より好ましくは400℃以上、さらに好ましくは450℃以上、あるいは軟化しないような性質である。軟化温度が350℃未満では、成形体が軟化溶融してしまい、所定の形状を維持した状態で炭素材料を得ることができず、また、気孔率が高くなり、見掛け比重もやや低くなる。
Here, the elimination of the alkyl group and the dehydrogenation reaction, which are the initial reactions of the carbonization reaction, generally start around 400 ° C. Therefore, if the softening temperature is 350 ° C. or higher, preferably higher than 400 ° C., the molded body is carbonized without being softened and melted by heating at a rate controlled in the carbonization step (S14). Can do. Thereby, a molded object can be converted into carbon, maintaining the shape. A carbon material having a porosity of approximately 30% or less and an apparent specific gravity of approximately 1.0 g / cm 3 or more can be obtained.
Therefore, the carbonization raw material needs to have a softening temperature of 350 ° C. or higher. More preferably, it is 400 ° C. or higher, more preferably 450 ° C. or higher, or a property that does not soften. When the softening temperature is less than 350 ° C., the molded body is softened and melted, and a carbon material cannot be obtained in a state where a predetermined shape is maintained, the porosity is increased, and the apparent specific gravity is slightly decreased.

なお、軟化温度の調整は、溶剤分別において、低分子量成分の除去割合を変更することにより行う。さらに、低分子量成分の除去割合は、溶剤分別における、溶剤の種類、溶剤と無灰炭の比率、温度、圧力、処理時間等を適宜調節することにより行うことができる。一般的な指針としては、高沸点の芳香族溶剤、無灰炭に対して大量の溶剤、高い温度、長時間の処理等の条件により、より高い割合で軽質成分が溶解するので、軟化温度は大きく上昇する。ただし、原料石炭の性質や無灰炭の製造条件によってその効果は異なるので、一概に指摘することはできない。   In addition, adjustment of softening temperature is performed by changing the removal rate of a low molecular weight component in solvent fractionation. Furthermore, the removal ratio of the low molecular weight component can be performed by appropriately adjusting the type of solvent, the ratio of solvent to ashless coal, temperature, pressure, treatment time, etc. in solvent fractionation. As a general guideline, light components dissolve at a higher rate depending on conditions such as high boiling point aromatic solvent, ashless coal, large amount of solvent, high temperature, long time treatment, etc., so the softening temperature is A big rise. However, the effect varies depending on the nature of the raw coal and the production conditions of ashless coal, and cannot be pointed out in general.

本発明では、有機溶剤による可溶成分の除去(溶剤分別)により、その軟化温度を調整する。ここでの溶剤分別の目的は、低い軟化温度の原因となっている低分子量成分(軽質成分)を除去することである。この目的に適した溶剤としては、前記第1実施形態の炭素化原料製造工程(S2)で説明した有機溶剤を挙げることができる。これらの有機溶剤で抽出処理をすることにより、溶剤に可溶な成分を除去する。
なお、軟化温度を調整するための溶剤分別は、前記第1実施形態の炭素化原料製造工程(S2)で説明したとおり、炭素化原料の取得率が40〜90質量%の範囲も同時に満たすように調整する。
In the present invention, the softening temperature is adjusted by removing soluble components with an organic solvent (solvent fractionation). The purpose of solvent fractionation here is to remove the low molecular weight components (light components) that are responsible for the low softening temperature. Examples of the solvent suitable for this purpose include the organic solvents described in the carbonization raw material manufacturing step (S2) of the first embodiment. By extracting with these organic solvents, components soluble in the solvent are removed.
In addition, as for solvent fractionation for adjusting softening temperature, as the carbonization raw material manufacturing process (S2) of the said 1st Embodiment demonstrated, the acquisition rate of a carbonization raw material should also satisfy | fill the range of 40-90 mass% simultaneously. Adjust to.

次に、軟化温度の測定方法の一例について説明する。まず、試料を、その全量が目開き1.19mmの篩いを通るように粉砕しておき、この粉砕した試料を適当な容器に入れて、不活性雰囲気中、20℃/分で温度を上げていく。そして、試料の状態を倍率100倍の顕微鏡で観察し、試料粒子が変形し始めた温度を軟化温度とする。   Next, an example of a method for measuring the softening temperature will be described. First, the sample is pulverized so that the whole amount passes through a sieve having an opening of 1.19 mm. The crushed sample is put in a suitable container, and the temperature is increased at 20 ° C./min in an inert atmosphere. Go. Then, the state of the sample is observed with a microscope having a magnification of 100 times, and the temperature at which the sample particles begin to deform is defined as a softening temperature.

<成形工程(S13)>
成形工程(S13)は、前記炭素化原料製造工程(S12)の後に、前記炭素化原料製造工程(S12)で製造された炭素化原料を成形原料の主成分として、この炭素化原料を塊状に成形する工程である。
<Molding step (S13)>
In the molding step (S13), after the carbonized raw material manufacturing step (S12), the carbonized raw material manufactured in the carbonized raw material manufacturing step (S12) is used as a main component of the molding raw material, and the carbonized raw material is agglomerated. This is a molding step.

なお、以下に説明するように、成形体中における炭素化原料(ここでは、本発明に係る炭素化原料製造工程(S12)で製造された炭素化原料)の割合が80質量%以上となるようにすること以外については、前記第1実施形態の成形工程(S3)と同様であるので、ここでは、炭素化原料の割合について説明する。   As described below, the proportion of the carbonized raw material (here, the carbonized raw material manufactured in the carbonized raw material manufacturing step (S12) according to the present invention) in the molded body is 80% by mass or more. Since it is the same as that of the shaping | molding process (S3) of the said 1st Embodiment except making it, here, the ratio of a carbonization raw material is demonstrated.

成形工程(S13)においては、前記第1実施形態で説明したとおり、得られた炭素化原料そのものを成形してもよいが、適当なバインダー化合物を混合してもよい。しかし、成形体中における炭素化原料の割合が80質量%未満では、炭素化原料を成形しにくく、また、成形しても、炭素化工程(S14)での熱処理により、成形体が膨張したり、気孔が生成したりするため、気孔率の小さい炭素を高い収率で得ることが難しい。さらに、見掛け比重が低くなりやすい。   In the molding step (S13), as described in the first embodiment, the obtained carbonized raw material itself may be molded, or an appropriate binder compound may be mixed. However, if the ratio of the carbonized raw material in the molded body is less than 80% by mass, it is difficult to mold the carbonized raw material. Even if the molded body is molded, the molded body may expand due to the heat treatment in the carbonization step (S14). Since pores are generated, it is difficult to obtain carbon with a low porosity in a high yield. Furthermore, the apparent specific gravity tends to be low.

従って、成形体中における炭素化原料の割合が80質量%以上を占めるように配合して、成形原料とする。より好ましくは、90質量%以上、さらに好ましくは、100質量%、すなわち得られた炭素化原料にバインダー化合物を添加せずに、そのまま成形する。   Therefore, it mix | blends so that the ratio of the carbonization raw material in a molded object may occupy 80 mass% or more, and it is set as a shaping | molding raw material. More preferably, it is 90% by mass or more, more preferably 100% by mass, that is, the obtained carbonized raw material is molded as it is without adding a binder compound.

以上説明したように、本発明の炭素材料の製造方法は、第1実施形態、第2実施形態ともに、無灰炭製造工程、炭素化原料製造工程、成形工程、炭素化工程を含むものである(第1実施形態では、成形工程は必要に応じて含める)。しかし、本発明を行うにあたり、前記各工程に悪影響を与えない範囲において、前記各工程の間あるいは前後に、例えば、原料石炭を粉砕する石炭粉砕工程や、ごみ等の不要物を除去する除去工程や、炭素化原料を乾燥させる炭素化原料乾燥工程等、他の工程を含めてもよい。   As described above, the method for producing a carbon material of the present invention includes an ashless coal production process, a carbonized raw material production process, a molding process, and a carbonization process in both the first embodiment and the second embodiment. In one embodiment, the molding process is included as needed). However, in carrying out the present invention, within a range that does not adversely affect the respective steps, for example, a coal pulverization step for pulverizing raw coal, or a removal step for removing unnecessary substances such as dust, before or after each step. Alternatively, other steps such as a carbonized raw material drying step for drying the carbonized raw material may be included.

次に、本発明に係る炭素材料の製造方法について、実施例、比較例を挙げて具体的に説明する。
<第1実施例>
第1実施例では、炭素材料の見掛け比重、気孔率、炭素収率、灰分濃度について調べた。
まず、以下の方法により、無灰炭を製造した。
亜瀝青炭を原料石炭とし、この原料石炭5kgに対し、4倍量(20kg)の溶剤(1−メチルナフタレン(新日鉄化学社製))を混合してスラリーを調製した。このスラリーを1.2MPaの窒素で加圧して、内容積30Lのオートクレーブ中370℃、1時間の条件で抽出した。このスラリーを同一温度、圧力を維持した重力沈降槽内で上澄み液と固形分濃縮液とに分離し、上澄み液から蒸留法で溶剤を分離・回収して、無灰炭を得た。
このようにして得られた無灰炭を用いて、以下の試験を行った。なお、成形して炭素化できるということは、成形しなくても炭素化できるということであるため、ここでは、成形体としてから熱処理を行った。
Next, the manufacturing method of the carbon material according to the present invention will be specifically described with reference to examples and comparative examples.
<First embodiment>
In the first example, the apparent specific gravity, porosity, carbon yield, and ash concentration of the carbon material were examined.
First, ashless coal was produced by the following method.
Sub-bituminous coal was used as raw material coal, and 4 times the amount (20 kg) of solvent (1-methylnaphthalene (manufactured by Nippon Steel Chemical Co., Ltd.)) was mixed with 5 kg of this raw material coal to prepare a slurry. This slurry was pressurized with 1.2 MPa of nitrogen and extracted in an autoclave with an internal volume of 30 L at 370 ° C. for 1 hour. This slurry was separated into a supernatant and a solid concentrate in a gravity sedimentation tank maintained at the same temperature and pressure, and the solvent was separated and recovered from the supernatant by a distillation method to obtain ashless coal.
The following tests were conducted using the ashless coal thus obtained. In addition, since it can be carbonized without shaping | molding that it can shape | mold and carbonize, it heat-processed after forming into a molded object here.

[実施例1]
目開きが0.149mmの篩いを全量が通過するように粉砕した無灰炭1質量部に対しメチルエチルケトン10質量部の割合で混合して、1時間かき混ぜた後、公称0.5μmのフィルタを使って不溶物(炭素化原料)を濾取した。この炭素化原料を100℃で減圧乾燥させたところ、炭素化原料の取得率(炭素化原料質量/仕込み無灰炭質量)は78質量%であった。
次に、この炭素化原料を目開きが0.149mmの篩いを全量が通過するように粉砕し、直径30mmの円筒形キャビティを有する金型に5gを充填し、0.1トン/cmの圧力でプレス成形した。これにより、厚さ6.4mm、見掛け比重1.1g/cmの成形体が得られた。この成形体を、窒素雰囲気中5℃/分の速度で加熱して、1000℃で炭素化させた。
[Example 1]
After mixing with 1 part by weight of ashless coal pulverized so that the whole amount passes through a sieve with an opening of 0.149 mm and mixing with 10 parts by weight of methyl ethyl ketone and stirring for 1 hour, use a nominal 0.5 μm filter. Insoluble matter (carbonized raw material) was collected by filtration. When this carbonized raw material was dried at 100 ° C. under reduced pressure, the carbonized raw material acquisition rate (carbonized raw material mass / charged ashless coal mass) was 78% by mass.
Next, this carbonized raw material is pulverized so that the entire amount passes through a sieve having an opening of 0.149 mm, and 5 g is filled in a mold having a cylindrical cavity with a diameter of 30 mm, and 0.1 ton / cm 2 Press-molded with pressure. As a result, a molded body having a thickness of 6.4 mm and an apparent specific gravity of 1.1 g / cm 3 was obtained. This molded body was heated at a rate of 5 ° C./min in a nitrogen atmosphere and carbonized at 1000 ° C.

[実施例2]
溶剤として、メチルエチルケトンの代わりにテトラヒドロフランを用いた以外は、実施例1と同じ条件で炭素化原料を得た。炭素化原料の収率は71質量%であった。この炭素化原料を実施例1と同じ条件で成形した。これにより、厚さ6.4mm、見掛け比重1.1g/cmの成形体が得られた。この成形体を実施例1と同じ条件で炭素化処理した。
[Example 2]
A carbonized raw material was obtained under the same conditions as in Example 1 except that tetrahydrofuran was used instead of methyl ethyl ketone as the solvent. The yield of the carbonized raw material was 71% by mass. This carbonized raw material was molded under the same conditions as in Example 1. As a result, a molded body having a thickness of 6.4 mm and an apparent specific gravity of 1.1 g / cm 3 was obtained. This molded body was carbonized under the same conditions as in Example 1.

[実施例3]
目開きが0.149mmの篩いを全量が通過するように粉砕した無灰炭1質量部に対し2-メチルナフタレン5質量部の割合で混合して、1MPaの窒素加圧下、360℃に加熱して1時間かき混ぜ、無灰炭の全量を溶解させた。これを室温まで冷却して5時間放置した。析出した固形成分(炭素化原料)を、公称0.5μmのフィルタで濾取した。100℃で減圧乾燥させたところ、炭素化原料の取得率は63質量%であった。
この炭素化原料を実施例1と同じ条件で成形した。これにより、厚さ11.8mm、見掛け比重1.08g/cmの成形体が得られた。この成形体を実施例1と同じ条件で炭素化処理した。
[Example 3]
The mixture is mixed at a ratio of 5 parts by mass of 2-methylnaphthalene to 1 part by mass of ashless coal pulverized so that the whole amount passes through a sieve having a mesh opening of 0.149 mm, and heated to 360 ° C. under 1 MPa nitrogen pressure. The whole amount of ashless coal was dissolved by stirring for 1 hour. This was cooled to room temperature and left for 5 hours. The precipitated solid component (carbonized raw material) was collected by filtration with a nominal 0.5 μm filter. When dried under reduced pressure at 100 ° C., the acquisition rate of the carbonized raw material was 63% by mass.
This carbonized raw material was molded under the same conditions as in Example 1. As a result, a molded body having a thickness of 11.8 mm and an apparent specific gravity of 1.08 g / cm 3 was obtained. This molded body was carbonized under the same conditions as in Example 1.

[比較例1]
無灰炭を溶剤抽出することなく、炭素化原料とし、この炭素化原料を実施例1と同じ条件で成形した。厚さ6.4mm、見掛け比重1.1g/cmの成形体が得られた。この成形体を実施例1と同じ条件で炭素化処理した。
[Comparative Example 1]
The ashless coal was used as a carbonized raw material without solvent extraction, and the carbonized raw material was molded under the same conditions as in Example 1. A molded body having a thickness of 6.4 mm and an apparent specific gravity of 1.1 g / cm 3 was obtained. This molded body was carbonized under the same conditions as in Example 1.

[比較例2]
溶剤として、メチルエチルケトンの代わりにトルエンを用いた以外は、実施例1と同じ条件で炭素化原料を得た。炭素材料の取得率は97質量%であった。
この炭素材料を実施例1と同じ条件で成形した。これにより、厚さ6.7mm、見掛け比重1.05g/cmの成形体が得られた。この成形体を実施例1と同じ条件で炭素化処理した。
[Comparative Example 2]
A carbonized raw material was obtained under the same conditions as in Example 1 except that toluene was used instead of methyl ethyl ketone as the solvent. The acquisition rate of the carbon material was 97% by mass.
This carbon material was molded under the same conditions as in Example 1. As a result, a molded body having a thickness of 6.7 mm and an apparent specific gravity of 1.05 g / cm 3 was obtained. This molded body was carbonized under the same conditions as in Example 1.

[比較例3]
溶剤として、メチルエチルケトンの代わりにn−ヘキサンを用いた以外は、実施例3と同じ条件で炭素化原料を得た。炭素化原料の取得率は98質量%であった。
この炭素化原料を実施例1と同じ条件で成形した。これにより、厚さ6.2mm、見掛け比重1.15g/cmの成形体が得られた。この成形体を実施例1と同じ条件で炭素化処理した。
[Comparative Example 3]
A carbonized raw material was obtained under the same conditions as in Example 3 except that n-hexane was used instead of methyl ethyl ketone as the solvent. The acquisition rate of the carbonized raw material was 98% by mass.
This carbonized raw material was molded under the same conditions as in Example 1. As a result, a molded body having a thickness of 6.2 mm and an apparent specific gravity of 1.15 g / cm 3 was obtained. This molded body was carbonized under the same conditions as in Example 1.

[比較例4]
目開きが0.149mmの篩いを全量が通過するように粉砕した無灰炭1質量部に対し2-メチルナフタレン10質量部の割合で混合して、1MPaの窒素加圧下、200℃に加熱して1時間かき混ぜた。この温度・圧力に保ったまま、公称0.5μmのフィルタを使って不溶物(炭素化原料)を濾取した。100℃で減圧乾燥させたところ、炭素化原料の取得率は38質量%であった。
この炭素化原料を実施例1と同じ条件で成形した。これにより、厚さ7.4mm、見掛け比重0.95g/cmの成形体が得られた。なお、この成形体は少し力を加えると壊れるような脆いものであった。この成形体を実施例1と同じ条件で炭素化処理した。
[Comparative Example 4]
The mixture is mixed at a ratio of 10 parts by mass of 2-methylnaphthalene to 1 part by mass of ashless coal pulverized so that the whole amount passes through a sieve having a mesh opening of 0.149 mm, and heated to 200 ° C. under nitrogen pressure of 1 MPa. Stir for 1 hour. While maintaining this temperature and pressure, insoluble matter (carbonized raw material) was collected by filtration using a nominal 0.5 μm filter. When dried under reduced pressure at 100 ° C., the acquisition rate of the carbonized raw material was 38% by mass.
This carbonized raw material was molded under the same conditions as in Example 1. As a result, a molded body having a thickness of 7.4 mm and an apparent specific gravity of 0.95 g / cm 3 was obtained. In addition, this molded object was a fragile thing which was broken when a little force was applied. This molded body was carbonized under the same conditions as in Example 1.

[参考例1]
比較例4で調製した炭素化原料10質量部に対し無灰炭1質量部の割合で混合して、目開きが0.149mmの篩いを全量が通過するように粉砕した。
この混合物を実施例1と同じ条件で成形した。これにより、厚さ12.3mm、見掛け比重1.04g/cmの成形体が得られた。この成形体を実施例1と同じ条件で炭素化処理した。
[Reference Example 1]
It mixed in the ratio of 1 mass part of ashless coal with respect to 10 mass parts of carbonization raw materials prepared by the comparative example 4, and it grind | pulverized so that the whole quantity might pass the sieve with an opening of 0.149 mm.
This mixture was molded under the same conditions as in Example 1. As a result, a molded body having a thickness of 12.3 mm and an apparent specific gravity of 1.04 g / cm 3 was obtained. This molded body was carbonized under the same conditions as in Example 1.

以上のようにして得られた炭素材料の見掛け比重、気孔率、炭素収率(炭素材料質量/仕込み無灰炭質量)、灰分濃度を測定した。
ここで、見掛け比重と気孔率は、JIS K2151(コークス類の試験方法)に準じて算出し、灰分濃度の測定は、JIS M8812(石炭類及びコークス類の工業分析方法)に準じて行った。
見掛け比重は、0.6g/cm以上のものを良好、0.6g/cm未満のものを不良と判断した。気孔率は、60%以下のものを良好、60%を超えるものを不良と判断した。炭素収率は、65質量%以上のものを炭素収率が高い、65質量%未満のものを炭素収率が低いと判断した。灰分濃度は、0.3質量%未満のものを灰分濃度が低いと判断した。
これらの試験結果を表1に示す。
The apparent specific gravity, porosity, carbon yield (carbon material mass / charged ashless coal mass), and ash concentration of the carbon material obtained as described above were measured.
Here, the apparent specific gravity and the porosity were calculated according to JIS K2151 (testing method for cokes), and the ash concentration was measured according to JIS M8812 (industrial analysis method for coals and cokes).
The apparent specific gravity was judged to be good if it was 0.6 g / cm 3 or more and poor if it was less than 0.6 g / cm 3 . A porosity of 60% or less was judged good and a porosity exceeding 60% was judged bad. As for the carbon yield, those having 65% by mass or more were judged to have high carbon yield, and those having less than 65% by mass were judged to have low carbon yield. An ash concentration of less than 0.3% by mass was judged to be low.
These test results are shown in Table 1.

Figure 2009120464
Figure 2009120464

表1において、実施例1〜3は、本発明の構成を満たすものである。従って、炭素化工程において著しい発泡をすることなく炭素化され、気孔率の低い炭素成形体を得ることができた。また、表1に示すように、炭素収率は高収率であった。炭素中の灰分濃度は、極めて灰分濃度の低い高純度な品質であった。   In Table 1, Examples 1-3 satisfy | fill the structure of this invention. Therefore, it was possible to obtain a carbon molded body having a low porosity by being carbonized without significant foaming in the carbonization step. Moreover, as shown in Table 1, the carbon yield was high. The ash concentration in carbon was a high-purity quality with a very low ash concentration.

一方、比較例1〜4は、本発明の構成を満たさないため、以下の不具合を有していた。
比較例1は、無灰炭を溶剤抽出していないため、炭素化工程で激しく発泡して、炭素成形体を得ることがでなかった。また、見掛け比重が低く、気孔率が大きく、炭素収率は56質量%と低かった。比較例2は、炭素化原料の取得率が上限値を超えるため、炭素化工程で激しく発泡して、炭素成形体を得ることができなかった。また、見掛け比重が低く、気孔率が大きく、炭素収率は57質量%と低かった。
On the other hand, since Comparative Examples 1-4 did not satisfy the configuration of the present invention, they had the following problems.
Since the ashless coal was not solvent-extracted in the comparative example 1, it was not able to obtain a carbon molded object by foaming violently at a carbonization process. Moreover, the apparent specific gravity was low, the porosity was large, and the carbon yield was as low as 56% by mass. In Comparative Example 2, the acquisition rate of the carbonized raw material exceeded the upper limit value, so that the carbon molded body could not be obtained by vigorously foaming in the carbonization step. Further, the apparent specific gravity was low, the porosity was high, and the carbon yield was as low as 57% by mass.

比較例3は、炭素化原料の取得率が上限値を超えるため、発泡が激しく、気孔率の小さい炭素成形体を得ることはできなかった。また、見掛け比重が低く、炭素収率は59質量%と低かった。比較例4は、炭素化原料の取得率が下限値未満のため、炭素化工程で、成形体に亀裂が生じ、成形性が低下した。また、比較例4は、炭素収率は高いものの、炭素化原料の取得率が低いため、非経済的であった。   In Comparative Example 3, since the acquisition rate of the carbonized raw material exceeded the upper limit, foaming was severe and a carbon molded body having a small porosity could not be obtained. Moreover, the apparent specific gravity was low and the carbon yield was as low as 59% by mass. In Comparative Example 4, since the acquisition rate of the carbonized raw material was less than the lower limit value, a crack occurred in the molded body in the carbonization step, and the moldability decreased. Moreover, although the comparative example 4 had a high carbon yield, since the acquisition rate of the carbonization raw material was low, it was uneconomical.

なお、参考例1では、炭素化工程で激しく発泡することなく炭素化され、見掛け比重が高く、気孔率の小さい炭素成形体を得ることができた。すなわち、炭素化原料の取得率が下限値未満であっても、バインダーとして無灰炭を適当量添加することで、成形性の低下を回避できることがわかった。   In Reference Example 1, it was possible to obtain a carbon molded body that was carbonized without foaming vigorously in the carbonization step, had a high apparent specific gravity, and a low porosity. That is, even if the acquisition rate of the carbonized raw material is less than the lower limit, it was found that a decrease in formability can be avoided by adding an appropriate amount of ashless coal as a binder.

<第2実施例>
第2実施例では、炭素材料の見掛け比重、気孔率、炭素収率、灰分濃度の他、炭素化工程前後の成形体の形状(厚さ)について調べた。
まず、第1実施例と同様な方法により、無灰炭を製造した。なお、無灰炭の軟化温度は290℃、灰分0.2質量%であった。
<Second embodiment>
In the second example, the shape (thickness) of the molded body before and after the carbonization step was examined in addition to the apparent specific gravity, porosity, carbon yield, and ash concentration of the carbon material.
First, ashless coal was produced by the same method as in the first example. The softening temperature of ashless coal was 290 ° C. and the ash content was 0.2% by mass.

[実施例4]
目開きが0.149mmの篩いを全量が通過するように粉砕した無灰炭1質量部に対しピリジン10質量部の割合で混合して、50℃で1時間かき混ぜた。公称0.5μmのフィルタを使って不溶物(炭素化原料)を濾取した。150℃で減圧乾燥させたところ、炭素化原料の取得率は68質量%、その軟化温度は355℃であった。
次に、目開きが0.149mmの篩いを全量が通過するように粉砕した炭素化原料300gを直径100mmの円筒金型に充填し、室温において0.3トン/cmの圧力をかけて圧縮成形した。これにより、厚さ3.8cm、見掛け比重1.02g/cmの成形体が得られた。この成形体を、窒素雰囲気中で、室温から30℃/hの昇温速度で380℃まで昇温してその温度で1時間保持し、引き続き30℃/hの昇温速度で1500℃まで加熱し、この温度に30分保持することにより炭素化させた。
[Example 4]
The mixture was mixed at a ratio of 10 parts by mass of pyridine to 1 part by mass of ashless coal pulverized so that the whole amount passed through a sieve having an opening of 0.149 mm, and stirred at 50 ° C. for 1 hour. Insoluble matter (carbonized raw material) was collected by filtration using a nominal 0.5 μm filter. When dried under reduced pressure at 150 ° C., the acquisition rate of the carbonized raw material was 68% by mass, and the softening temperature was 355 ° C.
Next, 300 g of a carbonized raw material pulverized so as to pass through a sieve having an opening of 0.149 mm is filled in a cylindrical mold having a diameter of 100 mm, and compressed by applying a pressure of 0.3 ton / cm 2 at room temperature. Molded. As a result, a molded body having a thickness of 3.8 cm and an apparent specific gravity of 1.02 g / cm 3 was obtained. The molded body was heated from room temperature to 380 ° C. at a temperature increase rate of 30 ° C./h in a nitrogen atmosphere, held at that temperature for 1 hour, and subsequently heated to 1500 ° C. at a temperature increase rate of 30 ° C./h. And it carbonized by hold | maintaining at this temperature for 30 minutes.

[実施例5]
溶剤として、ピリジンの代わりにキノリンを用いた以外は、実施例6と同じ条件で炭素化原料を濾取した。炭素化原料の取得率は42質量%で、その軟化温度は450℃であった。
この炭素化原料85質量部に対して、無灰炭15質量部の割合で混合し、目開きが0.149mmの篩いを全量が通過するように粉砕した。これを実施例4と同じ方法で成形した。厚さが3.7cm、見掛け比重1.04g/cmの成形体が得られた。この成形体を、実施例4と同じ条件で炭素化させた。
[Example 5]
The carbonized raw material was collected by filtration under the same conditions as in Example 6 except that quinoline was used instead of pyridine as the solvent. The acquisition rate of the carbonized raw material was 42% by mass, and the softening temperature was 450 ° C.
It mixed in the ratio of 15 mass parts of ashless coal with respect to 85 mass parts of this carbonization raw material, and it grind | pulverized so that the whole quantity might pass the sieve with an opening of 0.149 mm. This was molded in the same manner as in Example 4. A molded body having a thickness of 3.7 cm and an apparent specific gravity of 1.04 g / cm 3 was obtained. This molded body was carbonized under the same conditions as in Example 4.

[比較例5]
無灰炭を溶剤抽出することなく、炭素化原料とし、この炭素化原料を実施例4と同じ条件で成形した。これにより、厚さ3.9cm、見掛け比重0.99g/cmの成形体が得られた。この成形体を、実施例4と同じ条件で炭素化させた。
[Comparative Example 5]
The ashless coal was used as a carbonized raw material without solvent extraction, and this carbonized raw material was molded under the same conditions as in Example 4. As a result, a molded body having a thickness of 3.9 cm and an apparent specific gravity of 0.99 g / cm 3 was obtained. This molded body was carbonized under the same conditions as in Example 4.

[比較例6]
ピリジンの代わりにキシレンを用いた以外は、実施例4と同様な方法により、炭素化原料を濾取した。150℃で減圧乾燥させたところ、炭素化原料の取得率は79質量%で、その軟化温度は340℃であった。
次に、前記炭素化元素を実施例4と同じ方法で成形した。これにより、厚さ3.8cm、見掛け比重1.02g/cmの成形体が得られた。この成形体を、実施例4と同じ条件で炭素化させた。
[Comparative Example 6]
A carbonized raw material was collected by filtration in the same manner as in Example 4 except that xylene was used instead of pyridine. When dried under reduced pressure at 150 ° C., the acquisition rate of the carbonized raw material was 79% by mass, and the softening temperature was 340 ° C.
Next, the carbonized element was molded in the same manner as in Example 4. As a result, a molded body having a thickness of 3.8 cm and an apparent specific gravity of 1.02 g / cm 3 was obtained. This molded body was carbonized under the same conditions as in Example 4.

[比較例7]
溶剤として、ピリジンの代わりにキノリンを用いた以外は、実施例4と同じ条件で炭素化原料を濾取した。炭素化原料の取得率は42質量%で、その軟化温度は450であった。
前記炭素化原料75質量部に対して、前記無灰炭25質量部の割合で混合し、目開きが0.149mmの篩いを全量が通過するように粉砕した。これを実施例4と同じ方法で成形した。厚さ3.8cm、見掛け比重1.02g/cmの成形体が得られた。この成形体を、実施例4と同じ条件で炭素化させた。
[Comparative Example 7]
The carbonization raw material was collected by filtration under the same conditions as in Example 4 except that quinoline was used instead of pyridine as the solvent. The acquisition rate of the carbonized raw material was 42% by mass, and the softening temperature was 450.
The mixture was mixed at a ratio of 25 parts by mass of the ashless coal with respect to 75 parts by mass of the carbonized raw material, and pulverized so that the entire amount passed through a sieve having an opening of 0.149 mm. This was molded in the same manner as in Example 4. A molded body having a thickness of 3.8 cm and an apparent specific gravity of 1.02 g / cm 3 was obtained. This molded body was carbonized under the same conditions as in Example 4.

以上のようにして得られた炭素材料の見掛け比重、気孔率、炭素収率(炭素材料質量/仕込み無灰炭質量)、灰分濃度を測定した。また、炭素化工程前後の成形体の形状(厚さ)について調べた。
見掛け比重は、1.0g/cm以上のものを良好、1.0g/cm未満のものを不良と判断した。気孔率は、30%以下のものを良好、30%を超えるものを不良と判断した。炭素収率は、65質量%以上のものを炭素収率が高い、65質量%未満のものを炭素収率が低いと判断した。灰分濃度は、0.3質量%未満のものを灰分濃度が低いと判断した。炭素化工程後の成形体の形状は、成形体の厚さが収縮したものを、所定の形状を維持した状態で炭素材料が得られたもの、成形体の厚さが膨張したものを、所定の形状を維持した状態で炭素材料が得られなかったものと判断した。
これらの試験結果を表2に示す。なお、表2中「−」は、炭素成形体を得ることができなかったものである。
The apparent specific gravity, porosity, carbon yield (carbon material mass / charged ashless coal mass), and ash concentration of the carbon material obtained as described above were measured. Moreover, it investigated about the shape (thickness) of the molded object before and behind the carbonization process.
An apparent specific gravity of 1.0 g / cm 3 or more was judged to be good, and an apparent specific gravity of less than 1.0 g / cm 3 was judged to be poor. A porosity of 30% or less was judged good and a porosity exceeding 30% was judged bad. As for the carbon yield, those having 65% by mass or more were judged to have high carbon yield, and those having less than 65% by mass were judged to have low carbon yield. An ash concentration of less than 0.3% by mass was judged to be low. The shape of the molded body after the carbonization step is a predetermined one in which the thickness of the molded body is contracted, a carbon material obtained in a state where the predetermined shape is maintained, and a case in which the thickness of the molded body is expanded. It was judged that the carbon material could not be obtained in the state where the shape was maintained.
These test results are shown in Table 2. In Table 2, “-” indicates that a carbon molded body could not be obtained.

Figure 2009120464
Figure 2009120464

表2において、実施例4、5は、本発明の構成を満たすものである。従って、表2に示すように、炭素成形体は1.0以上の見掛け比重を有していた。また、炭素収率は高収率であった。さらに、炭素中の灰分濃度は、極めて灰分濃度の低い高純度な品質であった。また、気孔率は30%以下と低く、炭素化後の成形体は、所定の形状を維持していた。   In Table 2, Examples 4 and 5 satisfy the configuration of the present invention. Therefore, as shown in Table 2, the carbon molded body had an apparent specific gravity of 1.0 or more. The carbon yield was high. Furthermore, the ash concentration in the carbon was a high-purity quality with a very low ash concentration. Moreover, the porosity was as low as 30% or less, and the molded body after carbonization maintained a predetermined shape.

一方、比較例5〜7は、本発明の構成を満たさないため、以下の不具合を有していた。
比較例5は、無灰炭を溶剤抽出していないため、炭素化工程で激しく発泡して、炭素成形体を得ることがでなかった。また、見掛け比重が低く、炭素収率は56質量%と低かった。さらに、炭素化原料の軟化温度が低すぎるため(無灰炭:290℃)、気孔率は89%と高い値になった。
On the other hand, Comparative Examples 5 to 7 did not satisfy the configuration of the present invention, and thus had the following problems.
In Comparative Example 5, since ashless coal was not subjected to solvent extraction, it was not possible to obtain a carbon molded body by foaming vigorously in the carbonization step. Further, the apparent specific gravity was low, and the carbon yield was as low as 56% by mass. Furthermore, since the softening temperature of the carbonized raw material was too low (ashless coal: 290 ° C.), the porosity was as high as 89%.

比較例6は、炭素化原料の軟化温度が低すぎるため、成形体の厚さは4.1cmまで膨張し、所定の形状の炭素材は得られなかった。また、見掛け比重も良好ではあるものの、やや低く、気孔率は30%を超えた。比較例7は、成形工程での成形体中における炭素化原料の割合が、下限値未満のため、見掛け比重が低く、気孔率は30%を超えた。また、炭素収率は58質量%と低かった。なお、成形体の厚さが、炭素化後で薄くなっているが、炭素化工程では、成形体の膨張と収縮が同時に起こるため、ここでは、炭素収率が低いことを勘案すると、膨張が起きているものと考えられる。   In Comparative Example 6, since the softening temperature of the carbonized raw material was too low, the thickness of the molded body expanded to 4.1 cm, and a carbon material having a predetermined shape was not obtained. Moreover, although apparent specific gravity was also favorable, it was somewhat low and the porosity exceeded 30%. In Comparative Example 7, the apparent specific gravity was low and the porosity exceeded 30% because the ratio of the carbonized raw material in the molded body in the molding step was less than the lower limit. The carbon yield was as low as 58% by mass. Although the thickness of the molded body is reduced after carbonization, the carbonization process causes expansion and contraction of the molded body at the same time. It is thought to be happening.

以上、本発明に係る炭素材料の製造方法について最良の実施の形態および実施例を示して詳細に説明したが、本発明の趣旨は前記した内容に限定されることなく、その権利範囲は特許請求の範囲の記載に基づいて広く解釈しなければならない。なお、本発明の内容は、前記した記載に基づいて広く改変・変更等することができることはいうまでもない。   The carbon material production method according to the present invention has been described in detail with reference to the best embodiment and examples. However, the gist of the present invention is not limited to the above-described contents, and the scope of rights is claimed. It should be interpreted broadly based on the description of the scope. Needless to say, the contents of the present invention can be widely modified and changed based on the above description.

本発明の第1実施形態に係る炭素材料の製造方法の工程を説明するフローチャートである。It is a flowchart explaining the process of the manufacturing method of the carbon material which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る炭素材料の製造方法の工程を説明するフローチャートである。It is a flowchart explaining the process of the manufacturing method of the carbon material which concerns on 2nd Embodiment of this invention.

符号の説明Explanation of symbols

S1、S11 無灰炭製造工程
S2、S12 炭素化原料製造工程
S3、S13 成形工程
S4、S14 炭素化工程
S1, S11 Ashless coal production process S2, S12 Carbonized raw material production process S3, S13 Molding process S4, S14 Carbonization process

Claims (4)

石炭を改質して、改質炭である無灰炭を製造する無灰炭製造工程と、
前記無灰炭製造工程で製造された無灰炭と有機溶剤とを混合して混合物とし、前記無灰炭から前記有機溶剤に可溶な可溶成分を抽出し、抽出後の混合物を、前記可溶成分を含む液部と、前記有機溶剤に不溶な成分を含む非液部とに分離して、前記非液部を炭素化原料とする炭素化原料製造工程と、
前記炭素化原料製造工程で製造された炭素化原料を不活性雰囲気で熱処理して炭素化させる炭素化工程と、を含み、
前記炭素化原料製造工程で製造される炭素化原料の割合が、前記炭素化原料製造工程で混合される無灰炭に対し40〜90質量%であることを特徴とする炭素材料の製造方法。
An ashless coal manufacturing process for reforming coal to produce ashless coal, which is a modified coal,
The ashless coal produced in the ashless coal production step is mixed with an organic solvent to extract a soluble component soluble in the organic solvent from the ashless coal. Separating into a liquid part containing a soluble component and a non-liquid part containing a component insoluble in the organic solvent, and a carbonized raw material production process using the non-liquid part as a carbonized raw material;
A carbonization step in which the carbonized raw material produced in the carbonized raw material production step is carbonized by heat treatment in an inert atmosphere,
The method for producing a carbon material, wherein a ratio of the carbonized raw material produced in the carbonized raw material production step is 40 to 90% by mass with respect to ashless coal mixed in the carbonized raw material production step.
前記炭素化原料製造工程の後に、前記炭素化原料製造工程で製造された炭素化原料を塊状に成形する成形工程を含み、
前記炭素化工程において、前記成形工程で成形された成形体を不活性雰囲気で熱処理して炭素化させることを特徴とする請求項1に記載の炭素材料の製造方法。
After the carbonized raw material manufacturing step, including a molding step of molding the carbonized raw material manufactured in the carbonized raw material manufacturing step into a lump shape,
2. The method for producing a carbon material according to claim 1, wherein in the carbonization step, the molded body molded in the molding step is heat-treated in an inert atmosphere to be carbonized.
石炭を改質して、改質炭である無灰炭を製造する無灰炭製造工程と、
前記無灰炭製造工程で製造された無灰炭と有機溶剤とを混合して混合物とし、前記無灰炭から前記有機溶剤に可溶な可溶成分を抽出し、抽出後の混合物を、前記可溶成分を含む液部と、前記有機溶剤に不溶な成分を含む非液部とに分離して、前記非液部を炭素化原料とする炭素化原料製造工程と、
前記炭素化原料製造工程で製造された炭素化原料を成形原料の主成分として、この炭素化原料を塊状に成形する成形工程と、
前記成形工程で成形された成形体を不活性雰囲気で熱処理して炭素化させる炭素化工程と、を含み、
前記炭素化原料製造工程で製造される炭素化原料の割合が、前記炭素化原料製造工程で混合される無灰炭に対し40〜90質量%、かつ前記炭素化原料の軟化温度が350℃以上であり、
前記成形工程で成形された成形体中における前記炭素化原料の割合が、80質量%以上であることを特徴とする炭素材料の製造方法。
An ashless coal manufacturing process for reforming coal to produce ashless coal, which is a modified coal,
The ashless coal produced in the ashless coal production step is mixed with an organic solvent to extract a soluble component soluble in the organic solvent from the ashless coal. Separating into a liquid part containing a soluble component and a non-liquid part containing a component insoluble in the organic solvent, and a carbonized raw material production process using the non-liquid part as a carbonized raw material;
With the carbonized raw material produced in the carbonized raw material production step as a main component of the molding raw material, a molding step for molding the carbonized raw material into a lump,
A carbonization step of carbonizing the molded body molded in the molding step by heat treatment in an inert atmosphere,
The ratio of the carbonized raw material manufactured in the carbonized raw material manufacturing step is 40 to 90% by mass with respect to the ashless coal mixed in the carbonized raw material manufacturing step, and the softening temperature of the carbonized raw material is 350 ° C. or higher. And
The method for producing a carbon material, wherein a ratio of the carbonized raw material in the molded body molded in the molding step is 80% by mass or more.
前記有機溶剤が、含酸素有機溶剤であることを特徴とする請求項1ないし請求項3のいずれか一項に記載の炭素材料の製造方法。   The method for producing a carbon material according to any one of claims 1 to 3, wherein the organic solvent is an oxygen-containing organic solvent.
JP2008102138A 2007-10-23 2008-04-10 Carbon material manufacturing method Active JP5128351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008102138A JP5128351B2 (en) 2007-10-23 2008-04-10 Carbon material manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007274756 2007-10-23
JP2007274756 2007-10-23
JP2008102138A JP5128351B2 (en) 2007-10-23 2008-04-10 Carbon material manufacturing method

Publications (2)

Publication Number Publication Date
JP2009120464A true JP2009120464A (en) 2009-06-04
JP5128351B2 JP5128351B2 (en) 2013-01-23

Family

ID=40813042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008102138A Active JP5128351B2 (en) 2007-10-23 2008-04-10 Carbon material manufacturing method

Country Status (1)

Country Link
JP (1) JP5128351B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012118151A1 (en) * 2011-03-03 2012-09-07 株式会社神戸製鋼所 Method for producing carbon material
CN102803136A (en) * 2009-06-22 2012-11-28 株式会社神户制钢所 Method For Producing Carbon Materials
JP2013112813A (en) * 2011-12-01 2013-06-10 Kobe Steel Ltd Method for producing ashless coal formed article
WO2015037583A1 (en) * 2013-09-11 2015-03-19 株式会社神戸製鋼所 Carbon material production method and carbon material
JP2016108195A (en) * 2014-12-08 2016-06-20 株式会社神戸製鋼所 Method for producing carbon material and carbon material
KR20170117177A (en) * 2015-03-17 2017-10-20 가부시키가이샤 고베 세이코쇼 Method of manufacturing carbon fiber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5218489A (en) * 1975-08-04 1977-02-12 Mitsui Mining Co Ltd Process for production of carbon material
JPS5585411A (en) * 1978-12-21 1980-06-27 Mitsui Cokes Kogyo Kk Production of isotropic high-density carbon material
JPH05148489A (en) * 1991-05-22 1993-06-15 Nkk Corp Production of pitch-based material and production of carbonaceous material with the same as raw material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5218489A (en) * 1975-08-04 1977-02-12 Mitsui Mining Co Ltd Process for production of carbon material
JPS5585411A (en) * 1978-12-21 1980-06-27 Mitsui Cokes Kogyo Kk Production of isotropic high-density carbon material
JPH05148489A (en) * 1991-05-22 1993-06-15 Nkk Corp Production of pitch-based material and production of carbonaceous material with the same as raw material

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102803136A (en) * 2009-06-22 2012-11-28 株式会社神户制钢所 Method For Producing Carbon Materials
WO2012118151A1 (en) * 2011-03-03 2012-09-07 株式会社神戸製鋼所 Method for producing carbon material
JP2012184125A (en) * 2011-03-03 2012-09-27 Kobe Steel Ltd Method for producing carbon material
JP2013112813A (en) * 2011-12-01 2013-06-10 Kobe Steel Ltd Method for producing ashless coal formed article
WO2015037583A1 (en) * 2013-09-11 2015-03-19 株式会社神戸製鋼所 Carbon material production method and carbon material
JP2015054792A (en) * 2013-09-11 2015-03-23 株式会社神戸製鋼所 Method for producing carbon material and carbon material
CN105531225A (en) * 2013-09-11 2016-04-27 株式会社神户制钢所 Carbon material production method and carbon material
RU2628606C1 (en) * 2013-09-11 2017-08-21 Кабусики Кайся Кобе Сейко Се (Кобе Стил, Лтд.) Method of manufacturing carbon material and carbon material
US9751764B2 (en) 2013-09-11 2017-09-05 Kobe Steel, Ltd Carbon material production method and carbon material
JP2016108195A (en) * 2014-12-08 2016-06-20 株式会社神戸製鋼所 Method for producing carbon material and carbon material
KR20170117177A (en) * 2015-03-17 2017-10-20 가부시키가이샤 고베 세이코쇼 Method of manufacturing carbon fiber
KR101943784B1 (en) * 2015-03-17 2019-01-29 가부시키가이샤 고베 세이코쇼 Method of manufacturing carbon fiber

Also Published As

Publication number Publication date
JP5128351B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
KR101365365B1 (en) Method for producing carbon materials
JP5314299B2 (en) Production method of ashless coal
JP5342794B2 (en) Carbon material manufacturing method
WO2012118151A1 (en) Method for producing carbon material
JP5128351B2 (en) Carbon material manufacturing method
WO2010035651A1 (en) Method for manufacturing hyper-coal
TWI485237B (en) Forming blended coal and its manufacturing method, and coke and its manufacturing method
JP5530292B2 (en) Manufacturing method of coke for steel making
CA2948164A1 (en) Method for producing carbon material, and carbon material
JP5739785B2 (en) Method for producing residual charcoal molding
US20180320083A1 (en) Method for producing coke, and coke
JP3920899B1 (en) Method for producing modified coal
JP2011099045A (en) Method for modifying coal, method for manufacturing coke and sintered ore, and method for operating blast furnace
JP5945257B2 (en) Carbon material manufacturing method
JP5719283B2 (en) Production method of by-product coal molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5128351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3