WO2010035651A1 - Method for manufacturing hyper-coal - Google Patents

Method for manufacturing hyper-coal Download PDF

Info

Publication number
WO2010035651A1
WO2010035651A1 PCT/JP2009/066019 JP2009066019W WO2010035651A1 WO 2010035651 A1 WO2010035651 A1 WO 2010035651A1 JP 2009066019 W JP2009066019 W JP 2009066019W WO 2010035651 A1 WO2010035651 A1 WO 2010035651A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
solvent
slurry
ashless
heating step
Prior art date
Application number
PCT/JP2009/066019
Other languages
French (fr)
Japanese (ja)
Inventor
眞基 濱口
憲幸 奥山
康爾 堺
信行 小松
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to AU2009297631A priority Critical patent/AU2009297631B2/en
Priority to KR1020117007045A priority patent/KR101246505B1/en
Priority to CN2009801375971A priority patent/CN102165049B/en
Publication of WO2010035651A1 publication Critical patent/WO2010035651A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/04Raw material of mineral origin to be used; Pretreatment thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/08Treating solid fuels to improve their combustion by heat treatments, e.g. calcining

Definitions

  • the present invention relates to a method for producing a non-ferrous metal reducing agent, structural material charcoal, electric material charcoal, or ashless charcoal used as a raw material thereof.
  • carbon materials have been widely used as structural materials and electrical materials because of their excellent heat resistance and chemical stability and electrical conductivity. Further, since carbon exhibits an action of reducing many metal oxides at a high temperature, it is also used as a reducing agent in refining silicon and titanium. The characteristics required for the carbon material vary depending on its use. However, since the characteristics of the carbon material are not deteriorated, high quality characteristics such as low ash concentration and excellent thermal fluidity are required. Thus, attempts have been made to extract a component soluble in a solvent from coal as a raw material coal for the carbon material to obtain a high quality extracted coal from the raw material coal.
  • ashless coal As the raw coal for such a low ash carbon material, so-called ashless coal (Hyper Coal), which has been actively developed recently, can be cited (for example, see Patent Document 1).
  • ashless coal is produced by extracting coal with a solvent, separating only the components soluble in the solvent, and then removing the solvent.
  • this ashless coal has a wide molecular weight distribution from a relatively low molecular weight component having 2 to 3 condensed aromatic rings to a high molecular weight component having about 5 or 6 rings.
  • ashless coal since ash is not dissolved in a solvent, ashless coal does not substantially contain ash, exhibits high fluidity under heating, and is excellent in thermal fluidity.
  • Some coals like caking coal, exhibit thermoplasticity at around 400 ° C., but ashless coal generally melts at 200 to 300 ° C. regardless of the quality of the raw coal.
  • This ashless coal can be used as a raw material for carbon material, and the carbon material is used as a reducing agent for metallurgy including iron making, a structural material, and an electrical material such as an electrode.
  • a method using a hydrogen donating solvent is effective in order to realize a high extraction rate (ratio of coal components extracted into the solvent) regardless of the coal type (brand).
  • the hydrogen donating solvent include partially hydrogenated aromatic compounds such as tetralin and tetrahydroquinoline, or hydrogenated liquefied oil of coal. Since these solvents have the effect of hydrogenating and stabilizing coal radicals generated by thermal decomposition in the extraction process, the polycondensation of coal is suppressed, and extracted coal can be obtained in a high yield (hydrogen to the solvent). If there is no donating property, it is inevitable that a considerable amount of insoluble matter is generated by the polycondensation of coal).
  • the conventional method for producing ashless coal has the following problems. As described above, depending on the coal type of coal used as a raw material, there are some that are not easily dissolved in a solvent, and there are cases where a high ashless coal yield cannot be obtained as compared with a coal type that is easily dissolved in a solvent.
  • the method using a hydrogen donating solvent is effective in terms of dissolving coal, but (1) the hydrogen donating solvent is generally more expensive than an ordinary solvent having no hydrogen donating property, (2) Since the solvent once used for extraction loses most of its hydrogen donating capacity, it must be regenerated (hydrogenation treatment) and costly for the treatment, and (3) the hydrogen donating solvent For components that can be extracted even if they are not used, hydrogen in the hydrogen-donating solvent is consumed, so that the utilization efficiency of the hydrogen-donating solvent is low.
  • problems such as the generation of a relatively large amount of light components, and it has not been put into practical use.
  • This invention is made
  • the objective is the manufacturing method of the ashless coal which can obtain an ashless coal with high yield and low cost irrespective of the coal kind of raw material coal. It is to provide.
  • the method for producing ashless coal according to the present invention is a method for producing ashless coal used as a nonferrous metal reducing agent, structural material coal, electric material coal, or these raw materials, 1st slurry heating process which heat-processes the slurry which mixed this,
  • the slurry heat-processed by the said 1st slurry heating process is isolate
  • a hydrogen-donating solvent is added to and mixed with the solid component separated in the first separation step and the first separation step, and the mixed slurry is heated at a temperature equal to or higher than the temperature of the heat treatment in the first slurry heating step.
  • the second slurry heating step to be processed, and the slurry heat-treated in the second slurry heating step are separated into a liquid component in which coal is dissolved and a solid component containing ash and insoluble coal.
  • a modified coal acquisition step of removing a solvent from the liquid component separated in the second separation step and acquiring ashless coal that is a modified coal, and the modified coal acquisition step In addition to obtaining the ashless coal, in the modified coal obtaining step, the solvent is further removed from the liquid component separated in the first separation step, and the ashless coal that is the modified coal is obtained. It is characterized by acquiring.
  • the slurry in the first slurry heating step, the slurry is heat-treated at a lower temperature than the heat treatment in the second slurry heating step, thereby comparing substituents such as alkyl groups having a relatively low molecular weight. A component containing a large amount is extracted. Also, in the second slurry heating step, the slurry obtained by adding the hydrogen-donating solvent to the solid component separated in the first separation step and mixing is heated at a temperature equal to or higher than the temperature of the heat treatment in the first slurry heating step. Thus, depolymerization of coal proceeds, and components that have a relatively large molecular weight and are difficult to melt are extracted.
  • first ashless coal The ashless coal obtained from the liquid component separated in the first separation step
  • second ashless coal the ashless coal obtained from the liquid component separated in the second separation step
  • the method for producing ashless coal according to the present invention hydrotreats the solvent removed in the modified coal acquisition step, supplies the hydrotreated solvent to the second slurry heating step, and circulates it. It is characterized by that.
  • the solvent removed in the modified coal acquisition step that is, the solvent separated from the liquid component is subjected to hydrogenation treatment, whereby a part of the aromatic aromatic compound in the solvent component is aromatized.
  • the ring is partially hydrogenated and modified as a hydrogen donating solvent.
  • the use of an aromatic solvent and a hydrogen-donating solvent in combination with the extraction of coal components reduces the cost regardless of the coal type of the raw coal, and Ash coal yield can be improved. Furthermore, the production cost of ashless coal can be reduced by circulating the solvent used for coal extraction.
  • FIG. 1 is a flowchart for explaining the steps of the method for producing ashless coal
  • FIG. 2 is a schematic diagram showing an outline of the method for producing ashless coal
  • FIG. It is the schematic at the time of using the gravity sedimentation method in a method.
  • the method for producing ashless coal according to the present invention is a method for producing non-ferrous metal reducing agent, structural material coal, electric material coal, or ashless coal used as a raw material thereof, as shown in FIGS.
  • the first slurry heating step (S1) is a step of preparing a slurry by mixing coal and an aromatic solvent, and heat-treating the slurry containing the coal and the aromatic solvent (first slurry heating treatment). And a coal component is heat-extracted by the aromatic solvent by heat-processing a slurry.
  • Coal to be used as raw material should be non-slightly caking coal that has little softening and melting properties, or low quality coal such as lignite or sub-bituminous coal. Is preferable from an economic viewpoint. By using inexpensive coal such as these, ashless coal can be produced at a lower cost, so that economic efficiency can be improved. However, the coal used is not limited to these inferior coals, and bituminous coals may be used.
  • inferior coal here refers to coal, such as non-slightly caking coal, steam coal, and low-grade coal.
  • the low-grade coal is coal that contains 20% by mass or more of water and is desired to be dehydrated.
  • Examples of such low-grade coal include lignite, lignite, and sub-bituminous coal.
  • lignite coal includes Victoria coal, North Dakota coal, Belga coal, etc.
  • sub-bituminous coal includes West Banco coal, Binungan coal, Samarangau coal, and the like.
  • the low-grade coal is not limited to those exemplified above, and any coal containing a large amount of water and desired to be dehydrated is included in the low-grade coal referred to in the present invention.
  • aromatic solvents that dissolve coal include monocyclic aromatic compounds such as benzene, toluene, xylene, naphthalene, methylnaphthalene, dimethylnaphthalene, trimethylnaphthalene, alkylnaphthalene, anthoselan, phenanthrene, ethylnaphthalene, etc. These 2- to 3-ring aromatic compounds or mixtures thereof are used.
  • the bicyclic aromatic compound includes other naphthalenes having an aliphatic side chain, and biphenyl and alkylbenzene having a long aliphatic side chain. It is preferable to use a bicyclic aromatic compound that is a non-hydrogen-donating solvent.
  • the non-hydrogen donating solvent is a coal derivative that is a solvent mainly composed of a bicyclic aromatic and purified mainly from a coal carbonization product. Since this non-hydrogen donating solvent is stable even in a heated state and has excellent affinity with coal, the proportion of coal components extracted into the solvent (hereinafter also referred to as “extraction rate”) is high. It is a solvent that can be easily recovered by methods such as distillation. Then, in order to improve the economic efficiency, the recovered solvent can be supplied to the second slurry heating step (S3) after being subjected to a hydrogenation treatment as described later, and can be circulated and used repeatedly.
  • S3 second slurry heating step
  • the aromatic solvent preferably has a boiling point of 180 to 330 ° C.
  • the boiling point is less than 180 ° C.
  • the required pressure in the heat extraction or in the first separation step (S2) described later increases, and the loss due to volatilization increases in the step of recovering the solvent.
  • the recovery rate decreases.
  • the extraction rate in the heat extraction decreases.
  • the temperature exceeds 330 ° C.
  • the boiling point of the hydrogen donating solvent in the second slurry heating step (S3) described later is the same as described above.
  • the ratio of coal to aromatic solvent depends on the type of raw material coal, it is preferable that the ratio of raw material coal to aromatic solvent (aromatic solvent / coal) is adjusted to 3 to 10. The higher the coal concentration, the better. However, when the “aromatic solvent / coal” is less than 3, the viscosity of the slurry increases, and the liquid component and the solid component are separated in the movement of the slurry and the first separation step (S2). Tends to be difficult. On the other hand, if the “aromatic solvent / coal” exceeds 10, the ratio (extraction rate) of the coal component extracted into the aromatic solvent is less than the amount of the aromatic solvent, which is not economical. The ratio of the solid component to the hydrogen donating solvent (hydrogen donating solvent / solid component) in the second slurry heating step (S3) described later is the same as described above.
  • the heat treatment (heat extraction) of the slurry in the first slurry heating step (S1) is preferably 320 to 450 ° C. Heat treatment in this temperature range using an aromatic solvent extracts components that are relatively soluble in raw coal, that is, components that contain relatively many substituents such as alkyl groups with relatively low molecular weight. The If the extraction of the low molecular weight component is insufficient in the first slurry heating step (S1), in order to treat many insoluble components in the second slurry heating step (S3), many hydrogen donating solvents are used. It becomes necessary, and the load in the second slurry heating step (S3) increases.
  • the processing conditions in the first slurry heating step (S1) are made harsh, that is, when extraction processing is performed at a relatively high temperature for a long time, the polymerization of coal proceeds, so the second slurry heating step ( Even if a hydrogen donating solvent is used in S3), the extraction rate (yield) of the second ashless coal is lowered and the total yield is also lowered. Accordingly, not only the second slurry heating step (S3) but also the conditions of the first slurry heating step (S1) are appropriately adjusted so that the yield of the second ashless coal does not decrease (for example, less than 10% by mass). That is important.
  • the heating temperature of the slurry is 320 ° C. or higher, the amount of low molecular weight components separated in the first slurry heating step (S1) increases, and the components that melt in the first slurry heating step (S1) are sufficiently extracted.
  • the load in the second slurry heating step (S3) can be reduced.
  • the temperature is more preferably 340 to 440 ° C.
  • the above-mentioned heating temperature is a standard, and is appropriately adjusted depending on the type of coal or solvent used, the properties of the desired product, and the like.
  • the total yield of the first ashless coal and the second ashless coal is preferably at least 45% by mass in consideration of the productivity of the ashless coal.
  • the yield of the 1st ashless coal (the yield with respect to the raw material coal of the obtained 1st ashless coal) is 20 mass% or more on an anhydrous and ashless coal basis. If the yield is less than 20% by mass, the yield of the first ashless coal is relatively low, and the load in the second slurry heating step (S3) becomes large as described above. Therefore, the extraction rate in the first slurry heating step (S1) is appropriately adjusted so that the second ashless coal has a desired yield.
  • the desired yield in 1st ashless coal is a standard, and it changes with the kind of coal to be used, the kind of solvent, the property of the product calculated
  • the heating time is a time until reaching the dissolution equilibrium, but it is economically disadvantageous to realize it. Therefore, since it varies depending on conditions such as the particle size of the coal and the type of solvent, it cannot be generally stated, but it is usually about 0 to 120 minutes after reaching a predetermined extraction temperature. It is preferable to prepare within this range based on various conditions such as coal and solvent. Even if the heating time exceeds 120 minutes, the extraction does not proceed any further, which is not economical.
  • the heating time of 0 minutes means that the temperature is raised to a desired temperature and extracted, and then immediately cooled as follows.
  • the heated slurry Before proceeding to the first separation step (S2), the heated slurry may be cooled to a temperature at which the solute eluted from the coal does not reprecipitate, for example, about 150 ° C. or more and less than about 200 ° C.
  • a temperature at which the solute eluted from the coal does not reprecipitate for example, about 150 ° C. or more and less than about 200 ° C.
  • the pressure in the sedimentation tank can be lowered, and the specification level of valves and the like can be lowered.
  • the pyrolysis of coal produces aromatic-rich components mainly having an average boiling point (Tb50: 50% distillation temperature) of 200 to 300 ° C. Can be used as part.
  • Tb50 50% distillation temperature
  • the heat extraction in a non-oxidizing atmosphere. Specifically, it is performed in the presence of an inert gas. This is because, in the case of heat extraction, if it comes into contact with oxygen, it may ignite, and if hydrogen is used, the cost increases.
  • COG Coke Oven Gas
  • the inert gas used in the heat extraction it is preferable to use inexpensive nitrogen, but it is not particularly limited. As described above, COG may be used as it is.
  • the pressure in the heat extraction is preferably 1.0 to 5.0 MPa, although it depends on the temperature at the time of heat extraction and the vapor pressure of the aromatic solvent used. When the pressure is lower than the vapor pressure of the aromatic solvent, the aromatic solvent volatilizes and is not trapped in the liquid phase and cannot be extracted. In order to confine the aromatic solvent in the liquid phase, a pressure higher than the vapor pressure of the aromatic solvent is required. On the other hand, if the pressure is too high, the cost of the equipment and the operating cost increase, which is not economical.
  • the first separation step (S2) is a step of separating the slurry heated in the first slurry heating step (S1) into a liquid component and a solid component (first slurry separation).
  • the liquid component means a solution in which coal is dissolved, that is, a solution containing a coal component dissolved (extracted) in an aromatic solvent
  • the solid component means ash and insoluble coal insoluble in the aromatic solvent.
  • the method for separating the slurry into a liquid component and a solid component in the first separation step (S2) is not particularly limited, and a known method can be used.
  • a filtration method, a centrifugal separation method, a gravity sedimentation method, or the like can be used, and a plurality of these methods may be combined.
  • a gravity sedimentation method as a solid-liquid separation method (the gravity sedimentation method will be described later).
  • a gravity sedimentation method that allows continuous operation of fluid and is suitable for a large amount of processing at low cost.
  • a liquid component hereinafter also referred to as “supernatant liquid” containing a coal component extracted into the solvent from the upper part of the gravity settling tank, and an insoluble ash and insoluble in the solvent from the lower part of the gravity settling tank.
  • a solid component hereinafter, also referred to as “solid content concentrate”) that is a slurry containing coal can be obtained.
  • the gravity sedimentation method is one of the options, and other methods may be used.
  • ⁇ Second slurry heating step (S3)> a hydrogen donating solvent is added to and mixed with the solid component separated in the first separating step (S2) to prepare a slurry, which includes the solid component and the hydrogen donating solvent.
  • the slurry is heated at a temperature equal to or higher than the temperature of the heat treatment in the first slurry heating step (S1) (second slurry heat treatment).
  • a coal component is heat-extracted by the hydrogen-donating solvent by heat-processing a slurry.
  • Solid component The solid component is separated in the first separation step (S2) and includes a coal component that has not been extracted into the aromatic solvent in the first slurry heating step (S1).
  • Hydrophilic solvent As the hydrogen donating solvent for dissolving coal, compounds such as 1,2,3,4-tetrahydronaphthalene, 1,2-dihydronaphthalene, tetrahydromethylnaphthalene or a mixture thereof are generally used.
  • the hydrogen donating solvent is a fragrance of a part of an aromatic compound having two or more rings having or not having an aliphatic side chain, such as naphthalene, methylnaphthalene, dimethylnaphthalene, trimethylnaphthalene, alkylnaphthalene, anthoselan, phenanthrene, and ethylnaphthalene.
  • the ring is a partially hydrogenated aromatic compound that is partially hydrogenated and has a high hydrogen donating property.
  • the bicyclic aromatic compound includes other naphthalenes having an aliphatic side chain, and biphenyl and alkylbenzene having a long aliphatic side chain.
  • hydrotreated products such as coal liquefied oil and tar fractions and petroleum refining by-products can also be used as the hydrogen donating solvent.
  • a hydrogen-donating solvent is heated and heated, and is stabilized by giving hydrogen to radical fragments generated by thermal decomposition of some of the coal molecules, thereby suppressing the polycondensation of coal, resulting in extraction into the solvent.
  • the amount of coal components can be increased. Therefore, the extraction rate becomes high.
  • the hydrogen-donating solvent is a solvent that can be easily recovered by a method such as distillation.
  • the hydrogen-donating solvent has the property that after donating hydrogen to the coal radical, it loses itself and turns into an aromatic solvent. For example, “1,2,3,4-tetrahydronaphthalene ⁇ naphthalene + 2H 2 ”.
  • the recovered solvent after the heat treatment is supplied to the second slurry heating step (S3) after being subjected to a hydrogenation treatment as described later, and can be circulated and used repeatedly. it can. Or it can supply to a 1st slurry heating process (S1), and it can circulate and use repeatedly, without performing a hydrogenation process.
  • the recovered solvent may contain a small amount of a hydrogen-donating solvent in the aromatic solvent. However, such a solvent does not lower the economy, and the first slurry heating step (S1) It is possible to supply and use.
  • the pressure in the heat extraction is preferably 1.0 to 20.0 MPa, although it depends on the temperature at the time of heat extraction and the vapor pressure of the hydrogen donating solvent used.
  • the pressure is lower than the vapor pressure of the hydrogen donating solvent, the hydrogen donating solvent volatilizes and is not trapped in the liquid phase and cannot be extracted.
  • a pressure higher than the vapor pressure of the hydrogen donating solvent is required.
  • the pressure is too high, the cost of the equipment and the operating cost increase, which is not economical. About other conditions etc., it is the same as that of the description about the aromatic solvent in said 1st slurry heating process (S1).
  • the heat treatment is performed at a temperature equal to or higher than the temperature of the heat treatment in the first slurry heating step (S1).
  • the second slurry heating step (S3) ashless charcoal is obtained from the components remaining undissolved in the first slurry heating step (S1), and components that could not be extracted in the first slurry heating step (S1) are extracted. Since extraction is performed, a small yield in the second slurry heating step (S3) leads to a small overall yield.
  • the heating temperature in the second slurry heating step (S3) is lower than the temperature in the heat treatment in the first slurry heating step (S1), components that cannot be extracted in the first slurry heating step (S1) are extracted.
  • the extraction rate (yield) cannot be improved, and the overall yield decreases.
  • the heating temperature in the second slurry heating step (S3) is not particularly limited as long as it is equal to or higher than the heating temperature in the first slurry heating step (S1), but it is preferably performed at a temperature of 350 to 500 ° C. . By setting the heating temperature within this range, in the presence of the hydrogen donating solvent, the bonds between the molecules constituting the coal are loosened, mild thermal decomposition occurs, and the extraction rate increases.
  • the heating temperature in the first slurry heating step (S1) and the heating temperature in the second slurry heating step (S3) may be the same.
  • the heating temperature of the slurry is 350 ° C. or higher, it is sufficient to weaken the bonds between the molecules constituting the coal in the presence of the hydrogen donating solvent, and the extraction rate (yield) is likely to be improved.
  • the temperature is 500 ° C. or lower, the rate of the thermal decomposition / carbonization (polymerization) reaction tends to decrease. .
  • it is more preferably 340 to 440 ° C.
  • the above-mentioned heating temperature is a standard, and is appropriately adjusted depending on the type of coal or solvent used, the properties of the desired product, and the like.
  • the yield in the second slurry heating step (S3) (the yield of the obtained second ashless coal relative to the raw coal) is preferably 10% by mass or more based on anhydrous / ashless coal. If the yield is less than 10% by mass, the extraction rate (yield) of the component that could not be extracted in the first slurry heating step (S1) is low, and the overall yield is lowered. In addition, the effect of using a hydrogen donating solvent is small. Therefore, the extraction rate in the second slurry heating step (S3) is appropriately adjusted so that the second ashless coal has a desired yield.
  • the desired yield in the second ashless coal is a guideline and varies depending on the type of coal and solvent used, the properties of the desired product, and the like.
  • the heated slurry may be cooled to a temperature at which the solute eluted from the coal does not reprecipitate, for example, about 200 to 360 ° C.
  • a temperature at which the solute eluted from the coal does not reprecipitate for example, about 200 to 360 ° C.
  • the pressure in the sedimentation tank can be lowered, and the specification level of valves and the like can be lowered.
  • Other conditions are the same as the processing conditions in the first slurry heating step (S1).
  • the same processing apparatus can be used for 1st slurry heating process (S1) and 2nd slurry heating process (S3), you may use a separate processing apparatus.
  • the second separation step (S4) is a step of separating the slurry heated in the second slurry heating step (S3) into a liquid component and a solid component (second slurry separation).
  • the liquid component means a solution in which coal is dissolved, that is, a solution containing a coal component dissolved (extracted) in a hydrogen donating solvent
  • the solid component is an ash component insoluble in the hydrogen donating solvent and A slurry containing insoluble coal.
  • the second separation step (S4) is the same as the first separation step (S2), description thereof is omitted here.
  • the method in the case of using the gravity sedimentation method in the second separation step (S4) will be described later.
  • the same solid-liquid separation device can be used for both the first separation step (S2) and the second separation step (S4), but separate solid-liquid separation devices may be used.
  • the solvent is removed from the liquid component separated in the second separation step (S4) to obtain ashless coal (second ashless coal) which is the modified coal. It is. Further, in addition to obtaining the second ashless coal, the solvent is removed from the liquid component separated in the first separation step (S2), and ashless coal (first ashless coal that is modified coal) is obtained. ).
  • the method for separating and removing the solvent from the liquid component (supernatant liquid) is not particularly limited, and a known method can be used, for example, a general distillation method or evaporation method (spray drying method, etc.). Etc. can be used. Then, the separated and recovered solvent can be circulated to the first slurry heating step (S1) and repeatedly used. Or after hydrotreating, it can circulate to a 2nd slurry heating process (S3), and can be used repeatedly.
  • solid-liquid separation By separating and recovering the solvent (solid-liquid separation), ashless coal with an extremely low ash concentration can be obtained from the supernatant. This ashless coal contains almost no ash, has no moisture, and exhibits performance (thermal fluidity) far superior to that of raw coal.
  • the ashless coal obtained by the production method of the present invention is used as a non-ferrous metal reducing agent, structural material charcoal, or electric material charcoal. Or it uses as a raw material of nonferrous metal reducing agent, structural material charcoal, or electric material charcoal.
  • the non-ferrous metal reducing agent refers to a reducing agent used for reduction of non-ferrous metals such as silicon and titanium
  • the structural material charcoal is, for example, a carbon heat insulating material or a raw material for a carbon structural material such as a crucible.
  • the electric material charcoal is a carbon material used as a raw material for a carbon electric material such as a carbon electrode or an anode for aluminum refining. The reason for using these raw materials is, for example, that it may be necessary to subject the ashless coal to a secondary treatment such as heat treatment.
  • the modified coal acquisition step (S5) ashless from the liquid component separated in the first separation step (S2) and the liquid component separated in the second separation step (S4).
  • the solvent is removed from the solid component separated in the second separation step (S4) to produce by-product coal that is reformed charcoal. May be manufactured (by-product charcoal acquisition step).
  • This by-product charcoal is free of oxygen-containing functional groups, has ash, has no water, and has a sufficient calorific value. Therefore, this by-product charcoal can be used for a known method, for example, for various fuels.
  • the method for separating and removing the solvent from the solid component (solid concentrate) is a known method, for example, a general distillation method or evaporation method, as in the case of obtaining ashless coal from the liquid component described above.
  • the solvent that can be used and separated and recovered can be circulated to the first slurry heating step (S1) and repeatedly used. Or after hydrotreating, it can circulate to a 2nd slurry heating process (S3), and can be used repeatedly.
  • S1 first slurry heating step
  • S3 2nd slurry heating process
  • the solvent (solvent separated from the liquid component) removed in the modified coal acquisition step (S5) is hydrotreated (hydrotreating step), and the hydrotreated solvent is used in the second slurry heating step (S3). It is preferable to use it by supplying it to the circulation.
  • the solvent to be hydrotreated is a solvent removed from the liquid component separated in the first separation step (S2), a solvent removed from the liquid component separated in the second separation step (S4), and a by-product coal acquisition step.
  • the solvent removed from the solid component may be all, but only one or two may be hydrotreated. The same applies to the case of recycling without hydrotreating.
  • the hydrotreating method is not particularly limited.
  • the solvent is brought into contact with coke oven gas (COG) and pressurized, and the reaction is performed at a predetermined temperature in the presence of a catalyst.
  • Hydrogenation methods can be used.
  • a fixed bed catalyst reaction tower fixed bed hydrogenation reactor filled with a known hydrogenation catalyst such as NiMo, NiCo, CoMo, etc., which is a hydrogenation reaction tower as in a so-called petroleum refining plant.
  • COG is mixed with the solvent to be circulated, then, for example, sent to a fixed bed catalytic reaction tower holding a pressure of 5 to 10 MPa using a pressure pump, and reacted at a temperature of about 320 to 370 ° C. To do.
  • COG is a by-product gas emitted from a coke oven that is generated when coal is distilled to produce coke.
  • the COG usually contains 50 to 70% by mass of hydrogen, and other methane, carbon monoxide, and ammonia.
  • the COG discharged from the coke oven is about 800 ° C., and by using this sensible heat to raise the temperature of the contacted solvent, the heating load in the hydrotreatment can be suppressed.
  • the temperature of the hydrogenation treatment is preferably 320 to 370 ° C. This is because of a temperature generally used as a reaction for efficiently producing a partially hydrogenated aromatic in the presence of a catalyst, that is, naphthenating an aromatic ring.
  • a part of the aromatic rings of the two or more aromatic compounds in the solvent component is likely to be partially hydrogenated and easily modified as a solvent having a hydrogen donating property.
  • the hydrotreatment pressure is preferably 5 to 10 MPa, and LHSV (propylene standard) is preferably about 1 hr ⁇ 1 .
  • the catalyst used in the hydrotreatment may be the same as the catalyst used in a general petroleum refining process, such as a NiMo / Al 2 O 3 catalyst, a NiCo / Al 2 O 3 catalyst, a CoMo / Al 2 O 3 catalyst, etc. Use it.
  • the solvent removed / recovered in the modified coal acquisition step (S5) is subjected to a hydrogenation process, and then supplied to the second slurry heating step (S3), and separated in the first separation step (S2).
  • the mixed slurry is mixed, the mixed slurry is heat-treated, and the coal component is heated and extracted into a solvent.
  • the solvent is removed and recovered again through the second separation step (S4) and the modified coal acquisition step (S5).
  • the recovered solvent is again hydrogenated and supplied to the second slurry heating step (S3). By repeating this, the solvent is circulated and used.
  • the solvent removed and recovered in the modified coal acquisition step (S5) can be supplied to the first slurry heating step (S1) as an aromatic solvent without performing a hydrogenation treatment.
  • FIG. 3 in the gravity sedimentation method, in the solid-liquid separator 100, first, powder coal as a raw material of ashless coal charged from the coal storage tank 1 in a coal slurry preparation tank 3, and a solvent The aromatic solvent thrown from the storage tank 2 is mixed and stirred with the stirrer 12a to prepare a slurry. Next, a predetermined amount of this slurry is supplied to the first extraction tank 4 and heated at 320 to 450 ° C. for a predetermined time while being stirred by the stirrer 12b.
  • the slurry is brought to a predetermined temperature by a cooler (not shown). Cool (first slurry heating step (S1)).
  • a cooling mechanism may be provided in the first extraction tank 4 in order to cool the slurry.
  • a predetermined amount of slurry may be supplied from the coal slurry preparation tank 3 to a preheater (not shown) and heated to 320 to 450 ° C. before being supplied to the first extraction tank 4.
  • the slurry which performed this extraction process is supplied to the 1st gravity sedimentation tank 5, a slurry is isolate
  • the pressure is preferably in the range of 1.0 to 5.0 MPa.
  • the time for maintaining at a predetermined temperature in the first gravity settling tank 5 is a time required for separating the slurry into a supernatant and a solid concentrate, and is generally 60 to 120 minutes. However, it is not particularly limited.
  • the solid concentrate is mixed with the hydrogen-donating solvent hydrogenated in the stationary hydrogenation reactor 10 in the second extraction tank 6, and 350 to 500 ° C. (however, the first extraction tank 4 is stirred with the stirrer 12c). And then cooled to a predetermined temperature by a cooler (not shown) as necessary (second slurry heating step (S3)).
  • a cooling mechanism may be provided in the second extraction tank 6 in order to cool the slurry.
  • a predetermined amount of slurry may be supplied from the first gravity settling tank 5 to a preheater (not shown) before being supplied to the second extraction tank 6, and the slurry may be heated to 350 to 500 ° C.
  • the slurry which performed this extraction process is supplied to the 2nd gravity sedimentation tank 8, a slurry is isolate
  • the pressure in the second gravity settling tank 8 is the same as described for the first gravity settling tank 5 except that the pressure is preferably in the range of 1.0 to 20.0 MPa.
  • the supernatant liquid separated in the first gravity settling tank 5 and the supernatant liquid separated in the second gravity settling tank 8 are separated from the solvent by the reformed coal separator 7, and the first and second ashless coals are separated. (Modified coal acquisition step (S5)). If necessary, the by-product coal separator 9 may separate and recover the solvent from the solid component (solid content concentrate) to obtain a by-product coal in which the ash that is the modified coal is concentrated.
  • the solvent (collected solvent) separated and recovered by the reformed coal separator 7 and the byproduct coal separator 9 is circulated to the solvent storage tank 2 as necessary.
  • This recovered solvent is mixed (contacted) with a hydrogen source (for example, COG) supplied from a hydrogen source supply tank 11 in a fixed hydrogenation reactor 10 filled with a catalyst and pressurized at a pressure of 5 to 10 MPa. After that, the temperature is raised to 320 to 370 ° C. and hydrogenation is performed. Thereafter, the pressure is reduced and the second extraction tank 6 is supplied.
  • a hydrogen source for example, COG
  • COG hydrogen source supplied from a hydrogen source supply tank 11 in a fixed hydrogenation reactor 10 filled with a catalyst and pressurized at a pressure of 5 to 10 MPa.
  • the temperature is raised to 320 to 370 ° C. and hydrogenation is performed.
  • the pressure is reduced and the second extraction tank 6 is supplied.
  • the mixing with COG, the control of temperature and pressure, etc. may be performed in the fixed hydrogenation
  • a coal pulverization step of pulverizing raw coal between or before and after the respective steps You may include other processes, such as an unnecessary object removal process which removes unnecessary objects, such as garbage, and a drying process which dries the obtained ashless coal.
  • the used coal is subbituminous coal (carbon content 74.5% by mass (daf basis)), and the solvent used is 1-methylnaphthalene (MN), which is an aromatic solvent, or tetrahydro-, which is a hydrogen-donating solvent.
  • MN 1-methylnaphthalene
  • TPMN 1-methylnaphthalene
  • the ratio of the coal and the solvent in the first extraction process (solvent / coal) is 4 (2.0 kg / 0.5 kg), and the ratio of the insoluble component to the solvent in the second extraction process (solvent / insoluble component).
  • the solid-liquid separation method was performed by high-temperature filtration (pressure filtration with a 0.5 ⁇ m mesh filter at the extraction temperature).
  • the extraction liquids obtained by the first extraction process and the second extraction process were each heated to 200 ° C. in a nitrogen stream to remove the solvent, and further heated to 300 ° C. to remove the product oil.
  • First ashless coal and second ashless coal were collected and weighed.
  • the solvent and produced oil were each collected by a cooling trap and weighed.
  • the gas in the autoclave after the treatment is collected while measuring the volume, and analyzed by a gas chromatograph, and the generated gas components (water, methane, ethane, hydrogen, CO, CO 2). ) was quantitatively analyzed.
  • the gas yield and oil yield were determined.
  • the gas yield was calculated by measuring the volume of the generated gas by an ordinary method.
  • the oil yield is determined by calculating the total mass of the solvent and product oil collected in the step of recovering the product, and defining the amount of oil added above the mass of the charged solvent as the amount of oil produced. / Mass of charged coal (raw coal) ⁇ 100.
  • the ashless coal yield (extraction rate) was calculated
  • the first ashless coal yield is 20% by mass or more, the first ashless coal yield is good, and the second ashless coal yield is 10% by mass or more.
  • the yield of ashless coal was considered good, and the total yield of the first ashless coal and the second ashless coal was 45% by mass or more, and the total yield was good.
  • HC Hydrogen consumption (mg / g-coal)
  • W S Recovered solvent mass (g)
  • C DHMN fraction of dihydro-1-methylnaphthalene in the recovered solvent (% by mass)
  • C MN fraction of 1-methylnaphthalene in the recovered solvent (% by mass)
  • W C coal charged amount (g) It is.
  • No. 7 to 11 are comparative examples not satisfying the requirements of the present invention, and the following results were obtained.
  • No. 7 since no hydrogen-donating solvent was used as the solvent in the second extraction treatment, the yield of the second ashless coal was low, and the total yield of the first ashless coal and the second ashless coal was also low.
  • No. 8 since the hydrogen donating solvent was used as the solvent in the first extraction treatment, the yield of the first ashless coal was high, but no hydrogen donating solvent was used as the solvent in the second extraction treatment. Therefore, the yield of the second ashless coal was low, and as a result, the total yield of the first ashless coal and the second ashless coal was also low.

Abstract

A method for manufacturing hyper-coal is characterized by comprising a first slurry heating step (S1) for heat-treating slurry prepared by mixing coal and an aromatic solvent, a first separation step (S2) for separating the heat-treated slurry into a liquid component and a solid component, a second slurry heating step (S3) for heat-treating slurry prepared by adding and mixing a hydrogen donor solvent into the solid component at a temperature higher than or equal to the temperature of the heat treatment in the first slurry heating step (S1), a second separation step (S4) for separating the heat-treated slurry into a liquid component and a solid component, and an upgraded coal acquisition step (S5) for acquiring hyper-coal by removing the solvent from the liquid component, and further acquiring hyper-coal by removing the solvent from the liquid component separated in the first separation step.

Description

無灰炭の製造方法Production method of ashless coal
 本発明は、非鉄金属還元剤、構造材料炭、電気材料炭、または、これらの原料として利用される無灰炭の製造方法に関する。 The present invention relates to a method for producing a non-ferrous metal reducing agent, structural material charcoal, electric material charcoal, or ashless charcoal used as a raw material thereof.
 従来、炭素材料は、耐熱性や化学的安定性に優れ、しかも電気伝導性があるため、構造材料や電気材料として広く利用されている。また、炭素は高温で多くの金属酸化物を還元する作用を示すので、シリコンやチタン等の精錬における還元剤としても使用される。炭素材料に求められる特性はその用途により様々であるが、炭素材料の特性を劣化させないため、灰分濃度が低く、熱流動性に優れる等の高品質な特性が要求される。そこで、炭素材料の原料炭として、石炭から溶剤に可溶な成分を抽出し、原料石炭よりも高品質な抽出炭を得る試みがなされている。 Conventionally, carbon materials have been widely used as structural materials and electrical materials because of their excellent heat resistance and chemical stability and electrical conductivity. Further, since carbon exhibits an action of reducing many metal oxides at a high temperature, it is also used as a reducing agent in refining silicon and titanium. The characteristics required for the carbon material vary depending on its use. However, since the characteristics of the carbon material are not deteriorated, high quality characteristics such as low ash concentration and excellent thermal fluidity are required. Thus, attempts have been made to extract a component soluble in a solvent from coal as a raw material coal for the carbon material to obtain a high quality extracted coal from the raw material coal.
 このような低灰分の炭素材料の原料炭としては、最近、活発に開発が進められている、いわゆる、無灰炭(ハイパーコール)を挙げることができる(例えば、特許文献1参照)。ここで、無灰炭とは、石炭を溶剤で抽出処理し、この溶剤に溶ける成分だけを分離して、その後、溶剤を除去することによって、製造されたものである。この無灰炭は、構造的には、縮合芳香環が2ないし3個の比較的低分子量の成分から、5、6環程度の高分子量成分まで広い分子量分布を有する。また、無灰炭は、灰分が溶剤には溶けないため、実質的に灰分を含まず、加熱下で高い流動性を示し、熱流動性に優れる。石炭の中には粘結炭のように400℃前後で熱可塑性を示すものもあるが、無灰炭は、一般的に、原料石炭の品位に関わらず200~300℃で溶融する。この無灰炭は、炭素材料の粗原料として用いることができ、炭素材料は、製鉄をはじめとする冶金用還元剤や、構造材料や、電極等の電気材料等として使用される。 As the raw coal for such a low ash carbon material, so-called ashless coal (Hyper Coal), which has been actively developed recently, can be cited (for example, see Patent Document 1). Here, ashless coal is produced by extracting coal with a solvent, separating only the components soluble in the solvent, and then removing the solvent. Structurally, this ashless coal has a wide molecular weight distribution from a relatively low molecular weight component having 2 to 3 condensed aromatic rings to a high molecular weight component having about 5 or 6 rings. In addition, since ash is not dissolved in a solvent, ashless coal does not substantially contain ash, exhibits high fluidity under heating, and is excellent in thermal fluidity. Some coals, like caking coal, exhibit thermoplasticity at around 400 ° C., but ashless coal generally melts at 200 to 300 ° C. regardless of the quality of the raw coal. This ashless coal can be used as a raw material for carbon material, and the carbon material is used as a reducing agent for metallurgy including iron making, a structural material, and an electrical material such as an electrode.
 しかしながら、無灰炭の製造においては、必ずしもすべての種類の石炭から高い収率で無灰炭を得ることはできないという問題があった。例えば、瀝青炭のうち、石炭化度の比較的低い石炭は、溶剤に溶けやすく、一般に高い収率(50質量%前後以上)が得られるが、亜瀝青炭や褐炭のように、石炭化度の低い石炭や、瀝青炭のうちでも高石炭化度のものは、溶剤に溶けにくく、収率が低くなる。 However, in the production of ashless coal, there is a problem that it is not always possible to obtain ashless coal from all types of coal in a high yield. For example, among bituminous coal, coal with a relatively low degree of coalification is easy to dissolve in a solvent, and generally a high yield (about 50% by mass or more) is obtained. However, like subbituminous coal and lignite, the degree of coalification is low. Among coal and bituminous coal, those with a high degree of coalification are difficult to dissolve in the solvent and the yield is low.
 一方、石炭種(銘柄)に関わらず高い抽出率(溶剤に抽出される石炭成分の割合)を実現するために、水素供与性溶剤を用いる方法が有効であることが知られている。水素供与性溶剤としては、テトラリンやテトラヒドロキノリン等の部分水素化芳香族化合物、あるいは石炭の水添液化油等があげられる。これらの溶剤は、抽出工程において熱分解で生成する石炭ラジカルを水素化して安定化させる作用があるため、石炭の重縮合が抑制され、高い収率で抽出炭を得ることができる(溶剤に水素供与性がない場合には、石炭の重縮合により、かなりの不溶物が生成することが避けられない)。 On the other hand, it is known that a method using a hydrogen donating solvent is effective in order to realize a high extraction rate (ratio of coal components extracted into the solvent) regardless of the coal type (brand). Examples of the hydrogen donating solvent include partially hydrogenated aromatic compounds such as tetralin and tetrahydroquinoline, or hydrogenated liquefied oil of coal. Since these solvents have the effect of hydrogenating and stabilizing coal radicals generated by thermal decomposition in the extraction process, the polycondensation of coal is suppressed, and extracted coal can be obtained in a high yield (hydrogen to the solvent). If there is no donating property, it is inevitable that a considerable amount of insoluble matter is generated by the polycondensation of coal).
特開2001-26791号公報JP 2001-26791 A
 しかしながら、従来の無灰炭の製造方法では、以下に示す問題がある。
 前記したとおり、原料として用いる石炭の石炭種によっては、溶剤に溶けにくいものがあり、溶剤に溶けやすい石炭種と比較して、高い無灰炭収率を得られない場合がある。
 また、水素供与性溶剤を用いる方法は、石炭を溶かすという観点では有効であるが、(1)水素供与性溶剤は、水素供与性のない普通の溶剤に比べて一般的に高価であること、(2)一度抽出に使用された溶剤は、水素供与能力の大部分を失うため、その再生(水素化処理)が必要で、その処理にもコストがかかること、(3)水素供与性溶剤を使用しなくても抽出されるような成分についても、水素供与性溶剤の水素が消費されるので、水素供与性溶剤の利用効率が低いこと、(4)水素供与性溶剤で抽出すると、抽出工程で軽質成分が比較的多く生成すること、等の問題があり、実用化には至っていない。
However, the conventional method for producing ashless coal has the following problems.
As described above, depending on the coal type of coal used as a raw material, there are some that are not easily dissolved in a solvent, and there are cases where a high ashless coal yield cannot be obtained as compared with a coal type that is easily dissolved in a solvent.
In addition, the method using a hydrogen donating solvent is effective in terms of dissolving coal, but (1) the hydrogen donating solvent is generally more expensive than an ordinary solvent having no hydrogen donating property, (2) Since the solvent once used for extraction loses most of its hydrogen donating capacity, it must be regenerated (hydrogenation treatment) and costly for the treatment, and (3) the hydrogen donating solvent For components that can be extracted even if they are not used, hydrogen in the hydrogen-donating solvent is consumed, so that the utilization efficiency of the hydrogen-donating solvent is low. However, there are problems such as the generation of a relatively large amount of light components, and it has not been put into practical use.
 本発明は、前記課題に鑑みてなされたものであり、その目的は、原料石炭の石炭種に関わらず、高収率、かつ安価に無灰炭を得ることができる無灰炭の製造方法を提供することにある。 This invention is made | formed in view of the said subject, The objective is the manufacturing method of the ashless coal which can obtain an ashless coal with high yield and low cost irrespective of the coal kind of raw material coal. It is to provide.
 本発明者らは鋭意研究した結果、抽出炭(無灰炭)を安価に高収率で得るための方法について、水素供与性溶剤の優れた特性を生かしつつ、そのデメリットを限りなく小さくするプロセスを構築することに成功した。 As a result of diligent research, the present inventors have made a process for obtaining extracted coal (ashless coal) at a low yield in a high yield while making the best use of the properties of a hydrogen-donating solvent and reducing the disadvantages as much as possible. Succeeded in building.
 すなわち、本発明に係る無灰炭の製造方法は、非鉄金属還元剤、構造材料炭、電気材料炭、または、これらの原料として用いる無灰炭の製造方法であって、石炭と芳香族溶剤とを混合したスラリーを加熱処理する第1スラリー加熱工程と、前記第1スラリー加熱工程で加熱処理されたスラリーを、石炭が溶解した液体成分と、灰分および不溶石炭を含む固体成分と、に分離する第1分離工程と、前記第1分離工程で分離された固体成分に水素供与性溶剤を加えて混合し、この混合したスラリーを、前記第1スラリー加熱工程における加熱処理の温度以上の温度で加熱処理する第2スラリー加熱工程と、前記第2スラリー加熱工程で加熱処理されたスラリーを、石炭が溶解した液体成分と、灰分および不溶石炭を含む固体成分と、に分離する第2分離工程と、前記第2分離工程で分離された液体成分から溶剤を除去して、改質炭である無灰炭を取得する改質炭取得工程と、を含み、前記改質炭取得工程において、前記無灰炭を取得することに加え、前記改質炭取得工程において、さらに、前記第1分離工程で分離された液体成分から溶剤を除去して、改質炭である無灰炭を取得することを特徴とする。 That is, the method for producing ashless coal according to the present invention is a method for producing ashless coal used as a nonferrous metal reducing agent, structural material coal, electric material coal, or these raw materials, 1st slurry heating process which heat-processes the slurry which mixed this, The slurry heat-processed by the said 1st slurry heating process is isolate | separated into the liquid component in which coal melt | dissolved, and the solid component containing ash and insoluble coal A hydrogen-donating solvent is added to and mixed with the solid component separated in the first separation step and the first separation step, and the mixed slurry is heated at a temperature equal to or higher than the temperature of the heat treatment in the first slurry heating step. The second slurry heating step to be processed, and the slurry heat-treated in the second slurry heating step are separated into a liquid component in which coal is dissolved and a solid component containing ash and insoluble coal. A modified coal acquisition step of removing a solvent from the liquid component separated in the second separation step and acquiring ashless coal that is a modified coal, and the modified coal acquisition step In addition to obtaining the ashless coal, in the modified coal obtaining step, the solvent is further removed from the liquid component separated in the first separation step, and the ashless coal that is the modified coal is obtained. It is characterized by acquiring.
 このような製造方法によれば、第1スラリー加熱工程において、スラリーを第2スラリー加熱工程における加熱処理よりも低い温度で加熱処理することで、分子量が比較的小さいアルキル基等の置換基を比較的多く含む成分が抽出される。また、第2スラリー加熱工程において、第1分離工程で分離された固体成分に水素供与性溶剤を加えて混合したスラリーを、第1スラリー加熱工程における加熱処理の温度以上の温度で加熱処理することで、石炭の解重合が進み、分子量が比較的大きく、溶融しにくい成分が抽出される。また、水素供与性溶剤からの水素移動が行われるため、石炭の重縮合が抑制され、石炭成分が抽出されやすくなる。
 なお、前記第1分離工程で分離された液体成分から得られる無灰炭を、以下、「第1無灰炭」ともいい、前記第2分離工程で分離された液体成分から得られる無灰炭を、以下、「第2無灰炭」ともいう。
According to such a manufacturing method, in the first slurry heating step, the slurry is heat-treated at a lower temperature than the heat treatment in the second slurry heating step, thereby comparing substituents such as alkyl groups having a relatively low molecular weight. A component containing a large amount is extracted. Also, in the second slurry heating step, the slurry obtained by adding the hydrogen-donating solvent to the solid component separated in the first separation step and mixing is heated at a temperature equal to or higher than the temperature of the heat treatment in the first slurry heating step. Thus, depolymerization of coal proceeds, and components that have a relatively large molecular weight and are difficult to melt are extracted. Moreover, since the hydrogen transfer from the hydrogen donating solvent is performed, the polycondensation of coal is suppressed and the coal components are easily extracted.
The ashless coal obtained from the liquid component separated in the first separation step is hereinafter also referred to as “first ashless coal”, and the ashless coal obtained from the liquid component separated in the second separation step. Hereinafter also referred to as “second ashless coal”.
 本発明に係る無灰炭の製造方法は、前記改質炭取得工程で除去した溶剤を水素化処理し、この水素化処理した溶剤を前記第2スラリー加熱工程に供給し、循環して使用することを特徴とする。 The method for producing ashless coal according to the present invention hydrotreats the solvent removed in the modified coal acquisition step, supplies the hydrotreated solvent to the second slurry heating step, and circulates it. It is characterized by that.
 このような製造方法によれば、改質炭取得工程で除去された溶剤、すなわち、液体成分から分離した溶剤が水素化処理されることで、溶剤成分における2環芳香族化合物の一部の芳香環が部分的に水素化され、水素供与性を有する溶剤として改質される。この改質された溶剤を循環利用することで、無灰炭の製造コストが削減される。 According to such a manufacturing method, the solvent removed in the modified coal acquisition step, that is, the solvent separated from the liquid component is subjected to hydrogenation treatment, whereby a part of the aromatic aromatic compound in the solvent component is aromatized. The ring is partially hydrogenated and modified as a hydrogen donating solvent. By recycling this modified solvent, the production cost of ashless coal can be reduced.
 本発明に係る無灰炭の製造方法によれば、石炭成分の抽出に、芳香族溶剤と水素供与性溶剤とを併用することで、原料石炭の石炭種に関わらず、コストを抑えるとともに、無灰炭収率を向上させることができる。
 さらに、石炭の抽出に用いる溶剤を循環して使用することで、無灰炭の製造コストの削減を図ることができる。
According to the method for producing ashless coal according to the present invention, the use of an aromatic solvent and a hydrogen-donating solvent in combination with the extraction of coal components reduces the cost regardless of the coal type of the raw coal, and Ash coal yield can be improved.
Furthermore, the production cost of ashless coal can be reduced by circulating the solvent used for coal extraction.
無灰炭の製造方法の工程を説明するフローチャートである。It is a flowchart explaining the process of the manufacturing method of ashless coal. 無灰炭の製造方法の概略を示す模式図である。It is a schematic diagram which shows the outline of the manufacturing method of ashless coal. 無灰炭の製造方法における重力沈降法を用いた場合の概略図である。It is the schematic at the time of using the gravity sedimentation method in the manufacturing method of ashless coal.
 次に、図面を参照して本発明に係る無灰炭の製造方法ついて詳細に説明する。なお、参照する図面において、図1は、無灰炭の製造方法の工程を説明するフローチャート、図2は、無灰炭の製造方法の概略を示す模式図、図3は、無灰炭の製造方法における重力沈降法を用いた場合の概略図である。 Next, the method for producing ashless coal according to the present invention will be described in detail with reference to the drawings. In the drawings to be referred to, FIG. 1 is a flowchart for explaining the steps of the method for producing ashless coal, FIG. 2 is a schematic diagram showing an outline of the method for producing ashless coal, and FIG. It is the schematic at the time of using the gravity sedimentation method in a method.
≪無灰炭の製造方法≫ ≪Production method of ashless coal≫
 本発明に係る無灰炭の製造方法は、非鉄金属還元剤、構造材料炭、電気材料炭、または、これらの原料として用いる無灰炭の製造方法であって、図1、2に示すように、第1スラリー加熱工程(S1)と、第1分離工程(S2)と、第2スラリー加熱工程(S3)と、第2分離工程(S4)と、改質炭取得工程(S5)と、を含むものである。
 以下、各工程について説明する。
The method for producing ashless coal according to the present invention is a method for producing non-ferrous metal reducing agent, structural material coal, electric material coal, or ashless coal used as a raw material thereof, as shown in FIGS. The first slurry heating step (S1), the first separation step (S2), the second slurry heating step (S3), the second separation step (S4), and the modified coal obtaining step (S5). Is included.
Hereinafter, each step will be described.
<第1スラリー加熱工程(S1)>
 第1スラリー加熱工程(S1)は、石炭と芳香族溶剤とを混合してスラリーを調製し、その石炭と芳香族溶剤を含むスラリーを加熱処理する工程である(第1スラリー加熱処理)。そして、スラリーを加熱処理することによって、石炭成分が芳香族溶剤に加熱抽出される。
<First slurry heating step (S1)>
The first slurry heating step (S1) is a step of preparing a slurry by mixing coal and an aromatic solvent, and heat-treating the slurry containing the coal and the aromatic solvent (first slurry heating treatment). And a coal component is heat-extracted by the aromatic solvent by heat-processing a slurry.
[石炭]
 原料となる石炭(以下、「原料石炭」ともいう)は、軟化溶融性をほとんど持たない非微粘結炭や、一般炭、低品位炭である褐炭、亜瀝青炭等の劣質炭を使用することが、経済的観点から好ましい。これらのような安価な石炭を使用することにより、無灰炭をさらに安価に製造することができるため、経済性の向上を図ることができる。しかし、用いる石炭は、これら劣質炭に限るものではなく、瀝青炭を使用してもよい。
[coal]
Coal to be used as raw material (hereinafter also referred to as “raw coal”) should be non-slightly caking coal that has little softening and melting properties, or low quality coal such as lignite or sub-bituminous coal. Is preferable from an economic viewpoint. By using inexpensive coal such as these, ashless coal can be produced at a lower cost, so that economic efficiency can be improved. However, the coal used is not limited to these inferior coals, and bituminous coals may be used.
 なお、ここでの劣質炭とは、非微粘結炭、一般炭、低品位炭等の石炭をいう。また、低品位炭とは、20質量%以上の水分を含有し、脱水することが望まれる石炭のことである。このような低品位炭には、例えば、褐炭、亜炭、亜瀝青炭がある。例えば、褐炭には、ビクトリア炭、ノースダコタ炭、ベルガ炭等があり、亜瀝青炭には、西バンコ炭、ビヌンガン炭、サマランガウ炭等がある。低品位炭は前記例示のものに限定されず、多量の水分を含有し、脱水することが望まれる石炭は、いずれも本発明のいう低品位炭に含まれる。 In addition, inferior coal here refers to coal, such as non-slightly caking coal, steam coal, and low-grade coal. The low-grade coal is coal that contains 20% by mass or more of water and is desired to be dehydrated. Examples of such low-grade coal include lignite, lignite, and sub-bituminous coal. For example, lignite coal includes Victoria coal, North Dakota coal, Belga coal, etc., and sub-bituminous coal includes West Banco coal, Binungan coal, Samarangau coal, and the like. The low-grade coal is not limited to those exemplified above, and any coal containing a large amount of water and desired to be dehydrated is included in the low-grade coal referred to in the present invention.
 [芳香族溶剤]
 石炭を溶解する芳香族溶剤としては、一般的には、ベンゼン、トルエン、キシレン等の1環芳香族化合物や、ナフタレン、メチルナフタレン、ジメチルナフタレン、トリメチルナフタレン、アルキルナフタレン、アントセラン、フェナントレン、エチルナフタレン等の2ないし3環の芳香族化合物あるいはその混合物が用いられる。また、2環芳香族化合物には、その他脂肪族側鎖をもつナフタレン類、また、これにビフェニルや長鎖脂肪族側鎖をもつアルキルベンゼンが含まれる。なお、非水素供与性溶剤である2環芳香族化合物を用いるのが好ましい。
[Aromatic solvent]
Generally, aromatic solvents that dissolve coal include monocyclic aromatic compounds such as benzene, toluene, xylene, naphthalene, methylnaphthalene, dimethylnaphthalene, trimethylnaphthalene, alkylnaphthalene, anthoselan, phenanthrene, ethylnaphthalene, etc. These 2- to 3-ring aromatic compounds or mixtures thereof are used. The bicyclic aromatic compound includes other naphthalenes having an aliphatic side chain, and biphenyl and alkylbenzene having a long aliphatic side chain. It is preferable to use a bicyclic aromatic compound that is a non-hydrogen-donating solvent.
 非水素供与性溶剤は、主に石炭の乾留生成物から精製した、2環芳香族を主とする溶剤である石炭誘導体である。この非水素供与性溶剤は、加熱状態でも安定であり、石炭との親和性に優れているため、溶剤に抽出される石炭成分の割合(以下、「抽出率」ともいう)が高く、また、蒸留等の方法で容易に回収可能な溶剤である。そして、この回収した溶剤は、経済性の向上を図るため、後記するように、水素化処理した後、第2スラリー加熱工程(S3)に供給し、循環して繰り返し使用することもできる。または、水素化処理をせずに、第1スラリー加熱工程(S1)に供給し、循環して繰り返し使用することもできる。また、芳香族溶剤は、後記する水素供与性溶剤と比べて安価なため、第1スラリー加熱工程(S1)で芳香族溶剤を用いることで、経済性の向上を図ることができる。 The non-hydrogen donating solvent is a coal derivative that is a solvent mainly composed of a bicyclic aromatic and purified mainly from a coal carbonization product. Since this non-hydrogen donating solvent is stable even in a heated state and has excellent affinity with coal, the proportion of coal components extracted into the solvent (hereinafter also referred to as “extraction rate”) is high. It is a solvent that can be easily recovered by methods such as distillation. Then, in order to improve the economic efficiency, the recovered solvent can be supplied to the second slurry heating step (S3) after being subjected to a hydrogenation treatment as described later, and can be circulated and used repeatedly. Or it can supply to a 1st slurry heating process (S1), and it can circulate and use repeatedly, without performing a hydrogenation process. In addition, since the aromatic solvent is less expensive than the hydrogen donating solvent described later, the use of the aromatic solvent in the first slurry heating step (S1) can improve economic efficiency.
 芳香族溶剤は、沸点が180~330℃のものが好ましい。沸点が180℃未満であると、加熱抽出の際、または、後記する第1分離工程(S2)での必要圧力が高くなり、また、溶剤を回収する工程で揮発による損失が大きくなり、溶剤の回収率が低下する。さらに、加熱抽出での抽出率が低下する。一方、330℃を超えると、改質炭取得工程(S5)での液体成分、または、固体成分からの溶剤の分離が困難となり、溶剤の回収率が低下する。なお、後記する第2スラリー加熱工程(S3)における水素供与性溶剤の沸点についても、前記と同様である。 The aromatic solvent preferably has a boiling point of 180 to 330 ° C. When the boiling point is less than 180 ° C., the required pressure in the heat extraction or in the first separation step (S2) described later increases, and the loss due to volatilization increases in the step of recovering the solvent. The recovery rate decreases. Furthermore, the extraction rate in the heat extraction decreases. On the other hand, when the temperature exceeds 330 ° C., it becomes difficult to separate the solvent from the liquid component or the solid component in the modified coal acquisition step (S5), and the solvent recovery rate decreases. The boiling point of the hydrogen donating solvent in the second slurry heating step (S3) described later is the same as described above.
 芳香族溶剤に対する石炭の割合は、原料石炭の種類にもよるが、原料石炭と芳香族溶剤の比(芳香族溶剤/石炭)で、3~10となるように調製するのが好ましい。石炭濃度は高いほど好ましいが、「芳香族溶剤/石炭」が3未満であると、スラリーの粘度が高くなり、スラリーの移動や第1分離工程(S2)での液体成分と固体成分との分離が困難となりやすい。一方、「芳香族溶剤/石炭」が10を超えると、芳香族溶剤の量に対し、芳香族溶剤に抽出される石炭成分の割合(抽出率)が少なくなり、経済的ではない。なお、後記する第2スラリー加熱工程(S3)における固体成分と水素供与性溶剤の比(水素供与性溶剤/固体成分)についても、前記と同様である。 Although the ratio of coal to aromatic solvent depends on the type of raw material coal, it is preferable that the ratio of raw material coal to aromatic solvent (aromatic solvent / coal) is adjusted to 3 to 10. The higher the coal concentration, the better. However, when the “aromatic solvent / coal” is less than 3, the viscosity of the slurry increases, and the liquid component and the solid component are separated in the movement of the slurry and the first separation step (S2). Tends to be difficult. On the other hand, if the “aromatic solvent / coal” exceeds 10, the ratio (extraction rate) of the coal component extracted into the aromatic solvent is less than the amount of the aromatic solvent, which is not economical. The ratio of the solid component to the hydrogen donating solvent (hydrogen donating solvent / solid component) in the second slurry heating step (S3) described later is the same as described above.
[処理条件]
 第1スラリー加熱工程(S1)でのスラリーの加熱処理(加熱抽出)は、320~450℃が好ましい。芳香族溶剤を用いて、この温度範囲で加熱処理することで、原料石炭のうち、比較的溶けやすい成分、すなわち、分子量が比較的小さいアルキル基等の置換基を比較的多く含む成分が抽出される。第1スラリー加熱工程(S1)で、低分子量成分の抽出が不十分であると、第2スラリー加熱工程(S3)において、多くの不溶解成分を処理するために、多くの水素供与性溶剤が必要になり、第2スラリー加熱工程(S3)での負荷が大きくなる。
[Processing conditions]
The heat treatment (heat extraction) of the slurry in the first slurry heating step (S1) is preferably 320 to 450 ° C. Heat treatment in this temperature range using an aromatic solvent extracts components that are relatively soluble in raw coal, that is, components that contain relatively many substituents such as alkyl groups with relatively low molecular weight. The If the extraction of the low molecular weight component is insufficient in the first slurry heating step (S1), in order to treat many insoluble components in the second slurry heating step (S3), many hydrogen donating solvents are used. It becomes necessary, and the load in the second slurry heating step (S3) increases.
 また、第1スラリー加熱工程(S1)での処理条件を過酷にする、すなわち、比較的高温で長時間かけて抽出処理を行うと、石炭の高分子化が進むため、第2スラリー加熱工程(S3)で水素供与性溶剤を使用しても、第2無灰炭の抽出率(収率)が低下し、合計収率も低下する。したがって、第2無灰炭の収率が低下(例えば、10質量%未満)しないように、第2スラリー加熱工程(S3)だけでなく、第1スラリー加熱工程(S1)の条件も適宜調節することが大事である。 Further, if the processing conditions in the first slurry heating step (S1) are made harsh, that is, when extraction processing is performed at a relatively high temperature for a long time, the polymerization of coal proceeds, so the second slurry heating step ( Even if a hydrogen donating solvent is used in S3), the extraction rate (yield) of the second ashless coal is lowered and the total yield is also lowered. Accordingly, not only the second slurry heating step (S3) but also the conditions of the first slurry heating step (S1) are appropriately adjusted so that the yield of the second ashless coal does not decrease (for example, less than 10% by mass). That is important.
 スラリーの加熱温度が320℃以上であれば、第1スラリー加熱工程(S1)で分離される低分子量成分の量が多くなり、第1スラリー加熱工程(S1)で溶融する成分が十分に抽出され、第2スラリー加熱工程(S3)での負荷を軽減できる。一方、450℃以下であれば、石炭の高分子化が進むことがなく、第2スラリー加熱工程(S3)において水素供与性溶剤を使用することで、第2無灰炭の抽出率(収率)が低くなりすぎず、合計収率も低下しない。なお、より適度な抽出率を確保するため、より好ましくは、340~440℃である。ただし、前記した加熱温度は、目安であり、使用する石炭や溶剤の種類、求める製品の性質等により、適宜調節する。 If the heating temperature of the slurry is 320 ° C. or higher, the amount of low molecular weight components separated in the first slurry heating step (S1) increases, and the components that melt in the first slurry heating step (S1) are sufficiently extracted. The load in the second slurry heating step (S3) can be reduced. On the other hand, if it is 450 degrees C or less, the polymerization of coal does not advance, and the extraction rate (yield of the second ashless coal is obtained by using a hydrogen donating solvent in the second slurry heating step (S3). ) Is not too low and the total yield is not reduced. In order to secure a more appropriate extraction rate, the temperature is more preferably 340 to 440 ° C. However, the above-mentioned heating temperature is a standard, and is appropriately adjusted depending on the type of coal or solvent used, the properties of the desired product, and the like.
 ここで、第1無灰炭と第2無灰炭の合計収率は、無灰炭の生産性を考慮すると、少なくとも45質量%以上が好ましい。そして、第1無灰炭の収率(得られる第1無灰炭の原料石炭に対する収率)は、無水・無灰炭基準で、20質量%以上であることが好ましい。
 収率が20質量%未満では、第1無灰炭の収率が比較的低く、前記したように、第2スラリー加熱工程(S3)での負荷が大きくなる。よって、第2無灰炭が所望の収率となるように、第1スラリー加熱工程(S1)での抽出率を適宜調節する。なお、第1無灰炭における所望の収率は目安であり、使用する石炭や溶剤の種類、求める製品の性質等により、変わるものである。
Here, the total yield of the first ashless coal and the second ashless coal is preferably at least 45% by mass in consideration of the productivity of the ashless coal. And it is preferable that the yield of the 1st ashless coal (the yield with respect to the raw material coal of the obtained 1st ashless coal) is 20 mass% or more on an anhydrous and ashless coal basis.
If the yield is less than 20% by mass, the yield of the first ashless coal is relatively low, and the load in the second slurry heating step (S3) becomes large as described above. Therefore, the extraction rate in the first slurry heating step (S1) is appropriately adjusted so that the second ashless coal has a desired yield. In addition, the desired yield in 1st ashless coal is a standard, and it changes with the kind of coal to be used, the kind of solvent, the property of the product calculated | required, etc.
 加熱時間(抽出時間)は、溶解平衡に達するまでの時間が規準であるが、それを実現することは経済的に不利である。従って、石炭の粒子径、溶剤の種類等の条件によって異なるので一概には言えないが、通常は、所定の抽出温度に到達後、0~120分程度である。石炭や溶剤等の諸条件に基づき、この範囲内で調製するのが好ましい。加熱時間が120分を超えても、それ以上抽出が進行しないため、経済的ではない。なお、加熱時間が0分とは、所望の温度に昇温して抽出した後、以下のように、直ちに冷却することをいう。 The heating time (extraction time) is a time until reaching the dissolution equilibrium, but it is economically disadvantageous to realize it. Therefore, since it varies depending on conditions such as the particle size of the coal and the type of solvent, it cannot be generally stated, but it is usually about 0 to 120 minutes after reaching a predetermined extraction temperature. It is preferable to prepare within this range based on various conditions such as coal and solvent. Even if the heating time exceeds 120 minutes, the extraction does not proceed any further, which is not economical. The heating time of 0 minutes means that the temperature is raised to a desired temperature and extracted, and then immediately cooled as follows.
 第1分離工程(S2)へ移行する前に、この加熱したスラリーを冷却処理により、石炭から溶出した溶質が再析出しない程度の温度、例えば150℃以上200℃未満程度まで冷却してもよい。スラリーを冷却することで、その後の取り扱いが容易となり、また、第1スラリー加熱工程(S1)での過度な熱分解を避けることができる。その他、沈降槽の圧力を下げたり、バルブ等の仕様の水準を下げたりすることができる。 Before proceeding to the first separation step (S2), the heated slurry may be cooled to a temperature at which the solute eluted from the coal does not reprecipitate, for example, about 150 ° C. or more and less than about 200 ° C. By cooling the slurry, subsequent handling is facilitated, and excessive thermal decomposition in the first slurry heating step (S1) can be avoided. In addition, the pressure in the sedimentation tank can be lowered, and the specification level of valves and the like can be lowered.
 なお、この加熱抽出の際、石炭の熱分解により、主に平均沸点(Tb50:50%留出温度)が200~300℃にある芳香族に豊富な成分が生成し、好適に芳香族溶剤の一部として利用することができる。 In this heat extraction, the pyrolysis of coal produces aromatic-rich components mainly having an average boiling point (Tb50: 50% distillation temperature) of 200 to 300 ° C. Can be used as part.
 加熱抽出は、非酸化性雰囲気で行うことが好ましい。具体的には、不活性ガスの存在下で行う。加熱抽出の際、酸素に接触すると、発火する恐れがあり、また、水素を用いた場合には、コストが高くなるためである。ただし、後記するように、溶剤の水素化に、コークス炉ガス(Coke Oven Gas:COG)を用いた場合、用いたCOGを、あえて不活性ガスに置換する必要はなく、酸素が存在しなければ、COG雰囲気下で行うことも可能である。 It is preferable to perform the heat extraction in a non-oxidizing atmosphere. Specifically, it is performed in the presence of an inert gas. This is because, in the case of heat extraction, if it comes into contact with oxygen, it may ignite, and if hydrogen is used, the cost increases. However, as will be described later, when a coke oven gas (Coke Oven Gas: COG) is used for hydrogenation of the solvent, it is not necessary to replace the used COG with an inert gas without oxygen. It is also possible to carry out in a COG atmosphere.
 加熱抽出で用いる不活性ガスとしては、安価な窒素を用いることが好ましいが、特に限定されるものではない。前記のとおり、COGをそのまま用いてもよい。また、加熱抽出での圧力は、加熱抽出の際の温度や用いる芳香族溶剤の蒸気圧にもよるが、1.0~5.0MPaが好ましい。圧力が芳香族溶剤の蒸気圧より低い場合には、芳香族溶剤が揮発して液相に閉じ込められず、抽出できない。芳香族溶剤を液相に閉じ込めるには、芳香族溶剤の蒸気圧より高い圧力が必要となる。一方、圧力が高すぎると、機器のコスト、運転コストが高くなり、経済的ではない。 As the inert gas used in the heat extraction, it is preferable to use inexpensive nitrogen, but it is not particularly limited. As described above, COG may be used as it is. The pressure in the heat extraction is preferably 1.0 to 5.0 MPa, although it depends on the temperature at the time of heat extraction and the vapor pressure of the aromatic solvent used. When the pressure is lower than the vapor pressure of the aromatic solvent, the aromatic solvent volatilizes and is not trapped in the liquid phase and cannot be extracted. In order to confine the aromatic solvent in the liquid phase, a pressure higher than the vapor pressure of the aromatic solvent is required. On the other hand, if the pressure is too high, the cost of the equipment and the operating cost increase, which is not economical.
 <第1分離工程(S2)>
 第1分離工程(S2)は、前記第1スラリー加熱工程(S1)で加熱処理されたスラリーを、液体成分と固体成分とに分離する工程である(第1スラリー分離)。
 ここで、液体成分とは、石炭が溶解した溶液、すなわち、芳香族溶剤に溶解した(抽出された)石炭成分を含む溶液をいい、固体成分とは、芳香族溶剤に不溶な灰分および不溶石炭を含むスラリーをいう。
<First separation step (S2)>
The first separation step (S2) is a step of separating the slurry heated in the first slurry heating step (S1) into a liquid component and a solid component (first slurry separation).
Here, the liquid component means a solution in which coal is dissolved, that is, a solution containing a coal component dissolved (extracted) in an aromatic solvent, and the solid component means ash and insoluble coal insoluble in the aromatic solvent. A slurry containing
 第1分離工程(S2)でスラリーを液体成分と固体成分とに分離する方法としては、特に限定されるものではなく、公知の方法を用いることができる。例えば、濾過法、遠心分離法、重力沈降法等を用いることができ、また、これらの方法を複数組み合わせて行ってもよい。しかし、固液分離の方法としては、重力沈降法を用いることが好ましい(重力沈降法については、後記する)。 The method for separating the slurry into a liquid component and a solid component in the first separation step (S2) is not particularly limited, and a known method can be used. For example, a filtration method, a centrifugal separation method, a gravity sedimentation method, or the like can be used, and a plurality of these methods may be combined. However, it is preferable to use a gravity sedimentation method as a solid-liquid separation method (the gravity sedimentation method will be described later).
 スラリーを液体成分と固体成分とに分離する方法としては、各種の濾過方法や遠心分離による方法が一般的に知られている。しかしながら、濾過による方法ではフィルタの頻繁な交換が必要であり、また、遠心分離による方法では未溶解石炭成分による閉塞が起こりやすく、これらの方法を工業的に実施するのは容易ではない。従って、流体の連続操作が可能であり、低コストで大量の処理にも適している重力沈降法を用いることが好ましい。これにより、重力沈降槽の上部からは溶剤に抽出された石炭成分を含む溶液である液体成分(以下、「上澄み液」ともいう)を、重力沈降槽の下部からは溶剤に不溶な灰分と不溶石炭を含むスラリーである固体成分(以下、「固形分濃縮液」ともいう)を得ることができる。なお、重力沈降法は、選択肢の一つであり、他の方法を用いても構わない。 As a method for separating a slurry into a liquid component and a solid component, various filtration methods and centrifugal separation methods are generally known. However, the filtration method requires frequent replacement of the filter, and the centrifugation method tends to cause clogging with undissolved coal components, and it is not easy to implement these methods industrially. Therefore, it is preferable to use a gravity sedimentation method that allows continuous operation of fluid and is suitable for a large amount of processing at low cost. As a result, a liquid component (hereinafter also referred to as “supernatant liquid”) containing a coal component extracted into the solvent from the upper part of the gravity settling tank, and an insoluble ash and insoluble in the solvent from the lower part of the gravity settling tank. A solid component (hereinafter, also referred to as “solid content concentrate”) that is a slurry containing coal can be obtained. Note that the gravity sedimentation method is one of the options, and other methods may be used.
<第2スラリー加熱工程(S3)>
 第2スラリー加熱工程(S3)は、前記第1分離工程で(S2)分離された固体成分に水素供与性溶剤を加えて混合してスラリーを調製し、その固体成分と水素供与性溶剤を含むスラリーを、前記第1スラリー加熱工程(S1)における加熱処理の温度以上で加熱処理する工程である(第2スラリー加熱処理)。そして、スラリーを加熱処理することによって、石炭成分が水素供与性溶剤に加熱抽出される。
<Second slurry heating step (S3)>
In the second slurry heating step (S3), a hydrogen donating solvent is added to and mixed with the solid component separated in the first separating step (S2) to prepare a slurry, which includes the solid component and the hydrogen donating solvent. In this step, the slurry is heated at a temperature equal to or higher than the temperature of the heat treatment in the first slurry heating step (S1) (second slurry heat treatment). And a coal component is heat-extracted by the hydrogen-donating solvent by heat-processing a slurry.
 [固体成分]
 固体成分は、第1分離工程(S2)で分離されたものであり、第1スラリー加熱工程(S1)で芳香族溶剤に抽出されなかった石炭成分を含むものである。
[Solid component]
The solid component is separated in the first separation step (S2) and includes a coal component that has not been extracted into the aromatic solvent in the first slurry heating step (S1).
 [水素供与性溶剤]
 石炭を溶解する水素供与性溶剤としては、一般的には、1,2,3,4-テトラヒドロナフタレン、1,2-ジヒドロナフタレン、テトラヒドロメチルナフタレン等の化合物あるいはその混合物が用いられる。
[Hydrogen-donating solvent]
As the hydrogen donating solvent for dissolving coal, compounds such as 1,2,3,4-tetrahydronaphthalene, 1,2-dihydronaphthalene, tetrahydromethylnaphthalene or a mixture thereof are generally used.
 水素供与性溶剤は、ナフタレン、メチルナフタレン、ジメチルナフタレン、トリメチルナフタレン、アルキルナフタレン、アントセラン、フェナントレン、エチルナフタレン等、脂肪族側鎖を有する、あるいは有しない2環以上の芳香族化合物の一部の芳香環が、部分的に水素化された、部分水素化芳香族化合物であり、高い水素供与性を有する。なお、2環芳香族化合物には、その他脂肪族側鎖をもつナフタレン類、また、これにビフェニルや長鎖脂肪族側鎖をもつアルキルベンゼンが含まれる。
 これらの他に、石炭液化油やタールの留分、石油精製副生物等の水素化処理物も水素供与性溶剤として用いることができる。
The hydrogen donating solvent is a fragrance of a part of an aromatic compound having two or more rings having or not having an aliphatic side chain, such as naphthalene, methylnaphthalene, dimethylnaphthalene, trimethylnaphthalene, alkylnaphthalene, anthoselan, phenanthrene, and ethylnaphthalene. The ring is a partially hydrogenated aromatic compound that is partially hydrogenated and has a high hydrogen donating property. The bicyclic aromatic compound includes other naphthalenes having an aliphatic side chain, and biphenyl and alkylbenzene having a long aliphatic side chain.
In addition to these, hydrotreated products such as coal liquefied oil and tar fractions and petroleum refining by-products can also be used as the hydrogen donating solvent.
 水素供与性溶剤は、加熱状態で、石炭の一部の分子が熱分解して生成するラジカルフラグメントに水素を与えて安定化させ、石炭の重縮合を抑えることにより、結果として溶剤に抽出される石炭成分の量を増やすことができる。そのため、抽出率が高くなる。また、この水素供与性溶剤は、蒸留等の方法で容易に回収可能な溶剤である。なお、水素供与性溶剤は、石炭ラジカルに水素を供与した後、自らは水素を失って、芳香族溶剤に変わるという性質をもつ。
 例えば、「1,2,3,4-テトラヒドロナフタレン → ナフタレン+2H」である。
A hydrogen-donating solvent is heated and heated, and is stabilized by giving hydrogen to radical fragments generated by thermal decomposition of some of the coal molecules, thereby suppressing the polycondensation of coal, resulting in extraction into the solvent. The amount of coal components can be increased. Therefore, the extraction rate becomes high. The hydrogen-donating solvent is a solvent that can be easily recovered by a method such as distillation. The hydrogen-donating solvent has the property that after donating hydrogen to the coal radical, it loses itself and turns into an aromatic solvent.
For example, “1,2,3,4-tetrahydronaphthalene → naphthalene + 2H 2 ”.
 そして、加熱処理後の回収した溶剤は、経済性の向上を図るため、後記するように、水素化処理した後、第2スラリー加熱工程(S3)に供給し、循環して繰り返し使用することができる。または、水素化処理をせずに、第1スラリー加熱工程(S1)に供給し、循環して繰り返し使用することもできる。なお、回収した溶剤は、芳香族溶剤に少量の水素供与性溶剤が含まれていることがあるが、このような溶剤は、経済性を低下させるものではなく、第1スラリー加熱工程(S1)に供給して使用することが可能である。 Then, in order to improve the economic efficiency, the recovered solvent after the heat treatment is supplied to the second slurry heating step (S3) after being subjected to a hydrogenation treatment as described later, and can be circulated and used repeatedly. it can. Or it can supply to a 1st slurry heating process (S1), and it can circulate and use repeatedly, without performing a hydrogenation process. The recovered solvent may contain a small amount of a hydrogen-donating solvent in the aromatic solvent. However, such a solvent does not lower the economy, and the first slurry heating step (S1) It is possible to supply and use.
 加熱抽出での圧力は、加熱抽出の際の温度や用いる水素供与性溶剤の蒸気圧にもよるが、1.0~20.0MPaが好ましい。圧力が水素供与性溶剤の蒸気圧より低い場合には、水素供与性溶剤が揮発して液相に閉じ込められず、抽出できない。水素供与性溶剤を液相に閉じ込めるには、水素供与性溶剤の蒸気圧より高い圧力が必要となる。一方、圧力が高すぎると、機器のコスト、運転コストが高くなり、経済的ではない。
 その他の条件等については、前記第1スラリー加熱工程(S1)における芳香族溶剤についての記載と同様である。
The pressure in the heat extraction is preferably 1.0 to 20.0 MPa, although it depends on the temperature at the time of heat extraction and the vapor pressure of the hydrogen donating solvent used. When the pressure is lower than the vapor pressure of the hydrogen donating solvent, the hydrogen donating solvent volatilizes and is not trapped in the liquid phase and cannot be extracted. In order to confine the hydrogen donating solvent in the liquid phase, a pressure higher than the vapor pressure of the hydrogen donating solvent is required. On the other hand, if the pressure is too high, the cost of the equipment and the operating cost increase, which is not economical.
About other conditions etc., it is the same as that of the description about the aromatic solvent in said 1st slurry heating process (S1).
[処理条件]
 第2スラリー加熱工程(S3)では、第1スラリー加熱工程(S1)における加熱処理の温度以上の温度で加熱処理する。
 これにより、石炭の解重合が進み、第1スラリー加熱工程(S1)での加熱抽出の場合に比べ、より解けにくい成分、すなわち、分子量が比較的大きく、溶融しにくい成分が抽出される。また、水素供与性溶剤からの水素移動が行われるため、石炭の重縮合が抑制され、高い収率で無灰炭を得ることができる。
 なお、第2スラリー加熱工程(S3)では、第1スラリー加熱工程(S1)で溶け残った成分から無灰炭を得るものであり、第1スラリー加熱工程(S1)で抽出できなかった成分を抽出するため、第2スラリー加熱工程(S3)での収率が小さいことは全体の収率が小さくなることにつながる。
[Processing conditions]
In the second slurry heating step (S3), the heat treatment is performed at a temperature equal to or higher than the temperature of the heat treatment in the first slurry heating step (S1).
Thereby, depolymerization of coal progresses, and a component that is more difficult to dissolve, that is, a component that has a relatively large molecular weight and is difficult to melt, is extracted as compared with the case of heat extraction in the first slurry heating step (S1). Moreover, since hydrogen transfer from the hydrogen donating solvent is performed, polycondensation of coal is suppressed, and ashless coal can be obtained with high yield.
In the second slurry heating step (S3), ashless charcoal is obtained from the components remaining undissolved in the first slurry heating step (S1), and components that could not be extracted in the first slurry heating step (S1) are extracted. Since extraction is performed, a small yield in the second slurry heating step (S3) leads to a small overall yield.
 第2スラリー加熱工程(S3)での加熱温度が、第1スラリー加熱工程(S1)における加熱処理での温度未満であると、第1スラリー加熱工程(S1)で抽出できなかった成分を抽出することができず、抽出率(収率)の向上が望めず、全体の収率が低下する。 When the heating temperature in the second slurry heating step (S3) is lower than the temperature in the heat treatment in the first slurry heating step (S1), components that cannot be extracted in the first slurry heating step (S1) are extracted. The extraction rate (yield) cannot be improved, and the overall yield decreases.
 第2スラリー加熱工程(S3)での加熱温度は、第1スラリー加熱工程(S1)における加熱温度以上であれば、特に限定されるものではないが、350~500℃の温度で行うのが好ましい。加熱温度をこの範囲とすることにより、水素供与性溶剤の存在下、石炭を構成する分子間の結合が緩み、緩和な熱分解が起こり、抽出率が高くなる。なお、第1スラリー加熱工程(S1)における加熱温度と、第2スラリー加熱工程(S3)での加熱温度は、同じであってもよい。 The heating temperature in the second slurry heating step (S3) is not particularly limited as long as it is equal to or higher than the heating temperature in the first slurry heating step (S1), but it is preferably performed at a temperature of 350 to 500 ° C. . By setting the heating temperature within this range, in the presence of the hydrogen donating solvent, the bonds between the molecules constituting the coal are loosened, mild thermal decomposition occurs, and the extraction rate increases. The heating temperature in the first slurry heating step (S1) and the heating temperature in the second slurry heating step (S3) may be the same.
 スラリーの加熱温度が350℃以上であれば、水素供与性溶剤の存在下、石炭を構成する分子間の結合を弱めるのに十分であり、抽出率(収率)が向上しやすい。一方、500℃以下であれば、熱分解・炭化(重合)反応の速度が低下する傾向にあり、その結果、炭化反応によって、溶解成分が不溶解成分に変化しにくく、抽出率が向上しやすい。なお、抽出率を向上させるため、より好ましくは、340~440℃である。
 ただし、前記した加熱温度は、目安であり、使用する石炭や溶剤の種類、求める製品の性質等により、適宜調節する。
If the heating temperature of the slurry is 350 ° C. or higher, it is sufficient to weaken the bonds between the molecules constituting the coal in the presence of the hydrogen donating solvent, and the extraction rate (yield) is likely to be improved. On the other hand, if the temperature is 500 ° C. or lower, the rate of the thermal decomposition / carbonization (polymerization) reaction tends to decrease. . In order to improve the extraction rate, it is more preferably 340 to 440 ° C.
However, the above-mentioned heating temperature is a standard, and is appropriately adjusted depending on the type of coal or solvent used, the properties of the desired product, and the like.
 ここで、第2スラリー加熱工程(S3)での収率(得られる第2無灰炭の原料石炭に対する収率)は、無水・無灰炭基準で、10質量%以上であることが好ましい。
 収率が10質量%未満では、第1スラリー加熱工程(S1)で抽出できなかった成分の抽出率(収率)が低く、全体の収率が低下する。また、あえて水素供与性溶剤を使用する効果が小さい。よって、第2無灰炭が所望の収率となるように、第2スラリー加熱工程(S3)での抽出率を適宜調節する。なお、第2無灰炭における所望の収率は目安であり、使用する石炭や溶剤の種類、求める製品の性質等により、変わるものである。
Here, the yield in the second slurry heating step (S3) (the yield of the obtained second ashless coal relative to the raw coal) is preferably 10% by mass or more based on anhydrous / ashless coal.
If the yield is less than 10% by mass, the extraction rate (yield) of the component that could not be extracted in the first slurry heating step (S1) is low, and the overall yield is lowered. In addition, the effect of using a hydrogen donating solvent is small. Therefore, the extraction rate in the second slurry heating step (S3) is appropriately adjusted so that the second ashless coal has a desired yield. Note that the desired yield in the second ashless coal is a guideline and varies depending on the type of coal and solvent used, the properties of the desired product, and the like.
 また、第2分離工程(S4)へ移行する前に、この加熱したスラリーを冷却処理により、石炭から溶出した溶質が再析出しない程度の温度、例えば200~360℃程度まで冷却してもよい。スラリーを冷却することで、その後の取り扱いが容易となり、また、第2スラリー加熱工程(S3)での過度な熱分解を避けることができる。その他、沈降槽の圧力を下げたり、バルブ等の仕様の水準を下げたりすることができる。
 その他の条件等については、前記第1スラリー加熱工程(S1)における処理条件と同様である。
 なお、第1スラリー加熱工程(S1)、第2スラリー加熱工程(S3)ともに、同じ処理装置を用いることができるが、別々の処理装置を用いてもよい。
Further, before the transition to the second separation step (S4), the heated slurry may be cooled to a temperature at which the solute eluted from the coal does not reprecipitate, for example, about 200 to 360 ° C. By cooling the slurry, subsequent handling is facilitated, and excessive thermal decomposition in the second slurry heating step (S3) can be avoided. In addition, the pressure in the sedimentation tank can be lowered, and the specification level of valves and the like can be lowered.
Other conditions are the same as the processing conditions in the first slurry heating step (S1).
In addition, although the same processing apparatus can be used for 1st slurry heating process (S1) and 2nd slurry heating process (S3), you may use a separate processing apparatus.
 <第2分離工程(S4)>
 第2分離工程(S4)は、前記第2スラリー加熱工程(S3)で加熱処理されたスラリーを、液体成分と固体成分とに分離する工程である(第2スラリー分離)。
 ここで、液体成分とは、石炭が溶解した溶液、すなわち、水素供与性溶剤に溶解した(抽出された)石炭成分を含む溶液をいい、固体成分とは、水素供与性溶剤に不溶な灰分および不溶石炭を含むスラリーをいう。
<Second separation step (S4)>
The second separation step (S4) is a step of separating the slurry heated in the second slurry heating step (S3) into a liquid component and a solid component (second slurry separation).
Here, the liquid component means a solution in which coal is dissolved, that is, a solution containing a coal component dissolved (extracted) in a hydrogen donating solvent, and the solid component is an ash component insoluble in the hydrogen donating solvent and A slurry containing insoluble coal.
 第2分離工程(S4)については、前記第1分離工程(S2)と同様であるので、ここでは、説明を省略する。なお、第2分離工程(S4)で重力沈降法を用いる場合の方法については、後記する。
 なお、第1分離工程(S2)、第2分離工程(S4)ともに、同じ固液分離装置を用いることができるが、別々の固液分離装置を用いてもよい。
Since the second separation step (S4) is the same as the first separation step (S2), description thereof is omitted here. In addition, the method in the case of using the gravity sedimentation method in the second separation step (S4) will be described later.
The same solid-liquid separation device can be used for both the first separation step (S2) and the second separation step (S4), but separate solid-liquid separation devices may be used.
<改質炭取得工程(S5)>
 改質炭取得工程(S5)は、前記第2分離工程(S4)で分離された液体成分から溶剤を除去して、改質炭である無灰炭(第2無灰炭)を取得する工程である。
 また、前記第2無灰炭を取得することに加え、前記第1分離工程(S2)で分離された液体成分から溶剤を除去して、改質炭である無灰炭(第1無灰炭)を取得する工程である。
<Modified coal acquisition process (S5)>
In the modified coal acquisition step (S5), the solvent is removed from the liquid component separated in the second separation step (S4) to obtain ashless coal (second ashless coal) which is the modified coal. It is.
Further, in addition to obtaining the second ashless coal, the solvent is removed from the liquid component separated in the first separation step (S2), and ashless coal (first ashless coal that is modified coal) is obtained. ).
 液体成分(上澄み液)から溶剤を分離して除去する方法は、特に限定されるものではなく、公知の方法を用いることができ、例えば、一般的な蒸留法や蒸発法(スプレードライ法等)等を用いることがでる。そして、分離して回収された溶剤は、第1スラリー加熱工程(S1)へ循環して繰り返し使用することができる。または、水素化処理した後、第2スラリー加熱工程(S3)へ循環して繰り返し使用することができる。溶剤の分離・回収(固液分離)により、上澄み液からは、灰分濃度が極めて少ない無灰炭を得ることができる。この無灰炭は、灰分をほとんど含まず、水分は皆無であり、原料石炭よりも遥かに優れた性能(熱流動性)を示す。 The method for separating and removing the solvent from the liquid component (supernatant liquid) is not particularly limited, and a known method can be used, for example, a general distillation method or evaporation method (spray drying method, etc.). Etc. can be used. Then, the separated and recovered solvent can be circulated to the first slurry heating step (S1) and repeatedly used. Or after hydrotreating, it can circulate to a 2nd slurry heating process (S3), and can be used repeatedly. By separating and recovering the solvent (solid-liquid separation), ashless coal with an extremely low ash concentration can be obtained from the supernatant. This ashless coal contains almost no ash, has no moisture, and exhibits performance (thermal fluidity) far superior to that of raw coal.
 そして、本発明の製造方法で得られた無灰炭は、非鉄金属還元剤、構造材料炭または電気材料炭として用いる。あるいは、非鉄金属還元剤、構造材料炭または電気材料炭の原料として用いる。ここで、非鉄金属還元剤とは、シリコンやチタン等の非鉄金属の還元に用いる還元剤をいい、構造材料炭とは、例えば、炭素製断熱材や、るつぼ等の炭素製の構造材の原料として用いる炭材をいい、電気材料炭とは、炭素製電極や、アルミ精錬用アノード等の炭素製の電気材料の原料として用いる炭材をいう。なお、これらの原料として用いるとしたのは、例えば、無灰炭に、熱処理等の二次的な処理を施すことが必要な場合があるためである。 The ashless coal obtained by the production method of the present invention is used as a non-ferrous metal reducing agent, structural material charcoal, or electric material charcoal. Or it uses as a raw material of nonferrous metal reducing agent, structural material charcoal, or electric material charcoal. Here, the non-ferrous metal reducing agent refers to a reducing agent used for reduction of non-ferrous metals such as silicon and titanium, and the structural material charcoal is, for example, a carbon heat insulating material or a raw material for a carbon structural material such as a crucible. The electric material charcoal is a carbon material used as a raw material for a carbon electric material such as a carbon electrode or an anode for aluminum refining. The reason for using these raw materials is, for example, that it may be necessary to subject the ashless coal to a secondary treatment such as heat treatment.
 なお、必要に応じて、前記改質炭取得工程(S5)において、前記第1分離工程(S2)で分離された液体成分および前記第2分離工程(S4)で分離された液体成分から無灰炭(第1無灰炭および第2無灰炭)を取得することに加え、前記第2分離工程(S4)で分離された固体成分から溶剤を除去して、改質炭である副生炭を製造してもよい(副生炭取得工程)。 If necessary, in the modified coal acquisition step (S5), ashless from the liquid component separated in the first separation step (S2) and the liquid component separated in the second separation step (S4). In addition to obtaining charcoal (first ashless charcoal and second ashless charcoal), the solvent is removed from the solid component separated in the second separation step (S4) to produce by-product coal that is reformed charcoal. May be manufactured (by-product charcoal acquisition step).
 この副生炭は、含酸素官能基が脱離されており、また、灰分が含まれるものの水分が皆無であり、発熱量も十分に有している。従って、この副生炭は、公知の方法、例えば、各種の燃料用等として利用することが可能である。 This by-product charcoal is free of oxygen-containing functional groups, has ash, has no water, and has a sufficient calorific value. Therefore, this by-product charcoal can be used for a known method, for example, for various fuels.
 固体成分(固形分濃縮液)から溶剤を分離して除去する方法は、前記した液体成分から無灰炭を取得する場合と同様に、公知の方法、例えば、一般的な蒸留法や蒸発法を用いることができ、分離して回収された溶剤は、第1スラリー加熱工程(S1)へ循環して繰り返し使用することができる。または、水素化処理した後、第2スラリー加熱工程(S3)へ循環して繰り返し使用することができる。溶剤の分離・回収(固液分離)により、固形分濃縮液からは灰分が濃縮された副生炭を得ることができる。 The method for separating and removing the solvent from the solid component (solid concentrate) is a known method, for example, a general distillation method or evaporation method, as in the case of obtaining ashless coal from the liquid component described above. The solvent that can be used and separated and recovered can be circulated to the first slurry heating step (S1) and repeatedly used. Or after hydrotreating, it can circulate to a 2nd slurry heating process (S3), and can be used repeatedly. By separation and recovery of the solvent (solid-liquid separation), by-product charcoal in which ash is concentrated can be obtained from the solid concentrate.
 前記改質炭取得工程(S5)で除去した溶剤(液体成分から分離した溶剤)は、水素化処理し(水素化処理工程)、この水素化処理した溶剤を、第2スラリー加熱工程(S3)に供給し、循環して使用することが好ましい。なお、水素化処理する溶剤は、第1分離工程(S2)で分離された液体成分から除去した溶剤、第2分離工程(S4)で分離された液体成分から除去した溶剤、副生炭取得工程で固体成分から除去した溶剤のうち、全てについてでもよいが、いずれか一つ、または二つについてのみ水素化処理してもよい。また、水素化処理せずに循環利用する場合も同様である。 The solvent (solvent separated from the liquid component) removed in the modified coal acquisition step (S5) is hydrotreated (hydrotreating step), and the hydrotreated solvent is used in the second slurry heating step (S3). It is preferable to use it by supplying it to the circulation. The solvent to be hydrotreated is a solvent removed from the liquid component separated in the first separation step (S2), a solvent removed from the liquid component separated in the second separation step (S4), and a by-product coal acquisition step. The solvent removed from the solid component may be all, but only one or two may be hydrotreated. The same applies to the case of recycling without hydrotreating.
 水素化処理の方法は特に限定されるものではないが、例えば、コークス炉ガス(COG)に溶剤を接触させて加圧し、触媒存在下、所定の温度で反応させ、COGを水素源として溶剤を水素化する方法を用いることができる。
 具体的な一例としては、所謂石油精製プラントにあるような水素化反応塔である、NiMo、NiCo、CoMo系等の公知の水素化触媒を充填した固定床触媒反応塔(固定床水素化反応器)を用い、循環する溶剤にCOGを混合した後、例えば、昇圧ポンプを用いて5~10MPaの圧力を保持する固定床触媒反応塔に送液し、320~370℃程度の温度で反応させることにより行う。
The hydrotreating method is not particularly limited. For example, the solvent is brought into contact with coke oven gas (COG) and pressurized, and the reaction is performed at a predetermined temperature in the presence of a catalyst. Hydrogenation methods can be used.
As a specific example, a fixed bed catalyst reaction tower (fixed bed hydrogenation reactor filled with a known hydrogenation catalyst such as NiMo, NiCo, CoMo, etc., which is a hydrogenation reaction tower as in a so-called petroleum refining plant. ), And COG is mixed with the solvent to be circulated, then, for example, sent to a fixed bed catalytic reaction tower holding a pressure of 5 to 10 MPa using a pressure pump, and reacted at a temperature of about 320 to 370 ° C. To do.
 この水素化処理により、2環以上の芳香族化合物の一部(片方)の芳香環が部分的に水素化され(2環以上の芳香族化合物が部分的に水素化され)、水素供与性を有する溶剤として改質される。そして、溶剤が水素供与性を有することで、抽出温度下で熱分解して生成したラジカルを安定化させ、石炭の熱分解による重縮合反応を抑え、石炭の抽出率が増加する。これにより、石炭の性状や石炭種に対応して、所期する無灰炭製造量を安定的に得ることができる。 By this hydrogenation treatment, a part (one) of the aromatic rings of two or more aromatic compounds is partially hydrogenated (two or more aromatic compounds are partially hydrogenated), and hydrogen donating properties are improved. It is modified as a solvent. And since a solvent has hydrogen donating property, the radical produced | generated by thermal decomposition under extraction temperature is stabilized, the polycondensation reaction by thermal decomposition of coal is suppressed, and the extraction rate of coal increases. Thereby, the expected amount of ashless coal production can be stably obtained corresponding to the properties of the coal and the coal type.
 COGは、石炭を乾留してコークスを作る際に発生する、コークス炉から排出される副生ガスである。このCOGには、通常、50~70質量%の水素が含まれ、その他メタン、一酸化炭素、アンモニアが含まれる。
 なお、コークス炉から排出されたCOGは800℃程度であり、この顕熱を利用して、接触させた溶剤を昇温させることで、水素化処理での加熱負荷を抑えることもできる。
COG is a by-product gas emitted from a coke oven that is generated when coal is distilled to produce coke. The COG usually contains 50 to 70% by mass of hydrogen, and other methane, carbon monoxide, and ammonia.
The COG discharged from the coke oven is about 800 ° C., and by using this sensible heat to raise the temperature of the contacted solvent, the heating load in the hydrotreatment can be suppressed.
 水素化処理の温度は、320~370℃で行うのが好ましい。これは、触媒存在下、効率的に部分水素化芳香族を製造する、すなわち、芳香環をナフテン化する反応として一般的な温度のためである。320~370℃で水素化処理を行うことで、溶剤成分における2環以上の芳香族化合物の一部の芳香環が部分的に水素化されやすくなり、水素供与性を有する溶剤として改質されやすくなる。また、水素化処理の圧力は、5~10MPaが好ましく、LHSV(プロピレン基準)は、1hr-1程度が好ましい。 The temperature of the hydrogenation treatment is preferably 320 to 370 ° C. This is because of a temperature generally used as a reaction for efficiently producing a partially hydrogenated aromatic in the presence of a catalyst, that is, naphthenating an aromatic ring. By performing the hydrogenation treatment at 320 to 370 ° C., a part of the aromatic rings of the two or more aromatic compounds in the solvent component is likely to be partially hydrogenated and easily modified as a solvent having a hydrogen donating property. Become. The hydrotreatment pressure is preferably 5 to 10 MPa, and LHSV (propylene standard) is preferably about 1 hr −1 .
 水素化処理で用いる触媒は、一般的な石油精製プロセスで用いられる触媒と同様の物でよく、NiMo/Al触媒、NiCo/Al触媒、CoMo/Al触媒等を用いればよい。 The catalyst used in the hydrotreatment may be the same as the catalyst used in a general petroleum refining process, such as a NiMo / Al 2 O 3 catalyst, a NiCo / Al 2 O 3 catalyst, a CoMo / Al 2 O 3 catalyst, etc. Use it.
 このようにして、改質炭取得工程(S5)で除去・回収した溶剤は、水素化処理を施した後、第2スラリー加熱工程(S3)に供給し、第1分離工程(S2)で分離された固体成分と混合し、この混合したスラリーを加熱処理して、石炭成分を溶剤に加熱抽出する。その後、第2分離工程(S4)、改質炭取得工程(S5)を経て、再び溶剤が除去・回収される。そして、回収した溶剤は再度水素化処理して、第2スラリー加熱工程(S3)に供給する。これを繰り返すことで、溶剤は循環して使用される。
 なお、改質炭取得工程(S5)で除去・回収した溶剤は、水素化処理をせずに、芳香族溶剤として第1スラリー加熱工程(S1)に供給することもできる。
Thus, the solvent removed / recovered in the modified coal acquisition step (S5) is subjected to a hydrogenation process, and then supplied to the second slurry heating step (S3), and separated in the first separation step (S2). The mixed slurry is mixed, the mixed slurry is heat-treated, and the coal component is heated and extracted into a solvent. Thereafter, the solvent is removed and recovered again through the second separation step (S4) and the modified coal acquisition step (S5). The recovered solvent is again hydrogenated and supplied to the second slurry heating step (S3). By repeating this, the solvent is circulated and used.
Note that the solvent removed and recovered in the modified coal acquisition step (S5) can be supplied to the first slurry heating step (S1) as an aromatic solvent without performing a hydrogenation treatment.
 次に、無灰炭の製造方法において、重力沈降法を用いた場合の一例について、図1~3を適宜参照して説明する。
 図3に示すように、重力沈降法では、固液分離装置100において、まず、石炭スラリー調製槽3で、石炭貯蔵槽1から投入された無灰炭の原料である粉体の石炭と、溶剤貯蔵槽2から投入された芳香族溶剤とを混合し、攪拌機12aで攪拌してスラリーを調製する。次に、このスラリーを第1抽出槽4に所定量供給し、攪拌機12bで攪拌しながら320~450℃で所定時間加熱した後、必要に応じて、冷却器(図示省略)により、所定温度に冷却する(第1スラリー加熱工程(S1))。なお、スラリーを冷却するために、第1抽出槽4に冷却機構を設けておいてもよい。また、第1抽出槽4に供給する前に、石炭スラリー調製槽3からスラリーを予熱器(図示省略)に所定量供給し、スラリーを320~450℃まで加温してもよい。
Next, an example of using the gravity sedimentation method in the method for producing ashless coal will be described with reference to FIGS.
As shown in FIG. 3, in the gravity sedimentation method, in the solid-liquid separator 100, first, powder coal as a raw material of ashless coal charged from the coal storage tank 1 in a coal slurry preparation tank 3, and a solvent The aromatic solvent thrown from the storage tank 2 is mixed and stirred with the stirrer 12a to prepare a slurry. Next, a predetermined amount of this slurry is supplied to the first extraction tank 4 and heated at 320 to 450 ° C. for a predetermined time while being stirred by the stirrer 12b. Then, if necessary, the slurry is brought to a predetermined temperature by a cooler (not shown). Cool (first slurry heating step (S1)). Note that a cooling mechanism may be provided in the first extraction tank 4 in order to cool the slurry. Further, a predetermined amount of slurry may be supplied from the coal slurry preparation tank 3 to a preheater (not shown) and heated to 320 to 450 ° C. before being supplied to the first extraction tank 4.
 そして、この抽出処理を行ったスラリーを、第1重力沈降槽5へ供給して、スラリーを上澄み液と固形分濃縮液とに分離し(第1分離工程(S2))、第1重力沈降槽5の下部に沈降した固形分濃縮液を第2抽出槽6に排出するとともに、上部の上澄み液を改質炭分離器7へ所定量排出する。 And the slurry which performed this extraction process is supplied to the 1st gravity sedimentation tank 5, a slurry is isolate | separated into a supernatant liquid and solid content concentrate (1st separation process (S2)), and the 1st gravity sedimentation tank 5 is discharged to the second extraction tank 6 and the upper supernatant is discharged to the reformed coal separator 7 by a predetermined amount.
 ここで、第1重力沈降槽5内は、原料の石炭から溶出した成分の再析出を防止するため、スラリーを加熱した温度、スラリーを加熱した後に冷却した場合は、加熱後に冷却した温度に維持することが好ましく、また、圧力は、1.0~5.0MPaの範囲とすることが好ましい。また、第1重力沈降槽5内において、所定の温度で維持する時間は、スラリーを上澄み液と固形分濃縮液とに分離するのに必要な時間であり、一般的に60~120分であるが、特に限定されるものではない。 Here, in the first gravity settling tank 5, in order to prevent reprecipitation of components eluted from the raw material coal, the temperature at which the slurry is heated, and when the slurry is cooled after being heated, the temperature is maintained at the cooled temperature after being heated. In addition, the pressure is preferably in the range of 1.0 to 5.0 MPa. Further, the time for maintaining at a predetermined temperature in the first gravity settling tank 5 is a time required for separating the slurry into a supernatant and a solid concentrate, and is generally 60 to 120 minutes. However, it is not particularly limited.
 なお、第1重力沈降槽5の数を増やすことにより、固形分濃縮液に同伴した芳香族溶剤に可溶な成分を回収することができるが、効率的に回収するには、第1重力沈降槽5を二段に配置するのが適当である。 In addition, by increasing the number of the first gravity settling tanks 5, it is possible to recover components soluble in the aromatic solvent accompanying the concentrated solid solution. It is appropriate to arrange the tanks 5 in two stages.
 固形分濃縮液は、第2抽出槽6で、固定水素化反応器10で水素化された水素供与性溶剤と混合し、攪拌機12cで攪拌しながら350~500℃(ただし、第1抽出槽4での温度以上の温度)で所定時間加熱した後、必要に応じて、冷却器(図示省略)により、所定温度に冷却する(第2スラリー加熱工程(S3))。なお、スラリーを冷却するために、第2抽出槽6に冷却機構を設けておいてもよい。また、第2抽出槽6に供給する前に、第1重力沈降槽5からスラリーを予熱器(図示省略)に所定量供給し、スラリーを350~500℃まで加温してもよい。 The solid concentrate is mixed with the hydrogen-donating solvent hydrogenated in the stationary hydrogenation reactor 10 in the second extraction tank 6, and 350 to 500 ° C. (however, the first extraction tank 4 is stirred with the stirrer 12c). And then cooled to a predetermined temperature by a cooler (not shown) as necessary (second slurry heating step (S3)). Note that a cooling mechanism may be provided in the second extraction tank 6 in order to cool the slurry. In addition, a predetermined amount of slurry may be supplied from the first gravity settling tank 5 to a preheater (not shown) before being supplied to the second extraction tank 6, and the slurry may be heated to 350 to 500 ° C.
 そして、この抽出処理を行ったスラリーを、第2重力沈降槽8へ供給して、スラリーを上澄み液と固形分濃縮液とに分離し(第2分離工程(S4))、第2重力沈降槽8の下部に沈降した固形分濃縮液を副生炭分離器9に排出するとともに、上部の上澄み液を改質炭分離器7へ所定量排出する。
 なお、第2重力沈降槽8内の圧力は、1.0~20.0MPaの範囲とすることが好ましいこと以外は、前記第1重力沈降槽5についての記載と同様である。
And the slurry which performed this extraction process is supplied to the 2nd gravity sedimentation tank 8, a slurry is isolate | separated into a supernatant liquid and solid content concentrate (2nd separation process (S4)), and the 2nd gravity sedimentation tank 8 is discharged to the by-product coal separator 9 and the upper supernatant liquid is discharged to the reformed coal separator 7 by a predetermined amount.
The pressure in the second gravity settling tank 8 is the same as described for the first gravity settling tank 5 except that the pressure is preferably in the range of 1.0 to 20.0 MPa.
 第1重力沈降槽5で分離された上澄み液および第2重力沈降槽8で分離された上澄み液は、改質炭分離器7で溶剤を分離し、第1無灰炭および第2無灰炭を製造する(改質炭取得工程(S5))。なお、必要に応じて、副生炭分離器9で固体成分(固形分濃縮液)から溶剤を分離・回収し、改質炭である灰分の濃縮された副生炭を得てもよい。 The supernatant liquid separated in the first gravity settling tank 5 and the supernatant liquid separated in the second gravity settling tank 8 are separated from the solvent by the reformed coal separator 7, and the first and second ashless coals are separated. (Modified coal acquisition step (S5)). If necessary, the by-product coal separator 9 may separate and recover the solvent from the solid component (solid content concentrate) to obtain a by-product coal in which the ash that is the modified coal is concentrated.
 そして、改質炭分離器7および副生炭分離器9で分離・回収された溶剤(回収溶剤)は、必要に応じて、溶剤貯蔵槽2へ循環する。この回収溶剤は、触媒を充填した固定水素化反応器10内で、水素源供給槽11から供給された水素源(例えば、COG)と混合し(接触させ)、5~10MPaの圧力で加圧した後、320~370℃に昇温し、水素化処理する。その後、減圧して、第2抽出槽6に供給する。なお、COGとの混合や、温度、圧力の制御等は、固定水素化反応器10内で行ってもよいが、昇圧ポンプ、溶剤加熱装置等を設け、固定水素化反応器10に供給する前後に行うようにしてもよい。また、回収溶剤は、水素化処理せずに、石炭スラリー調製槽3に供給してもよい。 The solvent (collected solvent) separated and recovered by the reformed coal separator 7 and the byproduct coal separator 9 is circulated to the solvent storage tank 2 as necessary. This recovered solvent is mixed (contacted) with a hydrogen source (for example, COG) supplied from a hydrogen source supply tank 11 in a fixed hydrogenation reactor 10 filled with a catalyst and pressurized at a pressure of 5 to 10 MPa. After that, the temperature is raised to 320 to 370 ° C. and hydrogenation is performed. Thereafter, the pressure is reduced and the second extraction tank 6 is supplied. The mixing with COG, the control of temperature and pressure, etc. may be performed in the fixed hydrogenation reactor 10, but before and after supplying the fixed hydrogenation reactor 10 with a booster pump, a solvent heating device or the like. You may make it carry out. Further, the recovered solvent may be supplied to the coal slurry preparation tank 3 without performing a hydrogenation treatment.
 本発明は、以上説明したとおりであるが、本発明を行うにあたり、前記各工程に悪影響を与えない範囲において、前記各工程の間あるいは前後に、例えば、原料石炭を粉砕する石炭粉砕工程や、ごみ等の不要物を除去する不要物除去工程や、得られた無灰炭を乾燥させる乾燥工程等、他の工程を含めてもよい。 Although the present invention is as described above, in carrying out the present invention, within the range that does not adversely affect the respective steps, for example, a coal pulverization step of pulverizing raw coal between or before and after the respective steps, You may include other processes, such as an unnecessary object removal process which removes unnecessary objects, such as garbage, and a drying process which dries the obtained ashless coal.
 次に、本発明に係る無灰炭の製造方法について、実施例を挙げて具体的に説明する。
<手順>
 内容積が5リットルである加圧濾過機構つきのオートクレーブに石炭と溶剤を仕込み、表1の第1抽出処理に示す温度、圧力(窒素圧力)、時間をかけて加熱攪拌し、石炭を抽出した(第1抽出処理)。そして、この抽出温度に保持したまま、加圧濾過して抽出液だけを排出し、オートクレーブ内に不溶解成分だけを残した。次に、所定量の溶剤を追加して、表1の第2抽出処理に示す温度、圧力(窒素圧力)、時間をかけて加熱攪拌し、石炭を抽出した(第2抽出処理)。そして、この抽出温度に保持したまま、加圧濾過して抽出液だけを排出し、オートクレーブ内に不溶解成分だけを残した。なお、表1のNo.10、11については、第1抽出処理のみ行った。
Next, an example is given and the manufacturing method of ashless coal concerning the present invention is explained concretely.
<Procedure>
Coal and solvent were charged into an autoclave with a pressure filtration mechanism having an internal volume of 5 liters, and the coal was extracted by heating and stirring over the temperature, pressure (nitrogen pressure), and time shown in Table 1 (first extraction process). First extraction process). Then, while maintaining this extraction temperature, pressure filtration was performed to discharge only the extract, leaving only the insoluble components in the autoclave. Next, a predetermined amount of solvent was added and the mixture was heated and stirred over the temperature, pressure (nitrogen pressure), and time shown in the second extraction process of Table 1 to extract coal (second extraction process). Then, while maintaining this extraction temperature, pressure filtration was performed to discharge only the extract, leaving only the insoluble components in the autoclave. In Table 1, No. For 10 and 11, only the first extraction process was performed.
 使用した石炭は、亜瀝青炭(炭素含有率74.5質量%(daf basis))、使用した溶剤は、芳香族溶剤である1-メチルナフタレン(MN)、または、水素供与性溶剤であるテトラヒドロ-1-メチルナフタレン(THMN)である。また、第1抽出処理における石炭と溶剤の比(溶剤/石炭)は、4(2.0kg/0.5kg)とし、第2抽出処理における不溶解成分と溶剤の比(溶剤/不溶解成分)は、4(2.0kg/0.5kg)とした。
 また、固液分離法としては、高温濾過(抽出温度において0.5μmのメッシュフィルターにより加圧濾過)することにより行った。
The used coal is subbituminous coal (carbon content 74.5% by mass (daf basis)), and the solvent used is 1-methylnaphthalene (MN), which is an aromatic solvent, or tetrahydro-, which is a hydrogen-donating solvent. 1-methylnaphthalene (THMN). Moreover, the ratio of the coal and the solvent in the first extraction process (solvent / coal) is 4 (2.0 kg / 0.5 kg), and the ratio of the insoluble component to the solvent in the second extraction process (solvent / insoluble component). Was 4 (2.0 kg / 0.5 kg).
The solid-liquid separation method was performed by high-temperature filtration (pressure filtration with a 0.5 μm mesh filter at the extraction temperature).
<生成物の回収と分析>
 第1抽出処理と第2抽出処理で得られた抽出液は、それぞれ、窒素気流中で200℃まで加熱して溶剤を除去し、さらに300℃まで加熱して生成油分を除去し、無灰炭(第1無灰炭、第2無灰炭)を回収して、秤量した。なお、溶剤と生成油分はそれぞれ冷却トラップで捕集し、秤量した。
 また、それぞれの抽出処理において、処理後のオートクレーブ内の気体は、容積を測定しながら捕集し、ガスクロマトグラフで分析して、生成したガス成分(水、メタン、エタン、水素、CO、CO)を定量分析した。また、ガス収率、油分収率を求めた。
<Product recovery and analysis>
The extraction liquids obtained by the first extraction process and the second extraction process were each heated to 200 ° C. in a nitrogen stream to remove the solvent, and further heated to 300 ° C. to remove the product oil. (First ashless coal and second ashless coal) were collected and weighed. The solvent and produced oil were each collected by a cooling trap and weighed.
In each extraction process, the gas in the autoclave after the treatment is collected while measuring the volume, and analyzed by a gas chromatograph, and the generated gas components (water, methane, ethane, hydrogen, CO, CO 2). ) Was quantitatively analyzed. The gas yield and oil yield were determined.
 ガス収率は、通常の方法により、生成したガスの容積を測定して算出した。また、油分収率は、生成物を回収する工程で捕集した溶剤と生成油分の合計質量を求め、仕込んだ溶剤の質量よりも増えた分を、生成した油分量と定義し、(生成油分/仕込んだ石炭(原料石炭)の質量)×100の式により求めた。 The gas yield was calculated by measuring the volume of the generated gas by an ordinary method. In addition, the oil yield is determined by calculating the total mass of the solvent and product oil collected in the step of recovering the product, and defining the amount of oil added above the mass of the charged solvent as the amount of oil produced. / Mass of charged coal (raw coal) × 100.
 そして、得られた第1無灰炭について、無灰炭収率(抽出率)を求めた。
 具体的には、(第1無灰炭の質量/原料石炭の質量)×100の式により求めた。
 また、得られた第2無灰炭について、無灰炭収率(抽出率)を求めた。
 具体的には、(第2無灰炭の質量/原料石炭の質量)×100の式により求めた。
 なお、原料石炭は、無水・無灰炭基準である。
And about the obtained 1st ashless coal, the ashless coal yield (extraction rate) was calculated | required.
Specifically, it was determined by the formula: (mass of first ashless coal / mass of raw coal) × 100.
Moreover, about the obtained 2nd ashless coal, the ashless coal yield (extraction rate) was calculated | required.
Specifically, it was determined by the formula (mass of second ashless coal / mass of raw coal) × 100.
The raw coal is based on anhydrous / ashless coal.
 そして、第1無灰炭の収率が20質量%以上のものを、第1無灰炭の収率が良好とし、第2無灰炭の収率が10質量%以上のものを、第2無灰炭の収率が良好とし、第1無灰炭と第2無灰炭の合計収率が45質量%以上のものを、合計収率が良好であるものとした。 The first ashless coal yield is 20% by mass or more, the first ashless coal yield is good, and the second ashless coal yield is 10% by mass or more. The yield of ashless coal was considered good, and the total yield of the first ashless coal and the second ashless coal was 45% by mass or more, and the total yield was good.
<水素消費量の計算>
 回収された溶剤は、ガスクロマトグラフで組成の定量分析を行った。溶剤として水素供与性のテトラヒドロ-1-メチルナフタレンを用いた場合、抽出処理の後には出発溶剤のほかに、水素を失った1-メチルナフタレンとジヒドロ-1-メチルナフタレン(水素の置換位置は特定できていない)の生成が認められた。この場合、水素消費量は以下の式により算出した。
<Calculation of hydrogen consumption>
The recovered solvent was subjected to quantitative analysis of the composition by gas chromatography. When hydrogen-donating tetrahydro-1-methylnaphthalene is used as the solvent, after extraction, in addition to the starting solvent, 1-methylnaphthalene and dihydro-1-methylnaphthalene that have lost hydrogen (the hydrogen substitution position is specified) Production) was observed. In this case, the hydrogen consumption was calculated by the following formula.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 前記式において、
 H.C.:水素消費量(mg/g-coal)
 W:回収された溶剤質量(g)
 CDHMN:回収溶剤中のジヒドロ-1-メチルナフタレンの分率(質量%)
 CMN:回収溶剤中の1-メチルナフタレンの分率(質量%)
 W:石炭仕込み量(g)
 である。
In the above formula,
HC: Hydrogen consumption (mg / g-coal)
W S : Recovered solvent mass (g)
C DHMN : fraction of dihydro-1-methylnaphthalene in the recovered solvent (% by mass)
C MN : fraction of 1-methylnaphthalene in the recovered solvent (% by mass)
W C: coal charged amount (g)
It is.
 これらの結果を表1に示す。なお、本発明の条件を満たさないものについては、数値等に下線を引いて示す。また、比較例において、好ましい結果が得られなかったものについては、その箇所の数値に下線を引いて示す。 These results are shown in Table 1. In addition, about what does not satisfy | fill the conditions of this invention, it shows by underlining a numerical value etc. Further, in the comparative example, those for which a preferable result was not obtained are shown by underlining the numerical value at that location.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、No.1~6は、本発明の要件を満たす実施例であり、第1無灰炭および第2無灰炭の収率は、それぞれ、20質量%以上、10質量%以上と良好であり、また、第1無灰炭と第2無灰炭の合計収率は、45質量%以上と良好であった。
 なお、No.6は、第1抽出処理の温度と第2抽出処理の温度が同じため、第2無灰炭の収率と、第1無灰炭と第2無灰炭の合計収率が、No.1~5に比べると、やや低かった。
As shown in Table 1, no. Examples 1 to 6 are examples that satisfy the requirements of the present invention, and the yields of the first ashless coal and the second ashless coal are good at 20% by mass or more and 10% by mass or more, respectively. The total yield of 1st ashless coal and 2nd ashless coal was as favorable as 45 mass% or more.
In addition, No. In No. 6, since the temperature of the first extraction treatment and the temperature of the second extraction treatment are the same, the yield of the second ashless coal and the total yield of the first ashless coal and the second ashless coal are No. Compared to 1-5, it was slightly lower.
 No.7~11は、本発明の要件を満たさない比較例であり、以下のような結果となった。
 No.7は、第2抽出処理における溶剤に、水素供与性溶剤を用いていないため、第2無灰炭の収率が低く、第1無灰炭と第2無灰炭の合計収率も低かった。No.8は、第1抽出処理における溶剤に、水素供与性溶剤を用いているため、第1無灰炭の収率は高かったが、第2抽出処理における溶剤に、水素供与性溶剤を用いていないため、第2無灰炭の収率が低く、結果として第1無灰炭と第2無灰炭の合計収率も低かった。
No. 7 to 11 are comparative examples not satisfying the requirements of the present invention, and the following results were obtained.
No. In No. 7, since no hydrogen-donating solvent was used as the solvent in the second extraction treatment, the yield of the second ashless coal was low, and the total yield of the first ashless coal and the second ashless coal was also low. . No. In No. 8, since the hydrogen donating solvent was used as the solvent in the first extraction treatment, the yield of the first ashless coal was high, but no hydrogen donating solvent was used as the solvent in the second extraction treatment. Therefore, the yield of the second ashless coal was low, and as a result, the total yield of the first ashless coal and the second ashless coal was also low.
 No.9は、第2抽出処理における温度が、第1抽出処理における温度よりも低かったため、第2無灰炭の収率がやや劣り、結果として第1無灰炭と第2無灰炭の合計収率が低かった。No.10、11は、第1抽出処理しか行っていないため、第1無灰炭と第2無灰炭の合計収率が低かった。 No. No. 9, since the temperature in the second extraction process was lower than the temperature in the first extraction process, the yield of the second ashless coal was slightly inferior, resulting in the total yield of the first ashless coal and the second ashless coal. The rate was low. No. Since 10 and 11 performed only the 1st extraction process, the total yield of the 1st ashless coal and the 2nd ashless coal was low.
 以上、本発明に係る無灰炭の製造方法について最良の実施の形態および実施例を示して詳細に説明したが、本発明の趣旨は前記した内容に限定されることなく、その権利範囲は特許請求の範囲の記載に基づいて広く解釈しなければならない。なお、本発明の内容は、前記した記載に基づいて広く改変・変更等することができることはいうまでもない。 As mentioned above, although the best embodiment and the example were shown and explained in detail about the manufacturing method of ashless coal concerning the present invention, the meaning of the present invention is not limited to the above-mentioned contents, and the scope of right is patent. It should be interpreted broadly based on the claims. Needless to say, the contents of the present invention can be widely modified and changed based on the above description.
 S1  第1スラリー加熱工程
 S2  第1分離工程
 S3  第2スラリー加熱工程
 S4  第2分離工程
 S5  改質炭取得工程
 1   石炭貯蔵槽
 2   溶剤貯蔵槽
 3   石炭スラリー調製槽
 4   第1抽出槽
 5   第1重力沈降槽
 6   第2抽出槽
 7   改質炭分離器
 8   第2重力沈降槽
 9   副生炭分離器
 10  固定水素化反応器
 11  水素源供給槽
 12a、12b、12c 攪拌機
 100 固液分離装置
S1 first slurry heating step S2 first separation step S3 second slurry heating step S4 second separation step S5 modified coal acquisition step 1 coal storage tank 2 solvent storage tank 3 coal slurry preparation tank 4 first extraction tank 5 first gravity Sedimentation tank 6 Second extraction tank 7 Reformed coal separator 8 Second gravity sedimentation tank 9 Byproduct coal separator 10 Fixed hydrogenation reactor 11 Hydrogen source supply tank 12a, 12b, 12c Stirrer 100 Solid-liquid separator

Claims (2)

  1.  非鉄金属還元剤、構造材料炭、電気材料炭、または、これらの原料として用いる無灰炭の製造方法であって、
     石炭と芳香族溶剤とを混合したスラリーを加熱処理する第1スラリー加熱工程と、
     前記第1スラリー加熱工程で加熱処理されたスラリーを、石炭が溶解した液体成分と、灰分および不溶石炭を含む固体成分と、に分離する第1分離工程と、
     前記第1分離工程で分離された固体成分に水素供与性溶剤を加えて混合し、この混合したスラリーを、前記第1スラリー加熱工程における加熱処理の温度以上の温度で加熱処理する第2スラリー加熱工程と、
     前記第2スラリー加熱工程で加熱処理されたスラリーを、石炭が溶解した液体成分と、灰分および不溶石炭を含む固体成分と、に分離する第2分離工程と、
     前記第2分離工程で分離された液体成分から溶剤を除去して、改質炭である無灰炭を取得する改質炭取得工程と、を含み、
     前記改質炭取得工程において、前記無灰炭を取得することに加え、前記改質炭取得工程において、さらに、前記第1分離工程で分離された液体成分から溶剤を除去して、改質炭である無灰炭を取得することを特徴とする無灰炭の製造方法。
    Nonferrous metal reducing agent, structural material charcoal, electric material charcoal, or a production method of ashless charcoal used as these raw materials,
    A first slurry heating step of heating a slurry in which coal and an aromatic solvent are mixed;
    A first separation step of separating the slurry heat-treated in the first slurry heating step into a liquid component in which coal is dissolved and a solid component containing ash and insoluble coal;
    Second slurry heating, in which a hydrogen-donating solvent is added to and mixed with the solid component separated in the first separation step, and the mixed slurry is heat-treated at a temperature equal to or higher than the temperature of the heat treatment in the first slurry heating step. Process,
    A second separation step of separating the slurry heat-treated in the second slurry heating step into a liquid component in which coal is dissolved and a solid component containing ash and insoluble coal;
    Removing the solvent from the liquid component separated in the second separation step to obtain ashless coal that is reformed coal,
    In the modified coal acquisition step, in addition to acquiring the ashless coal, in the modified coal acquisition step, the solvent is further removed from the liquid component separated in the first separation step. A method for producing ashless charcoal, comprising obtaining ashless charcoal.
  2.  前記改質炭取得工程で除去した溶剤を水素化処理し、この水素化処理した溶剤を前記第2スラリー加熱工程に供給し、循環して使用することを特徴とする請求の範囲第1項に記載の無灰炭の製造方法。 The solvent removed in the reformed coal acquisition step is hydrotreated, and the hydrotreated solvent is supplied to the second slurry heating step and circulated for use. The manufacturing method of ashless coal of description.
PCT/JP2009/066019 2008-09-29 2009-09-14 Method for manufacturing hyper-coal WO2010035651A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2009297631A AU2009297631B2 (en) 2008-09-29 2009-09-14 Method for manufacturing hyper-coal
KR1020117007045A KR101246505B1 (en) 2008-09-29 2009-09-14 Method for manufacturing hyper-coal
CN2009801375971A CN102165049B (en) 2008-09-29 2009-09-14 Method for manufacturing hyper-coal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008250966A JP4708463B2 (en) 2008-09-29 2008-09-29 Production method of ashless coal
JP2008-250966 2008-09-29

Publications (1)

Publication Number Publication Date
WO2010035651A1 true WO2010035651A1 (en) 2010-04-01

Family

ID=42059652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066019 WO2010035651A1 (en) 2008-09-29 2009-09-14 Method for manufacturing hyper-coal

Country Status (4)

Country Link
JP (1) JP4708463B2 (en)
KR (1) KR101246505B1 (en)
CN (1) CN102165049B (en)
WO (1) WO2010035651A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157410A1 (en) * 2013-03-28 2014-10-02 株式会社神戸製鋼所 Ashless-coal production device, and ashless-coal production method
AU2013216554B2 (en) * 2012-02-01 2015-07-02 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Solvent separation method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5710459B2 (en) * 2011-12-15 2015-04-30 株式会社神戸製鋼所 Production method of ashless coal
JP2013181062A (en) 2012-02-29 2013-09-12 Kobe Steel Ltd Molded coal blend, method for manufacturing the same, coke, and method for manufacturing the same
JP2013249360A (en) * 2012-05-31 2013-12-12 Kobe Steel Ltd Method for producing ashless coal
US20140227459A1 (en) * 2013-02-11 2014-08-14 General Electric Company Methods and systems for treating carbonaceous materials
JP6003003B2 (en) * 2013-07-30 2016-10-05 株式会社神戸製鋼所 Solvent separation method
JP5982666B2 (en) * 2013-12-25 2016-08-31 株式会社神戸製鋼所 Production method of ashless coal
JP6827884B2 (en) * 2017-05-24 2021-02-10 株式会社神戸製鋼所 Ash-free coal manufacturing method and ash-free coal manufacturing equipment
CN110993363B (en) * 2019-12-31 2021-04-13 中国科学院化学研究所 Super-capacitor electrode carbon material and preparation method thereof
JP7316993B2 (en) * 2020-12-10 2023-07-28 株式会社神戸製鋼所 Method for producing ashless coal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5416501A (en) * 1977-06-08 1979-02-07 Mobil Oil Solvent purification method of coal
JP2005120185A (en) * 2003-10-15 2005-05-12 Kobe Steel Ltd Method for producing ashless coal
WO2008044728A1 (en) * 2006-10-12 2008-04-17 Kabushiki Kaisha Kobe Seiko Sho Method for production of ashless coal
JP2009215505A (en) * 2008-03-12 2009-09-24 Kobe Steel Ltd Method of manufacturing ashless coal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5416501A (en) * 1977-06-08 1979-02-07 Mobil Oil Solvent purification method of coal
JP2005120185A (en) * 2003-10-15 2005-05-12 Kobe Steel Ltd Method for producing ashless coal
WO2008044728A1 (en) * 2006-10-12 2008-04-17 Kabushiki Kaisha Kobe Seiko Sho Method for production of ashless coal
JP2009215505A (en) * 2008-03-12 2009-09-24 Kobe Steel Ltd Method of manufacturing ashless coal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013216554B2 (en) * 2012-02-01 2015-07-02 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Solvent separation method
WO2014157410A1 (en) * 2013-03-28 2014-10-02 株式会社神戸製鋼所 Ashless-coal production device, and ashless-coal production method

Also Published As

Publication number Publication date
AU2009297631A1 (en) 2010-04-01
JP2010083907A (en) 2010-04-15
KR20110047264A (en) 2011-05-06
JP4708463B2 (en) 2011-06-22
KR101246505B1 (en) 2013-03-25
CN102165049B (en) 2013-10-30
CN102165049A (en) 2011-08-24

Similar Documents

Publication Publication Date Title
JP4708463B2 (en) Production method of ashless coal
JP4061351B1 (en) Production method of ashless coal
KR101365365B1 (en) Method for producing carbon materials
JP5334433B2 (en) Production method of ashless coal
JP5314299B2 (en) Production method of ashless coal
RU2010120474A (en) METHOD FOR HYDRAULIC PROCESSING OF HEAVY AND EXTREME OIL AND OIL RESIDUES
JP2012184125A (en) Method for producing carbon material
JP5128351B2 (en) Carbon material manufacturing method
JP6017371B2 (en) Ashless coal manufacturing method and carbon material manufacturing method
JP4971955B2 (en) Production method of ashless coal
JP2013249360A (en) Method for producing ashless coal
JP5639402B2 (en) Production method of ashless coal
JP5426832B2 (en) Production method of ashless coal
WO2012176896A1 (en) Method for producing ashless coal
JP6602168B2 (en) Caking filler and method for producing coal pitch
WO2016093000A1 (en) Method for producing coke
JP5118388B2 (en) Production method of carbon black
JP2013112814A (en) Method for producing by-produced coal formed article

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980137597.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09816066

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009297631

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 20117007045

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009297631

Country of ref document: AU

Date of ref document: 20090914

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09816066

Country of ref document: EP

Kind code of ref document: A1