JP5334433B2 - Production method of ashless coal - Google Patents

Production method of ashless coal Download PDF

Info

Publication number
JP5334433B2
JP5334433B2 JP2008071528A JP2008071528A JP5334433B2 JP 5334433 B2 JP5334433 B2 JP 5334433B2 JP 2008071528 A JP2008071528 A JP 2008071528A JP 2008071528 A JP2008071528 A JP 2008071528A JP 5334433 B2 JP5334433 B2 JP 5334433B2
Authority
JP
Japan
Prior art keywords
coal
solvent
ashless
slurry
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008071528A
Other languages
Japanese (ja)
Other versions
JP2009227718A (en
Inventor
憲幸 奥山
康爾 堺
信行 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008071528A priority Critical patent/JP5334433B2/en
Publication of JP2009227718A publication Critical patent/JP2009227718A/en
Application granted granted Critical
Publication of JP5334433B2 publication Critical patent/JP5334433B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、無灰炭の製造方法に関し、詳細には、石炭から灰分を除去した無灰炭を得るための無灰炭の製造方法に関するものである。   The present invention relates to a method for producing ashless coal, and in particular, to a method for producing ashless coal for obtaining ashless coal from which ash is removed from coal.

石炭は、火力発電やボイラーの燃料、または、化学品の原料として幅広く利用されており、環境対策の一つとして石炭中の灰分を効率的に除去する技術の開発が強く望まれている。例えば、ガスタービン燃焼による高効率複合発電システムでは、LNG等の液体燃料に替わる燃料として、灰分が除去された無灰炭を使用する試みがなされている。また高炉用コークス等の製鉄用コークスの原料炭として、無灰炭を使用する試みがなされている。   Coal is widely used as a fuel for thermal power generation and boilers, or as a raw material for chemical products, and development of a technique for efficiently removing ash in coal is strongly desired as one of environmental measures. For example, in a high-efficiency combined power generation system using gas turbine combustion, an attempt has been made to use ashless coal from which ash has been removed as a fuel to replace liquid fuel such as LNG. Attempts have also been made to use ashless coal as coking coal for ironmaking coke such as blast furnace coke.

無灰炭の製造方法として以下の方法が提案されている。
例えば、石炭原料と溶剤とを混合してスラリーを調製し、得られたスラリーを加熱して溶剤に可溶な石炭成分を抽出し、該スラリーから、溶剤に可溶な石炭成分を含む溶液部と、溶剤に不溶な石炭成分を含む非溶液部とを分離した後、該溶液部から溶剤を分離して無灰炭を得る無灰炭の製造方法が知られている(特許文献1)。
The following methods have been proposed as methods for producing ashless coal.
For example, a coal raw material and a solvent are mixed to prepare a slurry, and the obtained slurry is heated to extract a coal component soluble in the solvent, and from the slurry, a solution portion containing a coal component soluble in the solvent A method for producing ashless coal is known, in which a ashless coal is obtained by separating the solvent from the solution portion and then separating the solvent from the solution portion (Patent Document 1).

しかしながら、スラリーから溶液部と非溶液部とを分離する方法として、濾過法や遠心分離法を用いると、工業的な実施が困難であった。例えば、濾過法を用いると、濾過助剤の頻繁な交換が必要であり、連続的な処理が困難であった。また例えば、遠心分離法を用いると、溶剤に不溶な石炭成分(RC)による閉塞が起こりやすく、連続的な処理が困難であった。
特開2005−120185号公報
However, when a filtration method or a centrifugal separation method is used as a method for separating the solution portion and the non-solution portion from the slurry, it is difficult to implement industrially. For example, when a filtration method is used, frequent replacement of the filter aid is necessary, and continuous treatment is difficult. Further, for example, when a centrifugal separation method is used, clogging with a coal component (RC) insoluble in a solvent is likely to occur, and continuous treatment is difficult.
Japanese Patent Laid-Open No. 2005-120185

そこで、灰分等の溶剤不溶成分を重力沈降させることにより、連続的に分離処理を行う重力沈降法を用いて無灰炭を製造したところ、石炭の銘柄によっては沈降速度が著しく遅い、という問題が生じた。そのため、沈降槽上部では、沈降しなかった微細な溶剤不溶成分が滞留するので、結果として灰分を十分に除去できなかった。そのような問題を解決するには、沈降槽面積や高さを増やし、沈降槽を大型化して液の上昇流速を低下させたり,沈降時間を十分に確保する,あるいは石炭の濃度を下げて粒子間の干渉を抑えるなどの対策が考えられるが、大型の沈降槽の製作には技術的な難しさや、設備コストの増加という問題があった。   Therefore, when ashless coal was produced using gravity sedimentation method, in which solvent-insoluble components such as ash are gravity settled, and the separation process is performed continuously, the problem is that depending on the brand of coal, the sedimentation rate is extremely slow. occured. For this reason, fine solvent-insoluble components that have not settled stay in the upper part of the sedimentation tank, and as a result, ash cannot be removed sufficiently. In order to solve such problems, the sedimentation tank area and height are increased, the sedimentation tank is enlarged, the liquid ascending flow rate is decreased, the sedimentation time is secured sufficiently, or the coal concentration is lowered to reduce the particle size. Although measures such as suppressing interference between the two can be considered, there were technical difficulties and production cost increase in manufacturing a large sedimentation tank.

本発明は、上記事情に鑑みてなされたものであって、重力沈降法における溶剤不溶成分の沈降速度を向上させ、灰分が十分に除去された無灰炭を高効率、かつ安価に製造できる無灰炭の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and can improve the sedimentation rate of solvent-insoluble components in the gravity sedimentation method, and can produce ashless coal from which ash is sufficiently removed with high efficiency and low cost. It aims at providing the manufacturing method of ash coal.

本発明は、溶剤不溶成分の沈降速度が遅い石炭に粘結炭を混合した石炭原料と溶剤とを混合してスラリーを調製するスラリー調製工程;
前記スラリー調製工程で得られたスラリーを加熱して溶剤に可溶な石炭成分を抽出する抽出工程;
前記抽出工程で得られたスラリーから、重力沈降法により、溶剤に可溶な石炭成分を含む溶液部と、溶剤に不溶な石炭成分を含む非溶液部とを分離する分離工程;および
前記分離工程で分離された溶液部から溶剤を分離して無灰炭を得る無灰炭取得工程;
を含むことを特徴とする無灰炭の製造方法に関する。
The present invention provides a slurry preparation step of preparing a slurry by mixing a coal raw material in which caking coal is mixed with coal having a slow sedimentation rate of a solvent-insoluble component and a solvent;
An extraction step of heating the slurry obtained in the slurry preparation step to extract a coal component soluble in a solvent;
A separation step of separating, from the slurry obtained in the extraction step, a solution portion containing a coal component soluble in a solvent and a non-solution portion containing a coal component insoluble in a solvent by gravity sedimentation; and the separation step Ashless coal acquisition step of obtaining ashless coal by separating the solvent from the solution portion separated in step;
It is related with the manufacturing method of ashless charcoal characterized by including.

本発明に係る無灰炭の製造方法によれば、重力沈降法の実施に際し、溶剤不溶成分の沈降速度が向上する。そのため、灰分が十分に除去された無灰炭を高効率、かつ安価に製造できる。   According to the method for producing ashless coal according to the present invention, the sedimentation rate of the solvent-insoluble component is improved when the gravity sedimentation method is performed. Therefore, ashless coal from which the ash has been sufficiently removed can be produced with high efficiency and at low cost.

本発明に係る無灰炭の製造方法は、石炭に不可避に含まれる灰分等の溶剤不溶成分を、当該石炭から十分に除去して、無灰炭を製造するための方法である。本発明に係る無灰炭の製造方法を、図1を用いて詳細に説明する。図1は、本発明の無灰炭の製造方法を実施する無灰炭の製造装置の一例を示す模式図である。
本明細書中、溶剤不溶成分は、溶剤により石炭の溶解・抽出を行っても、溶剤に溶解されずに残る灰分や該灰分を含む石炭(すなわち灰炭)などの石炭成分であり、主として石炭に含まれていた無機成分や,溶剤に抽出されない石炭成分であり,比較的分子量が高く,架橋構造が発達した有機成分に由来するものである。以下、溶剤不溶成分を「RC成分」と呼ぶことがある。一方、溶剤可溶成分は、溶剤に溶解され得る石炭成分であり、主として分子量が比較的小さく,架橋構造が発達していない石炭中の有機成分に由来するものである。
The method for producing ashless coal according to the present invention is a method for producing ashless coal by sufficiently removing solvent-insoluble components such as ash inevitably contained in the coal from the coal. The method for producing ashless coal according to the present invention will be described in detail with reference to FIG. FIG. 1 is a schematic view showing an example of an ashless coal production apparatus for carrying out the ashless coal production method of the present invention.
In the present specification, the solvent-insoluble component is a coal component such as ash that remains without being dissolved in the solvent or coal containing the ash (that is, ash coal) even when the coal is dissolved / extracted with a solvent. It is an inorganic component contained in or coal components that are not extracted by the solvent, and is derived from organic components that have a relatively high molecular weight and developed a crosslinked structure. Hereinafter, the solvent-insoluble component may be referred to as “RC component”. On the other hand, a solvent-soluble component is a coal component that can be dissolved in a solvent, and is mainly derived from an organic component in coal that has a relatively small molecular weight and has not developed a crosslinked structure.

本発明に係る無灰炭の製造方法は、スラリー調製工程、抽出工程、分離工程、および無灰炭取得工程を含み、所望により副生炭取得工程をさらに含むものである。以下、各工程について説明する。   The method for producing ashless coal according to the present invention includes a slurry preparation step, an extraction step, a separation step, and an ashless coal acquisition step, and further includes a by-product coal acquisition step as desired. Hereinafter, each step will be described.

<スラリー調製工程>
スラリー調製工程は、石炭原料と溶剤とを混合してスラリーを調製する工程であり、図1中、スラリー調製槽1で実施される。
<Slurry preparation process>
The slurry preparation step is a step of preparing a slurry by mixing a coal raw material and a solvent, and is performed in the slurry preparation tank 1 in FIG.

石炭原料は、一般炭に粘結炭を混合したものを用いる。これにより、後述する抽出工程で現出するRC成分を、分離工程で速やかに沈降させることができる。そのような現象のメカニズムの詳細は明らかではないが、以下のメカニズムに基づくものと考えられる。粘結炭を単独で原料として用いて無灰炭を製造した場合、重力沈降法による分離工程において、RC成分の沈降速度は十分に速く、沈降槽上部における清澄化が進み、灰分濃度が非常に少ない無灰炭を製造できる。これは粘結炭のRC成分の凝集性が良いためである。本発明の発明者等は、そのような凝集性の促進因子は、粘結炭中にRC成分とともに比較的多く含まれる粘着成分にあることを、鋭意努力の末に発見した。粘着成分は、抽出工程において半溶解状態にあり、高い粘着性を有するので、RC成分に付着し、更にはRC成分同士の付着を促進する。詳しくは粘着成分は、抽出温度域で軟化溶融する性質を持ち、抽出工程において半溶解状態(半抽出状態)でスラリー中に存在するので、結果としてRC成分粒子同士を凝集させるバインダーとして働く。よって、RC成分の凝集性が乏しい石炭に対して、粘結炭を適宜混合することで、混合石炭の抽出時に粘結炭から現出する粘着成分(バインダー物質)がRC成分同士の付着・凝集を促進するものと考えられる。   The coal raw material used is a mixture of caking coal and caking coal. Thereby, RC component which appears in the extraction process mentioned later can be quickly settled in a separation process. The details of the mechanism of such a phenomenon are not clear, but are thought to be based on the following mechanism. When coking coal is used alone as raw material to produce ashless coal, in the separation process by gravity sedimentation method, the sedimentation rate of RC component is sufficiently fast, clarification in the upper part of the sedimentation tank proceeds, and the ash concentration is very high. Less ashless coal can be produced. This is because the cohesiveness of the RC component of caking coal is good. The inventors of the present invention have discovered, after diligent efforts, that such a cohesiveness-promoting factor lies in the adhesive component that is relatively contained in the coking coal together with the RC component. The adhesive component is in a semi-dissolved state in the extraction step and has high adhesiveness, so that it adheres to the RC component and further promotes the adhesion between the RC components. Specifically, the adhesive component has a property of softening and melting in the extraction temperature range and is present in the slurry in a semi-dissolved state (semi-extracted state) in the extraction process, and as a result, acts as a binder that aggregates RC component particles. Therefore, by adhering caking coal to coal with poor RC component agglomeration, the adhesive component (binder substance) that emerges from caking coal during the extraction of mixed coal adheres to and agglomerates between RC components. It is thought that it promotes.

粘結炭は、コークス製造用に用いられている粘結性を有する石炭であって、ギーセラープラストメーター試験において、軟化開始点が420℃以下、特に360〜420℃であり、かつ最高流動度が対数表示で2以上、特に2〜5である石炭を用いる。軟化開始点が高すぎたり、最高流動度が低すぎたりする石炭を用いても、期待するバインダー効果は得られず、その結果、RC成分の沈降速度を有効に向上させることができない。   The caking coal is caking coal used for coke production, and has a softening start point of 420 ° C. or less, particularly 360 ° C. to 420 ° C., and a maximum fluidity in a Gieselar plastometer test. Is a logarithmic representation of 2 or more, especially 2-5 coal. Even if coal whose softening start point is too high or the maximum fluidity is too low is used, the expected binder effect cannot be obtained, and as a result, the sedimentation rate of the RC component cannot be improved effectively.

本明細書中、軟化開始点および最高流動度はギーセラープラストメーター試験で測定された値を用いている。   In the present specification, the softening start point and the maximum fluidity are values measured by the Gieseller Plastometer test.

粘結炭として、日本の石炭分類法(JIS M 1002−1978)で規定される区分B、B、およびCに分類されるものが使用可能である。
例えば、区分BおよびBに分類される石炭はいわゆる「れき青炭」のうち、発熱量8400kcal/kg以上を示すものである。
また例えば、区分Cに分類される石炭はいわゆる「れき青炭」のうち、発熱量8100以上8400kcal/kg未満を示すものである。
As the caking coal, those classified into categories B 1 , B 2 , and C defined by the Japanese coal classification method (JIS M 1002-1978) can be used.
For example, the coal classified into the categories B 1 and B 2 represents a calorific value of 8400 kcal / kg or more among so-called “rubber blue coal”.
Further, for example, the coal classified into the category C indicates a calorific value of 8100 or more and less than 8400 kcal / kg among so-called “brick blue coal”.

石炭分類法(JIS M 1002−1978)で規定される発熱量は以下の式に基づいて算出される値である。
発熱量(補正無水無灰ベース)=発熱量/(100−1.08×灰分−水分)×100
The calorific value specified by the coal classification method (JIS M 1002-1978) is a value calculated based on the following equation.
Calorific value (corrected anhydrous ashless base) = calorific value / (100-1.08 x ash-moisture) x 100

粘結炭の混合割合は、本発明の目的が達成される限り特に制限されず、通常は供給される全石炭(一般炭+粘結炭)中の4重量%以上の割合でバインダー効果が認められる。バインダー効果をより一層有効に発揮する観点からは、当該混合割合は5重量%以上、特に5〜50重量%が好ましく、より好ましくは5〜20重量%、さらに好ましくは5〜10重量%である。混合割合を50重量%超える値に設定しても、添加効果が飽和状態になるに過ぎない。   The mixing ratio of caking coal is not particularly limited as long as the object of the present invention is achieved. Usually, the binder effect is recognized at a ratio of 4% by weight or more in the total coal supplied (general coal + caking coal). It is done. From the viewpoint of more effectively exhibiting the binder effect, the mixing ratio is preferably 5% by weight or more, particularly preferably 5 to 50% by weight, more preferably 5 to 20% by weight, and further preferably 5 to 10% by weight. . Even if the mixing ratio is set to a value exceeding 50% by weight, the effect of addition only becomes saturated.

一般炭は、通常、発電用、高炉微粉炭吹込み用(PCI)として用いられている石炭であり、コークス製造用に用いられている粘結炭や非微粘結炭などのような、所謂原料炭ではない石炭である。そのような一般炭は、詳しくは、軟化溶融性に乏しいか、または軟化溶融性を持たない石炭であり、ギーセラープラストメーター試験において、軟化流動性を示さないか、あるいは最高流動度が対数表示で2未満の石炭である。   Steam coal is usually used for power generation, blast furnace pulverized coal injection (PCI), so-called caking coal or non-slightly caking coal used for coke production, etc. Coal that is not coking coal. Such steaming coal is, in particular, a coal that has poor softening meltability or no softening meltability, and does not show softening fluidity in the Gieseller Plastometer test, or the maximum fluidity is logarithmically displayed. It is less than 2 coal.

一般炭として、日本の石炭分類法(JIS M 1002−1978)で規定される区分D、E、FおよびFに分類されるものが使用可能である。
例えば、区分Dに分類される石炭はいわゆる「亜れき青炭」のうち、発熱量7800以上8100kcal/kg未満を示すものである。
また例えば、区分Eに分類される石炭はいわゆる「亜れき青炭」のうち、発熱量7300kcal/kg以上7800kcal/kg未満を示すものである。
また例えば、区分Fに分類される石炭はいわゆる「褐炭」のうち、発熱量6800以上7300kcal/kg未満を示すものである。
また例えば、区分Fに分類される石炭はいわゆる「褐炭」のうち、発熱量5800以上6800kcal/kg未満を示すものである。
As steam coal, those classified into categories D, E, F 1 and F 2 defined by Japanese coal classification method (JIS M 1002-1978) can be used.
For example, the coal classified into Category D indicates a calorific value of 7800 or more and less than 8100 kcal / kg among so-called “subbituminous coal”.
Further, for example, coal classified into Category E indicates a calorific value of 7300 kcal / kg or more and less than 7800 kcal / kg in so-called “subbituminous coal”.
Further, for example, the coal classified into the category F 1 indicates a calorific value of 6800 or more and less than 7300 kcal / kg among so-called “brown coal”.
Further, for example, the coal classified into the category F 2 indicates a calorific value of 5800 or more and less than 6800 kcal / kg among so-called “brown coal”.

溶剤は石炭を溶解可能なものであれば、特に制限されず、例えば、石炭由来の油分が好ましく使用される。石炭由来の油分とは石炭から生まれた油分のことであり、そのような石炭由来の油分として、例えば、2環式芳香族化合物を主とする非水素供与性溶剤が好ましく使用される。   A solvent will not be restrict | limited especially if coal can be melt | dissolved, For example, the oil component derived from coal is used preferably. The oil component derived from coal is an oil component born from coal, and as such an oil component derived from coal, for example, a non-hydrogen donating solvent mainly containing a bicyclic aromatic compound is preferably used.

非水素供与性溶剤は、主に石炭の乾留生成物から精製した、2環式芳香族化合物を主とする溶剤である石炭誘導体である。この非水素供与性溶剤は、加熱状態でも安定であり、石炭との親和性に優れているため、溶剤に抽出される石炭成分の割合(以下、「抽出率」ともいう)が高く、また、蒸留等の方法で容易に回収可能な溶剤である。そして、この回収した溶剤は、経済性の向上を図るため、循環使用することもできる。   The non-hydrogen donating solvent is a coal derivative which is a solvent mainly composed of a bicyclic aromatic compound purified mainly from a carbonization product of coal. Since this non-hydrogen donating solvent is stable even in a heated state and has excellent affinity with coal, the proportion of coal components extracted into the solvent (hereinafter also referred to as “extraction rate”) is high. It is a solvent that can be easily recovered by methods such as distillation. The recovered solvent can be recycled for improving economic efficiency.

非水素供与性溶剤の主たる成分としては、2環式芳香族化合物であるナフタレン、メチルナフタレン、ジメチルナフタレン、トリメチルナフタレン等が挙げられ、その他脂肪族側鎖をもつナフタレン類、また、これにビフェニルや長鎖脂肪族側鎖をもつアルキルベンゼンが含まれる。   The main components of the non-hydrogen donating solvent include naphthalene, methylnaphthalene, dimethylnaphthalene, trimethylnaphthalene, etc., which are bicyclic aromatic compounds, other naphthalenes having an aliphatic side chain, biphenyl, Alkylbenzenes with long aliphatic side chains are included.

溶剤の沸点は特に制限されるものではなく、例えば、抽出工程および分離工程での圧力低減、抽出工程での抽出率および無灰炭取得工程等での溶剤回収率の観点から、180〜300℃、特に240〜280℃のものが好ましく使用される。   The boiling point of the solvent is not particularly limited. For example, from the viewpoint of pressure reduction in the extraction step and the separation step, extraction rate in the extraction step and solvent recovery rate in the ashless coal acquisition step, etc., 180 to 300 ° C. In particular, those of 240 to 280 ° C. are preferably used.

溶剤に対する石炭原料(混合石炭)の濃度は、特に制限されず、通常、乾燥炭基準で10〜50重量%の範囲が好ましく、20〜35重量%の範囲がより好ましい。   The density | concentration of the coal raw material (mixed coal) with respect to a solvent is not restrict | limited in particular, Usually, the range of 10-50 weight% is preferable on a dry coal basis, and the range of 20-35 weight% is more preferable.

<抽出工程>
抽出工程は、前記スラリー調製工程で得られたスラリーを加熱して、溶剤に可溶な石炭成分(溶剤可溶成分)を抽出する工程であり、図1中、予熱器3および抽出槽4で実施される。詳しくは、スラリー調製槽1で調製されたスラリーは、ポンプ2によって、一旦、予熱器3に供給されて所定温度まで加熱された後、抽出槽4に供給され、攪拌機40で攪拌されながら所定温度で保持されて抽出が行われる。
<Extraction process>
The extraction step is a step of heating the slurry obtained in the slurry preparation step to extract a coal component (solvent soluble component) soluble in the solvent. In FIG. To be implemented. Specifically, the slurry prepared in the slurry preparation tank 1 is once supplied to the preheater 3 by the pump 2 and heated to a predetermined temperature, then supplied to the extraction tank 4 and stirred at the predetermined temperature while being stirred by the stirrer 40. And extraction is performed.

抽出工程でのスラリーの加熱温度は、溶剤可溶成分が溶解され得る限り特に制限されず、例えば、溶剤可溶成分の十分な可溶化と抽出率の向上の観点から、好ましくは300〜420℃であり、特に360〜400℃の範囲とする。
加熱時間(抽出時間)もまた特に制限されるものではないが、十分な溶解と抽出率の観点から好ましくは10〜60分間である。加熱時間は図1中、予熱器3および抽出槽4での加熱時間を合計したものである。
The heating temperature of the slurry in the extraction step is not particularly limited as long as the solvent-soluble component can be dissolved. For example, from the viewpoint of sufficient solubilization of the solvent-soluble component and improvement of the extraction rate, preferably 300 to 420 ° C. In particular, the range is 360 to 400 ° C.
The heating time (extraction time) is not particularly limited, but is preferably 10 to 60 minutes from the viewpoint of sufficient dissolution and extraction rate. The heating time is the total heating time in the preheater 3 and the extraction tank 4 in FIG.

抽出工程は不活性ガスの存在下で行う。抽出工程で酸素に接触すると、発火する恐れがあるため危険である。抽出工程で用いる不活性ガスとしては、安価な窒素を用いることが好ましいが、特に限定されるものではない。   The extraction process is performed in the presence of an inert gas. Contact with oxygen in the extraction process is dangerous because it may ignite. As the inert gas used in the extraction step, inexpensive nitrogen is preferably used, but is not particularly limited.

抽出工程での圧力は、抽出の際の温度や用いる溶剤の蒸気圧にもよるが、1.0〜2.0MPaが好ましい。圧力が溶剤の蒸気圧より低い場合には、溶剤が揮発して液相に閉じ込められず、抽出できない。溶剤を液相に閉じ込めるには、溶剤の蒸気圧より高い圧力が必要となる。一方、圧力が高すぎると、機器のコスト、運転コストが高くなり、経済的ではない。   The pressure in the extraction step is preferably 1.0 to 2.0 MPa, although it depends on the temperature at the time of extraction and the vapor pressure of the solvent used. When the pressure is lower than the vapor pressure of the solvent, the solvent is volatilized and is not trapped in the liquid phase and cannot be extracted. In order to confine the solvent in the liquid phase, a pressure higher than the vapor pressure of the solvent is required. On the other hand, if the pressure is too high, the cost of the equipment and the operating cost increase, which is not economical.

<分離工程>
分離工程は、前記抽出工程で得られたスラリーから、重力沈降法により、溶液部と非溶液部とを分離する工程である。ここで、溶液部とは、溶剤可溶成分が溶解された溶液部分をいい、以下、上澄み液ともいう。非溶液部とは、溶剤不溶成分を含むスラリー部分をいい、以下、固形分濃縮液ともいう。図1中、分離工程は重力沈降槽5で実施され、詳しくはスラリーは、溶液部としての上澄み液と、非溶液部としての固形分濃縮液とに分離される。重力沈降槽5の上部の上澄み液は、必要に応じてフィルターユニット6を経て、溶剤分離器7へ排出されるとともに、下部に沈降した固形分濃縮液は溶剤分離器8へ排出される。
<Separation process>
The separation step is a step of separating the solution portion and the non-solution portion from the slurry obtained in the extraction step by gravity sedimentation. Here, the solution portion refers to a solution portion in which a solvent-soluble component is dissolved, and is hereinafter also referred to as a supernatant. A non-solution part means the slurry part containing a solvent insoluble component, and is also hereafter called solid content concentrate. In FIG. 1, the separation step is performed in the gravity settling tank 5. Specifically, the slurry is separated into a supernatant liquid as a solution part and a solid concentrate as a non-solution part. The supernatant liquid in the upper part of the gravity sedimentation tank 5 passes through the filter unit 6 as needed, and is discharged to the solvent separator 7, and the solid content concentrate settled in the lower part is discharged to the solvent separator 8.

重力沈降法は、スラリーを槽内に保持することにより、重力を利用して溶剤不溶成分を沈降・分離させる方法である。スラリーを槽内に連続的に供給しながら、上澄み液を上部から、固形分濃縮液を下部から連続的に排出することにより、連続的な分離処理が可能である。   The gravitational sedimentation method is a method in which a slurry is retained in a tank to settle and separate solvent-insoluble components using gravity. A continuous separation process is possible by continuously discharging the supernatant from the top and the solid concentrate from the bottom while continuously supplying the slurry into the tank.

重力沈降槽5内でスラリーを維持する時間は、スラリーを上澄み液と固形分濃縮液とに分離するのに必要な時間であり、特に制限されるものではないが、本発明では30〜120分間という比較的短い時間で十分な分離を達成できる。本発明では溶剤不溶成分の沈降が促進されるためである。   The time for maintaining the slurry in the gravity settling tank 5 is a time required for separating the slurry into a supernatant and a solid concentrate, and is not particularly limited, but in the present invention, it is 30 to 120 minutes. Sufficient separation can be achieved in a relatively short time. This is because in the present invention, precipitation of solvent-insoluble components is promoted.

重力沈降槽5内は、原料の石炭から溶出した溶剤可溶成分の再析出を防止するため、加熱または/および加圧しておくことが好ましい。加熱温度は通常、300〜370℃の範囲とすることが好ましい。圧力は通常、1.0〜2.0MPaの圧力範囲とすることが好ましい。   The gravity sedimentation tank 5 is preferably heated or / and pressurized in order to prevent reprecipitation of solvent-soluble components eluted from the raw coal. The heating temperature is usually preferably in the range of 300 to 370 ° C. Usually, the pressure is preferably in the pressure range of 1.0 to 2.0 MPa.

<無灰炭取得工程>
無灰炭取得工程は、前記分離工程で分離された溶液部から溶剤を分離して改質炭である無灰炭を得る工程であり、図1中、溶剤分離器7で実施される。
<Ashless coal acquisition process>
The ashless charcoal acquisition step is a step of separating the solvent from the solution portion separated in the separation step to obtain ashless coal that is a modified coal, and is performed by the solvent separator 7 in FIG.

溶液部(上澄み液)から溶剤を分離する方法は、一般的な蒸留法や蒸発法(スプレードライ法等)等を用いることができ、分離して回収された溶剤はスラリー調製槽1へ循環して繰り返し使用することができる。溶剤の分離・回収により、上澄み液からは、実質的に灰分を含まない無灰炭(HPC)を得ることができる。無灰炭は、灰分をほとんど含まず、水分は皆無であり、また原料石炭、例えば一般炭よりも高い発熱量を示す。さらに、製鉄用コークスの原料として特に重要な品質である軟化溶融性が大幅に改善され、原料石炭が軟化溶融性を有しなくとも,得られたHPCは良好な軟化溶融性を有すようになる。従って、無灰炭は、コークス原料の配合炭として使用することができる。また、後述する副生炭と混合することによって、配合炭として使用することもできる。   As a method for separating the solvent from the solution part (supernatant liquid), a general distillation method, an evaporation method (spray drying method, etc.), etc. can be used. The separated and recovered solvent is circulated to the slurry preparation tank 1. Can be used repeatedly. By separating and collecting the solvent, ashless coal (HPC) substantially free of ash can be obtained from the supernatant. Ashless coal contains little ash, has no moisture, and exhibits a higher calorific value than raw coal, such as steam coal. Furthermore, the softening and melting property, which is a particularly important quality as a raw material for iron-making coke, has been greatly improved, so that the obtained HPC has a good softening and melting property even if the raw material coal does not have a softening and melting property. Become. Therefore, ashless coal can be used as a blended coal for coke raw materials. Moreover, it can also be used as a combination charcoal by mixing with the byproduct charcoal mentioned later.

<副生炭取得工程>
副生炭取得工程は、必要により実施され、前記分離工程で分離された非溶液部から溶剤を分離して副生炭を得る工程であり、図1中、溶剤分離器8で実施される。
<By-product coal acquisition process>
The byproduct charcoal acquisition step is performed as necessary, and is a step of separating the solvent from the non-solution part separated in the separation step to obtain byproduct charcoal, and is performed by the solvent separator 8 in FIG.

非溶液部(固形分濃縮液)から溶剤を分離する方法は、前記した無灰炭取得工程と同様に、一般的な蒸留法や蒸発法を用いることができ、分離して回収された溶剤は、スラリー調製槽1へ循環して繰り返し使用することができる。溶剤の分離・回収により、固形分濃縮液からは灰分等を含む溶剤不溶成分が濃縮された副生炭(RC)を得ることができる。副生炭は、灰分が含まれるものの水分が皆無であり、発熱量も十分に有している。副生炭は軟化溶融性は示さないが、含酸素官能基が脱離されているため、配合炭として用いた場合に、この配合炭に含まれる他の石炭の軟化溶融性を阻害するようなものではない。従って、この副生炭は、通常の非微粘結炭と同様に、コークス原料の配合炭の一部として使用することができ、また、コークス原料炭とせずに、各種の燃料用として利用することも可能である。なお、副生炭は、回収せずに廃棄しても良い。   The method for separating the solvent from the non-solution part (solid concentrate) can use a general distillation method or evaporation method as in the ashless coal acquisition step described above. It can be circulated to the slurry preparation tank 1 and used repeatedly. By separation and recovery of the solvent, by-product coal (RC) in which solvent-insoluble components including ash and the like are concentrated can be obtained from the solid concentrate. By-product charcoal contains ash, but has no water and has a sufficient calorific value. Although the by-product coal does not show softening and melting properties, the oxygen-containing functional groups are eliminated, so that when used as a blended coal, it inhibits the softening and melting properties of other coals contained in this blended coal. It is not a thing. Therefore, this by-product coal can be used as a part of the blended coal of coke raw material in the same way as ordinary non-slightly caking coal, and is used for various fuels without being used as coke raw coal. It is also possible. The by-product coal may be discarded without being collected.

本発明は、以上説明したとおりであるが、本発明を行うにあたり、前記各工程に悪影響を与えない範囲において、前記各工程の間あるいは前後に、例えば、石炭原料を粉砕する石炭粉砕工程や、ごみ等の不要物を除去する除去工程や、得られた無灰炭を乾燥させる乾燥工程等、他の工程を含めてもよい。   Although the present invention is as described above, in carrying out the present invention, within the range that does not adversely affect the respective steps, for example, during or before and after each step, for example, a coal pulverizing step for pulverizing a coal raw material, Other steps such as a removal step of removing unnecessary substances such as garbage and a drying step of drying the obtained ashless coal may be included.

<実験例1>
原料石炭として表1に示す石炭A(一般炭)または石炭B(粘結炭)を用いた。石炭Aおよび石炭Bはそれぞれ、日本の石炭分類法(JIS M 1002−1978)において区分DおよびB1に分類されるものであった。
溶剤として、沸点254℃である石炭由来の乾留油分(メチナフ−H,シーケム社製)を用いた。その組成は1-メチルナフタレンを主成分とする2環式芳香族化合物であった。
<Experimental example 1>
Coal A (general coal) or coal B (caking coal) shown in Table 1 was used as the raw material coal. Coal A and Coal B were classified into Category D and B1 in the Japanese coal classification method (JIS M 1002-1978), respectively.
As the solvent, a coal-derived dry distillation oil component (Mechinaf-H, manufactured by Seachem Corporation) having a boiling point of 254 ° C. was used. The composition was a bicyclic aromatic compound mainly composed of 1-methylnaphthalene.

Figure 0005334433
Figure 0005334433

原料石炭に溶剤を混合してスラリーを調製した(スラリー調製工程)。原料石炭の混合割合は分離工程に供するスラリー中の初期RC濃度が所定の値になるような割合であった。このスラリーを1.2MPaの窒素で加圧して、内容積30Lのオートクレーブ中、380℃、1時間の条件で抽出した(抽出工程)。このスラリーを、350℃に温度を保持した回分式重力沈降槽の中で60分間静置して、不溶成分(RC)の沈降挙動を調べた(分離工程)。分離工程に供したスラリー中の初期RC濃度は、どちらの石炭を使用した場合も10重量%であった。   A solvent was mixed with raw material coal to prepare a slurry (slurry preparation step). The mixing ratio of the raw coal was such a ratio that the initial RC concentration in the slurry used for the separation step became a predetermined value. This slurry was pressurized with 1.2 MPa of nitrogen and extracted in an autoclave with an internal volume of 30 L under the conditions of 380 ° C. and 1 hour (extraction process). This slurry was allowed to stand for 60 minutes in a batch-type gravity settling tank maintained at 350 ° C., and the sedimentation behavior of the insoluble component (RC) was examined (separation step). The initial RC concentration in the slurry subjected to the separation step was 10% by weight when either coal was used.

回分式重力沈降槽中、60分間静置したときの、沈降槽高さ方向でのRCの濃度分布を測定し、石炭Aと石炭Bとで比べた。結果を図2に示した。Hは沈降槽下部からの測定位置の高さ、Hは沈降槽高さを表す。
石炭AのRCは沈降速度が遅く、60分間静置しても、沈降槽上部でのRC濃度は1重量%程度と濃かった。
石炭BのRCは沈降速度が速く、沈降槽上部でのRC濃度は0.02重量%であり、石炭Aと比較して50倍清澄化されていた。
The concentration distribution of RC in the sedimentation tank height direction when it was allowed to stand for 60 minutes in a batch gravity sedimentation tank was measured and compared between Coal A and Coal B. The results are shown in FIG. H is the height of the measurement position from the sedimentation tank bottom, H 0 represents the sedimentation tank height.
The RC of coal A has a slow sedimentation rate, and the RC concentration in the upper part of the sedimentation tank was as high as about 1% by weight even after standing for 60 minutes.
The RC of coal B had a fast sedimentation rate, the RC concentration in the upper part of the sedimentation tank was 0.02% by weight, and was clarified 50 times as compared with coal A.

<実験例2>
実験例1と同様の石炭A、石炭Bおよび溶剤を用いた。
石炭Aおよび石炭Bを所定の比率で混合して用いたこと、および混合した石炭を抽出したときの初期RC濃度が10重量%となるよう,混合した石炭の濃度を調整したこと以外、実験例1と同様の方法により、スラリー調製工程、抽出工程および分離工程を行い、不溶成分(RC)の沈降挙動を調べた。結果を図3に示した。図3より、石炭Bを混合した事によって凝集・沈降促進効果が現れ、清澄化が著しく促進されることが明らかである。石炭Bを混合すると、石炭A単独に比べ10倍程度清澄化が進んでおり、石炭B混合によるRCの沈降速度向上の効果が確認できた。
<Experimental example 2>
The same coal A, coal B, and solvent as in Experimental Example 1 were used.
Experimental example, except that coal A and coal B were mixed and used at a predetermined ratio, and the concentration of the mixed coal was adjusted so that the initial RC concentration when the mixed coal was extracted was 10% by weight. In the same manner as in No. 1, the slurry preparation step, the extraction step and the separation step were performed, and the sedimentation behavior of the insoluble component (RC) was examined. The results are shown in FIG. From FIG. 3, it is clear that the mixing of coal B has the effect of promoting aggregation and sedimentation, and clarification is significantly promoted. When coal B was mixed, clarification progressed about 10 times compared to coal A alone, and the effect of improving the sedimentation rate of RC by coal B mixing could be confirmed.

その後、分離工程で得られた上澄み液から、蒸留法により、溶剤を分離・除去して無灰炭を得た。得られた無灰炭中の灰分含有量を測定した。
石炭Bを混合した場合、無灰炭中の灰分含有量はいずれも0.5重量%未満であった。
石炭Bを混合しなかった場合、無灰炭中の灰分含有量は2重量%程度であった。
Thereafter, from the supernatant obtained in the separation step, the solvent was separated and removed by distillation to obtain ashless coal. The ash content in the obtained ashless coal was measured.
When coal B was mixed, the ash content in the ashless coal was less than 0.5% by weight.
When coal B was not mixed, the ash content in ashless coal was about 2% by weight.

本発明に係る方法により製造された無灰炭は、火力発電やボイラーの燃料および高効率複合発電システムや製鉄用コークスの原料として有用である。   The ashless coal produced by the method according to the present invention is useful as a raw material for thermal power generation and boiler fuel, a high-efficiency combined power generation system, and steelmaking coke.

本発明の無灰炭の製造方法における各工程を説明するための製造装置の模式図である。It is a schematic diagram of the manufacturing apparatus for demonstrating each process in the manufacturing method of ashless coal of this invention. 実験例1で作成したグラフである。6 is a graph created in Experimental Example 1. 実験例2で作成したグラフである。10 is a graph created in Experimental Example 2.

符号の説明Explanation of symbols

1:スラリー調製槽、2:ポンプ、3:予熱器、4:抽出槽、5:重力沈降槽、6:フィルターユニット、7:8:溶剤分離器、40:撹拌機。   1: slurry preparation tank, 2: pump, 3: preheater, 4: extraction tank, 5: gravity settling tank, 6: filter unit, 7: 8: solvent separator, 40: stirrer.

Claims (6)

一般炭に粘結炭を混合してなり、全石炭中の粘結炭の混合割合が4〜50重量%である石炭原料と溶剤とを混合してスラリーを調製するスラリー調製工程;
前記スラリー調製工程で得られたスラリーを加熱して溶剤に可溶な石炭成分を抽出する抽出工程;
前記抽出工程で得られたスラリーから、重力沈降法により、溶剤に可溶な石炭成分を含む溶液部と、溶剤に不溶な石炭成分を含む非溶液部とを分離する分離工程;および
前記分離工程で分離された溶液部から溶剤を分離して無灰炭を得る無灰炭取得工程;
を含むことを特徴とする無灰炭の製造方法。
A slurry preparation step in which caking coal is mixed with general coal, and a slurry is prepared by mixing a coal raw material and a solvent in which the mixing ratio of caking coal in the total coal is 4 to 50% by weight ;
An extraction step of heating the slurry obtained in the slurry preparation step to extract a coal component soluble in a solvent;
A separation step of separating, from the slurry obtained in the extraction step, a solution portion containing a coal component soluble in a solvent and a non-solution portion containing a coal component insoluble in a solvent by gravity sedimentation; and the separation step Ashless coal acquisition step of obtaining ashless coal by separating the solvent from the solution portion separated in step;
The manufacturing method of the ashless coal characterized by including.
全石炭中の粘結炭の混合割合が5〜50重量%である請求項1に記載の無灰炭の製造方法。   The method for producing ashless coal according to claim 1, wherein the mixing ratio of caking coal in the total coal is 5 to 50% by weight. 粘結炭のギーセラープラストメーター試験による軟化開始点が420℃以下、最高流動度が対数表示で2以上である請求項1または2に記載の無灰炭の製造方法。   The method for producing ashless coal according to claim 1 or 2, wherein the softening start point of the caking coal by the Gisela plastometer test is 420 ° C or less, and the maximum fluidity is 2 or more in logarithm. 溶剤として沸点が180〜300℃である石炭由来の油分を用いる請求項1〜3のいずれかに記載の無灰炭の製造方法。   The manufacturing method of the ashless coal in any one of Claims 1-3 using the oil component derived from coal whose boiling point is 180-300 degreeC as a solvent. 前記分離工程で分離された非溶液部から溶剤を分離して副生炭を得る副生灰炭取得工程をさらに含む請求項1〜4のいずれかに記載の無灰炭の製造方法。   The manufacturing method of the ashless coal in any one of Claims 1-4 which further includes the byproduct ash coal acquisition process which isolate | separates a solvent from the non-solution part isolate | separated at the said isolation | separation process, and obtains byproduct coal. 分離された溶剤をスラリー調製工程へ循環させることを特徴とする請求項1〜5のいずれかに記載の無灰炭の製造方法。   The method for producing ashless coal according to any one of claims 1 to 5, wherein the separated solvent is circulated to the slurry preparation step.
JP2008071528A 2008-03-19 2008-03-19 Production method of ashless coal Active JP5334433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008071528A JP5334433B2 (en) 2008-03-19 2008-03-19 Production method of ashless coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008071528A JP5334433B2 (en) 2008-03-19 2008-03-19 Production method of ashless coal

Publications (2)

Publication Number Publication Date
JP2009227718A JP2009227718A (en) 2009-10-08
JP5334433B2 true JP5334433B2 (en) 2013-11-06

Family

ID=41243497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008071528A Active JP5334433B2 (en) 2008-03-19 2008-03-19 Production method of ashless coal

Country Status (1)

Country Link
JP (1) JP5334433B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101822772B1 (en) * 2013-12-25 2018-01-26 가부시키가이샤 고베 세이코쇼 Method for producing ashless coal

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5559628B2 (en) * 2010-07-28 2014-07-23 株式会社神戸製鋼所 Manufacturing method of coke for steel making
JP5634950B2 (en) 2011-06-22 2014-12-03 株式会社神戸製鋼所 Gravity sedimentation tank and method for producing ashless coal
JP6210662B2 (en) * 2011-09-16 2017-10-11 新日鐵住金株式会社 Method for reforming low-grade coal, method for producing coke and sintered ore, and method for operating blast furnace
JP5679335B2 (en) * 2011-10-13 2015-03-04 株式会社神戸製鋼所 Coal mixed fuel and combustion method thereof
JP5657510B2 (en) 2011-12-15 2015-01-21 株式会社神戸製鋼所 Production method of ashless coal
JP5653339B2 (en) 2011-12-28 2015-01-14 株式会社神戸製鋼所 Gravity sedimentation tank and method for producing ashless coal using the same
JP2013249360A (en) * 2012-05-31 2013-12-12 Kobe Steel Ltd Method for producing ashless coal
JP6017337B2 (en) * 2013-02-13 2016-10-26 株式会社神戸製鋼所 Production method of ashless coal
JP5998373B2 (en) 2013-02-13 2016-09-28 株式会社神戸製鋼所 Production method of by-product coal
JP6105334B2 (en) * 2013-03-12 2017-03-29 株式会社神戸製鋼所 Gravity sedimentation tank and method for producing ashless coal
JP6000887B2 (en) 2013-03-28 2016-10-05 株式会社神戸製鋼所 Production method of ashless coal
JP2014189740A (en) * 2013-03-28 2014-10-06 Kobe Steel Ltd Apparatus and method for production of ashless coal
JP6035559B2 (en) 2013-03-28 2016-11-30 株式会社神戸製鋼所 Ashless coal manufacturing apparatus and ashless coal manufacturing method
JP6017366B2 (en) 2013-04-16 2016-10-26 株式会社神戸製鋼所 Production method of ashless coal
JP6279941B2 (en) * 2014-03-17 2018-02-14 株式会社神戸製鋼所 Production method of ashless coal
JP6297412B2 (en) 2014-05-27 2018-03-20 株式会社神戸製鋼所 Ashless coal manufacturing apparatus and ashless coal manufacturing method
JP6203698B2 (en) 2014-09-30 2017-09-27 株式会社神戸製鋼所 Production method of ashless coal
JP6426502B2 (en) 2015-03-06 2018-11-21 株式会社神戸製鋼所 Method of producing ash-free coal
CN106281529A (en) * 2016-08-03 2017-01-04 河钢股份有限公司 A kind of production method of high-quality vitrinite coal

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3198305B2 (en) * 1999-07-13 2001-08-13 東北大学長 Ashless coal production method
JP2006070182A (en) * 2004-09-02 2006-03-16 Kobe Steel Ltd Method for producing coal as raw material of coke
JP2006070183A (en) * 2004-09-02 2006-03-16 Kobe Steel Ltd High quality modified coal material product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101822772B1 (en) * 2013-12-25 2018-01-26 가부시키가이샤 고베 세이코쇼 Method for producing ashless coal

Also Published As

Publication number Publication date
JP2009227718A (en) 2009-10-08

Similar Documents

Publication Publication Date Title
JP5334433B2 (en) Production method of ashless coal
JP4061351B1 (en) Production method of ashless coal
JP5241105B2 (en) Coke manufacturing method and pig iron manufacturing method
JP2007023190A (en) Method for producing coke, and method for producing pig iron
JP2006070182A (en) Method for producing coal as raw material of coke
WO2010035651A1 (en) Method for manufacturing hyper-coal
US1925005A (en) Coal treatment process
TWI485237B (en) Forming blended coal and its manufacturing method, and coke and its manufacturing method
WO2014157409A1 (en) Ashless-coal production device, and ashless-coal production method
JP5259216B2 (en) Production method of ashless coal
JP2009215505A (en) Method of manufacturing ashless coal
JP2006070183A (en) High quality modified coal material product
JP5639402B2 (en) Production method of ashless coal
JP6017371B2 (en) Ashless coal manufacturing method and carbon material manufacturing method
JP5328180B2 (en) Production method of ashless coal
JP5636356B2 (en) Method for producing ashless coal molding
JP6000887B2 (en) Production method of ashless coal
JP5390977B2 (en) Iron ore-containing coke and method for producing the iron ore-containing coke
JP5426832B2 (en) Production method of ashless coal
JP6017356B2 (en) Production method of ashless coal
JP2007161955A (en) Method for manufacturing reformed coal
JP6602168B2 (en) Caking filler and method for producing coal pitch
JP2020002273A (en) Manufacturing method of coke
KR20150046250A (en) Method for manufacturing ashless coal
JP2013136692A (en) Production method for ashless coal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130730

R150 Certificate of patent or registration of utility model

Ref document number: 5334433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150