WO2012176896A1 - Method for producing ashless coal - Google Patents

Method for producing ashless coal Download PDF

Info

Publication number
WO2012176896A1
WO2012176896A1 PCT/JP2012/066051 JP2012066051W WO2012176896A1 WO 2012176896 A1 WO2012176896 A1 WO 2012176896A1 JP 2012066051 W JP2012066051 W JP 2012066051W WO 2012176896 A1 WO2012176896 A1 WO 2012176896A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
solvent
oil
ashless coal
ashless
Prior art date
Application number
PCT/JP2012/066051
Other languages
French (fr)
Japanese (ja)
Inventor
濱口 眞基
貴洋 宍戸
康爾 堺
憲幸 奥山
聡則 井上
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2012176896A1 publication Critical patent/WO2012176896A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/02Treating solid fuels to improve their combustion by chemical means

Definitions

  • the present invention relates to a method for producing ashless coal used as a raw material for various carbon materials, a binder for iron-making coke and forming coal, and the like.
  • Ashless charcoal (hyper coal) is also called modified coal, and is produced by extracting coal with a solvent and separating only the components that are soluble in this solvent, so that it does not substantially contain ash. Therefore, it has the feature that the characteristics of the carbon material are not easily deteriorated, and may exhibit caking properties, so that it is suitably used as a raw material for various carbon materials, a binder for iron-making coke, and formed coal.
  • a method for producing ashless coal by treating coal with a solvent is well known.
  • a method for producing ashless coal that can produce ashless coal in a high yield by treating coal using a hydrogen-donating solvent has been proposed (see, for example, Patent Document 1).
  • This invention is made
  • the present invention mixes coal and a solvent capable of dissolving coal, ashless coal soluble in the solvent, and residual coal that is insoluble in the solvent and contains ash, And a ashless coal recovery process for recovering the separated ashless coal, wherein the residual coal separated in the separation step is heat treated at a temperature of 400 ° C. or higher. And an oil content recovery step for recovering the generated oil content, and an addition step for adding a part or all of the oil content recovered in the oil content recovery step to the solvent.
  • the residual coal when the residual coal is heat-treated at a temperature of 400 ° C. or higher in the oil recovery step, the residual coal is thermally decomposed to produce oil.
  • the produced oil contains an aromatic compound having a function equivalent to that of a solvent used when producing ashless coal. Therefore, the solvent cost can be reduced by adding the recovered oil to the solvent in the separation step in the subsequent addition step.
  • the residual charcoal in the oil recovery step is continuously heat-treated. In this way, since the oil can be continuously generated, the solvent cost can be reduced over a long period of time.
  • an ashless coal production method capable of producing ashless coal at a low cost even when producing ashless coal by solvent extraction.
  • the ashless coal production apparatus 1 includes a solvent supply tank 2 for supplying a solvent, a coal supply tank 3 for supplying coal, a supply from a solvent supply tank 2 and a coal supply tank 3.
  • the slurry is prepared, and then the extraction tank 4 for extracting the solvent-soluble component (solvent-soluble component) from the slurry, the solvent (solution part) containing the solvent-soluble component, and the solvent-insoluble component (
  • an ashless coal collection tank 6 for removing the solvent from the solution portion separated in the separation tank 5 and collecting the ashless coal that is the modified coal, and heat-treating the residue coal.
  • the solvent removed from the solution part in the ashless coal recovery tank 6 may be returned to the solvent supply tank 2 and reused.
  • the ashless coal recovered in the ashless coal recovery tank 6 does not substantially contain ash because the ash is not dissolved in the solvent, and is used as a raw material for various carbon materials, a binder for iron-making coke and forming coal, etc. be able to.
  • ashless coal is (substantially) free of ash.
  • the ash content is preferably 0% by mass, but ash is inevitably contained because ashless coal is recovered through solvent extraction. Accordingly, the ashless coal referred to in the present invention is allowed to contain a small amount of ash that is inevitably contained.
  • the upper limit of the ash content allowed for ashless coal is 3% by mass, preferably 1.5% by mass, and more preferably 1% by mass.
  • the solid matter from which the oil has been collected in the oil collecting tank 8 is collected as residual charcoal and used as fuel or the like.
  • Part or all of the oil recovered in the oil recovery tank 8 flows through the introduction pipe 9 and is added to the solvent supply tank 2.
  • the introduction pipe 9 may be provided with a liquid feed pump or the like as necessary (none of which is shown).
  • the ashless coal manufacturing method includes a separation step S1 and an ashless coal recovery step S2, and further includes an oil recovery step S3, Addition process S4.
  • the above-described process is allowed while including an appropriate process that can be normally performed before the separation process S1 or after the addition process S4 or between the above-described processes.
  • an appropriate process for example, a process for removing impurities such as dust, sulfur compounds, and trace metals from the solvent containing the solvent-soluble component obtained in the separation process S1 and the oil obtained in the oil recovery process S3, solvent And a step of adjusting the oil content to an arbitrary temperature.
  • Separation process S1 is a process of mixing coal and a solvent capable of dissolving coal, and separating the coal into ashless coal that is soluble in this solvent and residual coal that is insoluble in this solvent and contains ash. . This process is performed by the solvent supply tank 2, the coal supply tank 3, the extraction tank 4, and the separation tank 5 shown in FIG.
  • the raw material coal is preferably bituminous coal, but subbituminous coal, lignite, anthracite, etc. can also be used.
  • the moisture content of coal is high, it is preferable to perform dehydration in a dehydration step (not shown) prior to the separation step S1.
  • the moisture content may be about 10% or less.
  • the particle size of coal shall be 5 mm or less. This is for efficient dissolution with a solvent and for keeping the particle size of the residual charcoal uniform.
  • the solvent preferably contains a bicyclic aromatic compound, and more preferably contains this as a main component.
  • a main component means occupying most as a component contained quantitatively.
  • the solvent that can be used in combination with the bicyclic aromatic compound may be any solvent that can dissolve the raw material coal.
  • the bicyclic aromatic compound include naphthalene, biphenyl, and alkyl-substituted products thereof.
  • methyl naphthalene is preferable.
  • the methylnaphthalene may be either 1-methylnaphthalene or 2-methylnaphthalene.
  • the bicyclic aromatic compound may be naphthalene, biphenyl or a dimethyl-substituted product thereof, or an ethyl-substituted product.
  • a bicyclic aromatic compound is preferable as a solvent used in the present invention because it has a strong extractability of soluble components to coal but has a relatively low boiling point and high thermal stability.
  • anthracene oil or creosote oil is generally used as a solvent used for dissolving coal. These have a high extraction power for coal, but are a byproduct of coal dry distillation for producing coke and are not necessarily inexpensive. Also, because the production volume is limited, it is difficult to cover the coal solvent extraction process. A further disadvantage associated with these known materials is that complete recovery from ashless coal is not easy. That is, anthracene oil and creosote oil contain a component with a high boiling point and a polar component having a very strong affinity with coal in a considerably high concentration.
  • the solvent used in the present invention preferably includes a bicyclic aromatic compound, and more preferably includes this as a main component.
  • Separation (solid-liquid separation) of ashless coal, which is a soluble component, and residual coal, which is an insoluble component can be performed by, for example, a filtration method or a gravity sedimentation method.
  • the heating temperature and pressure at the time of separation are preferably set to the same conditions as when coal is dissolved with a solvent.
  • the heating temperature is preferably set to 300 to 420 ° C., for example, at the time of dissolution, extraction and separation, but is generally set to 400 ° C. or lower.
  • the heating time in the separation step S1 is preferably shorter than the oil recovery step S3 described later. For example, it is preferably 20 to 60 minutes.
  • the pressure is preferably 0.8 to 2.5 MPa, for example.
  • the ashless coal recovery step S2 is a step of recovering the ashless coal separated in the separation step S1. That is, since the solvent part is contained in the solution part isolate
  • the ashless coal as a product from which the solvent has been removed can be suitably used as a raw material for various carbon materials, a binder for iron-making coke and forming coal, and the like.
  • the process described above is a commonly performed process.
  • the present invention is characterized in that the following steps are performed subsequent to the steps described above.
  • the oil component recovery step S3 is a step of recovering the oil component produced by heat-treating the residual coal separated in the separation step S1 at a temperature of 400 ° C. or higher. This process is performed by the heat treatment tank 7 and the oil recovery tank 8 shown in FIG.
  • the main physicochemical changes that occur in the residual coal during the heat treatment in the oil recovery step S3 are as follows. (1) Generation of gases such as hydrogen, CO, CO 2 , methane, ethane, and ethylene. (2) Generation of a carbon precursor by dehydroaromatization. (3) Decomposition of aromatic side chains by dealkylation, decarboxylation, etc. (causes generation of gas of (1) above). (4) Generation of oil containing naphthalenes and biphenyls by thermal decomposition. Of these, (4) is important in the present invention.
  • the production of oil by pyrolysis can proceed even during the solvent extraction in the separation step S1.
  • the heating temperature in the separation step S1 is set to, for example, 300 to 420 ° C., generally 400 ° C. or lower, so that the thermal decomposition rate is low and the oil content is not sufficiently generated. If the heat treatment time is lengthened, it is possible to increase the amount of oil produced even at a low temperature, but the solvent-soluble component that becomes ashless coal is polycondensed and insolubilized, and shifts to residual coal. That is, the yield of ashless coal decreases.
  • the heat treatment temperature needs to be 400 ° C. or higher in order to efficiently generate the oil from the residual coal.
  • the heat treatment temperature is less than 400 ° C., the temperature is too low, the thermal decomposition rate is slow, and a sufficient oil content cannot be generated.
  • about the upper limit of heat processing temperature it can be set to about 800 degreeC. Even if the heat treatment temperature is set too high, the amount of naphthalenes and biphenyls in the produced oil does not increase, and the heating cost increases, which is not preferable in terms of cost. Therefore, the preferable range of the heat treatment temperature is 400 ° C. to 600 ° C.
  • the heat treatment time may be about 5 to 30 minutes, but is preferably about 15 to 30 minutes, more preferably about 20 to 30 minutes.
  • An inert gas atmosphere is used during heat treatment to prevent oxidation of residual charcoal.
  • the pressure during the heat treatment may be normal pressure.
  • a kiln type, a fluidized bed type, a batch type, or the like can be used as an apparatus for performing the heat treatment. According to these, the heat treatment of the residual coal in the oil recovery step S3 can be performed continuously.
  • the oil component generated from the residual charcoal is gasified, so that it can be recovered by condensing it with a condenser and liquefying it.
  • the residual coal from which the oil has been collected in the oil collecting step S3 has a calorific value equivalent to that of the residual coal before the oil is collected on a mass basis, and therefore can be used as fuel. Of course, it can also be used for the heat treatment of the oil recovery step S3.
  • the addition step S4 is a step of adding a part or all of the oil recovered in the oil recovery step S3 to the solvent used in the separation step S1.
  • Such a process is performed by the oil recovery tank 8 and the introduction pipe 9 shown in FIG.
  • the part of the oil component is further refined by fractionating the recovered oil component, for example, by selectively increasing the concentration of the bicyclic aromatic compound, and qualitatively selecting a part of the recovered oil component. It means that only a part of the sample is taken out quantitatively, even if such purification is not performed. If a part is taken out qualitatively and added to the solvent as in the former, the concentration of the bicyclic aromatic compound in the solvent used in the separation step S1 increases.
  • the solvent to which this is added can be made more preferable because the extractability of soluble components to coal is stronger, the boiling point is relatively low, and the thermal stability is also higher. Further, in the latter case, since an amount as required can be added, it is possible to easily manage the amount of the solvent used in the separation step S1.
  • the other oil not added to the solvent can be used as a raw material for fuel or a chemical product, for example.
  • the boiling point range under normal pressure can be set.
  • the temperature may be 150 to 400 ° C.
  • the whole oil component literally means all the oil components recovered in the oil recovery step S3.
  • Coal was dissolved using methylnaphthalene under the following [conditions] to extract a solvent-soluble component. ⁇ conditions ⁇ ⁇ Solvent (methylnaphthalene) / coal ratio: 1/5 (mass basis) ⁇ Temperature: 370 °C Extraction time: 15 minutes Initial pressure: 1 MPa (nitrogen atmosphere)
  • the produced residual charcoal was heated at 350 ° C. in a nitrogen atmosphere to evaporate the solvent.
  • 10 g of the heated residual charcoal was heated for 20 minutes in a nitrogen stream at 50 mL / min at the heating temperatures shown in Comparative Example 1 and Examples 1 to 5 in Table 1 below.
  • the component analysis of the oil was performed. Component analysis was performed with a gas chromatography mass spectrometer. As a result of component analysis, it was found that naphthalenes and biphenyls, which are bicyclic aromatic compounds, are the main components.
  • the present invention is useful as a method for producing ashless coal used as a raw material for various carbon materials, iron-making coke, and a binder for forming coal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

This method for producing ashless coal comprises a separation step (S1) of mixing coal and a solvent capable of dissolving coal and separating this into ashless coal which is soluble in the solvent and residual coal which is insoluble in the solvent and contains ash, and an ashless coal recovery step (S2) of recovering the separated ashless coal, and is characterized in comprising an oil content recovery step (S3) of heat treating the residual coal separated in the separation step (S1) at a temperature of 400°C or higher and recovering oil content generated, and an addition step (S4) of adding all or a part of the oil content recovered in the oil content recovery step (S3) to the solvent.

Description

無灰炭製造方法Ashless coal production method
 本発明は、各種炭素材料の原料や、製鉄コークスおよび成形炭のバインダー等として使用される無灰炭の製造方法に関する。 The present invention relates to a method for producing ashless coal used as a raw material for various carbon materials, a binder for iron-making coke and forming coal, and the like.
 無灰炭(ハイパーコール)は、改質炭とも呼ばれており、石炭を溶剤で抽出処理し、この溶剤に溶ける成分だけを分離して製造されるので、実質的に灰分を含まない。そのため、炭素材料の特性が劣化し難いという特長を有するとともに、粘結性を示すことがあるので、各種炭素材料の原料や、製鉄コークスおよび成形炭のバインダー等として好適に使用されている。 Ashless charcoal (hyper coal) is also called modified coal, and is produced by extracting coal with a solvent and separating only the components that are soluble in this solvent, so that it does not substantially contain ash. Therefore, it has the feature that the characteristics of the carbon material are not easily deteriorated, and may exhibit caking properties, so that it is suitably used as a raw material for various carbon materials, a binder for iron-making coke, and formed coal.
 溶剤で石炭を処理して無灰炭を製造する方法は従来からよく知られている。近年、水素供与性溶剤を用いて石炭を処理することで無灰炭を高収率で製造することのできる無灰炭の製造方法が提案されている(例えば、特許文献1参照)。 A method for producing ashless coal by treating coal with a solvent is well known. In recent years, a method for producing ashless coal that can produce ashless coal in a high yield by treating coal using a hydrogen-donating solvent has been proposed (see, for example, Patent Document 1).
日本国特開2010-83907号公報Japanese Unexamined Patent Publication No. 2010-83907
 しかしながら、特許文献1に記載の製造方法によってもなお、溶剤抽出による無灰炭製造方法が実用化されるに至っていないのが現状である。その最大の理由は溶剤のコストである。石炭は安価に入手できるものの、無灰炭の製造に用いられる溶剤はその数倍から数十倍高価となるため、処理中にロスがあったり、製品である無灰炭に溶剤が混入したり、残渣炭に溶剤が混入したりすると溶剤コストが製造コストを押し上げることになる。 However, the ashless coal production method by solvent extraction has not yet been put into practical use even by the production method described in Patent Document 1. The biggest reason is the cost of the solvent. Although coal is available at a low price, the solvent used in the production of ashless coal is several to several tens of times more expensive than that, so there is a loss during processing and the product is mixed with ashless coal. If the solvent is mixed into the residual charcoal, the solvent cost will increase the manufacturing cost.
 本発明は、前記状況に鑑みてなされたものであり、溶剤抽出で無灰炭を製造する場合であっても、低コストでこれを製造することのできる無灰炭製造方法を提供することを課題とする。 This invention is made | formed in view of the said situation, Even if it is a case where ashless coal is manufactured by solvent extraction, providing an ashless coal manufacturing method which can manufacture this at low cost. Let it be an issue.
 前記課題を解決するため、本発明は、石炭と石炭を溶解することのできる溶剤とを混合して、前記溶剤に可溶な無灰炭と、前記溶剤に不溶で灰分を含む残渣炭と、に分離する分離工程と、分離した前記無灰炭を回収する無灰炭回収工程と、を含む無灰炭製造方法であって、前記分離工程で分離した残渣炭を400℃以上の温度で熱処理し、生成する油分を回収する油分回収工程と、前記油分回収工程で回収した油分の一部または全部を前記溶剤に添加する添加工程と、を含むことを特徴としている。 In order to solve the above problems, the present invention mixes coal and a solvent capable of dissolving coal, ashless coal soluble in the solvent, and residual coal that is insoluble in the solvent and contains ash, And a ashless coal recovery process for recovering the separated ashless coal, wherein the residual coal separated in the separation step is heat treated at a temperature of 400 ° C. or higher. And an oil content recovery step for recovering the generated oil content, and an addition step for adding a part or all of the oil content recovered in the oil content recovery step to the solvent.
 このように、油分回収工程で残渣炭を400℃以上の温度で熱処理すると、残渣炭が熱分解し、油分が生成される。生成された油分には、無灰炭を製造する際に用いられる溶剤と同等の機能を有する芳香族化合物が含まれている。そのため、続く添加工程で、回収した油分を分離工程の溶剤に添加することで溶剤コストを低減することができる。 Thus, when the residual coal is heat-treated at a temperature of 400 ° C. or higher in the oil recovery step, the residual coal is thermally decomposed to produce oil. The produced oil contains an aromatic compound having a function equivalent to that of a solvent used when producing ashless coal. Therefore, the solvent cost can be reduced by adding the recovered oil to the solvent in the separation step in the subsequent addition step.
 本発明においては、前記油分回収工程における残渣炭の熱処理が連続的に行われるのが好ましい。このようにすれば、連続的に油分を生成させることができるため、長期に渡って溶剤コストを低減することができる。 In the present invention, it is preferable that the residual charcoal in the oil recovery step is continuously heat-treated. In this way, since the oil can be continuously generated, the solvent cost can be reduced over a long period of time.
 本発明によれば、溶剤抽出で無灰炭を製造する場合であっても、低コストでこれを製造することのできる無灰炭製造方法を提供することができる。 According to the present invention, it is possible to provide an ashless coal production method capable of producing ashless coal at a low cost even when producing ashless coal by solvent extraction.
本発明に係る無灰炭製造方法を適用した無灰炭製造装置の構成図である。It is a block diagram of the ashless coal manufacturing apparatus to which the ashless coal manufacturing method which concerns on this invention is applied. 本発明に係る無灰炭製造方法の工程を説明するフローチャートである。It is a flowchart explaining the process of the ashless coal manufacturing method which concerns on this invention.
 以下、適宜図面を参照して本発明に係る無灰炭製造方法について説明する。
 ここで、無灰炭製造方法の各工程について具体的に説明する前に、図1に示す構成図を参照して、本発明に係る無灰炭製造方法を適用した無灰炭製造装置について簡単に説明する。
Hereinafter, the method for producing ashless coal according to the present invention will be described with reference to the drawings as appropriate.
Here, before concretely explaining each step of the ashless coal production method, referring to the configuration diagram shown in FIG. 1, a simple description will be given of an ashless coal production device to which the ashless coal production method according to the present invention is applied. Explained.
 図1に示すように、かかる無灰炭製造装置1は、溶剤を供給する溶剤供給槽2と、石炭を供給する石炭供給槽3と、溶剤供給槽2と石炭供給槽3とからの供給物を受けてスラリーを調製した後、当該スラリーから溶剤に可溶な成分(溶剤可溶成分)を抽出する抽出槽4と、溶剤可溶成分を含む溶剤(溶液部)と溶剤に不溶な成分(残渣炭)とを分離する分離槽5と、分離槽5で分離した溶液部から溶剤を除去して改質炭である無灰炭を回収する無灰炭回収槽6と、残渣炭を熱処理して油分を生成し、気体化させる熱処理槽7と、熱処理槽7で気体化させた油分を凝縮器(図示せず)で凝縮し、液体化して回収する油分回収槽8と、を備えている。 As shown in FIG. 1, the ashless coal production apparatus 1 includes a solvent supply tank 2 for supplying a solvent, a coal supply tank 3 for supplying coal, a supply from a solvent supply tank 2 and a coal supply tank 3. The slurry is prepared, and then the extraction tank 4 for extracting the solvent-soluble component (solvent-soluble component) from the slurry, the solvent (solution part) containing the solvent-soluble component, and the solvent-insoluble component ( A separation tank 5 for separating the residue coal), an ashless coal collection tank 6 for removing the solvent from the solution portion separated in the separation tank 5 and collecting the ashless coal that is the modified coal, and heat-treating the residue coal. A heat treatment tank 7 for generating and gasifying the oil component, and an oil component recovery tank 8 for condensing the oil component gasified in the heat treatment tank 7 with a condenser (not shown) and liquefying and collecting the oil component. .
 ここで、無灰炭回収槽6で溶液部から除去された溶剤は、再び溶剤供給槽2に戻して再利用してもよい。無灰炭回収槽6で回収された無灰炭は、灰分が溶剤に溶解されないため実質的に灰分を含んでおらず、各種炭素材料の原料や、製鉄コークスおよび成形炭のバインダー等として使用することができる。なお、本発明においては、無灰炭について(実質的に)灰分を含んでいないとしている。灰分の含有量はもちろん0質量%であることが望ましいが、溶媒抽出を経て無灰炭を回収する関係上、不可避的に灰分が含有されてしまう。従って、本発明でいう無灰炭には、不可避的に含有される微量の灰分の含有は許容される。無灰炭に許容される灰分の含有量の上限は3質量%、好ましくは1.5質量%、より好ましくは1質量%である。 Here, the solvent removed from the solution part in the ashless coal recovery tank 6 may be returned to the solvent supply tank 2 and reused. The ashless coal recovered in the ashless coal recovery tank 6 does not substantially contain ash because the ash is not dissolved in the solvent, and is used as a raw material for various carbon materials, a binder for iron-making coke and forming coal, etc. be able to. In the present invention, ashless coal is (substantially) free of ash. Of course, the ash content is preferably 0% by mass, but ash is inevitably contained because ashless coal is recovered through solvent extraction. Accordingly, the ashless coal referred to in the present invention is allowed to contain a small amount of ash that is inevitably contained. The upper limit of the ash content allowed for ashless coal is 3% by mass, preferably 1.5% by mass, and more preferably 1% by mass.
 そして、油分回収槽8で油分が回収された固形物は、残渣炭として回収され、燃料等として利用される。油分回収槽8で回収された油分の一部または全部は、導入管9を通流して溶剤供給槽2に添加される。導入管9には、必要に応じて送液ポンプ等を設けてもよい(いずれも図示せず)。 The solid matter from which the oil has been collected in the oil collecting tank 8 is collected as residual charcoal and used as fuel or the like. Part or all of the oil recovered in the oil recovery tank 8 flows through the introduction pipe 9 and is added to the solvent supply tank 2. The introduction pipe 9 may be provided with a liquid feed pump or the like as necessary (none of which is shown).
 以下、このような構成の無灰炭製造装置1を例にして、本発明に係る無灰炭製造方法の一実施形態について説明する。 Hereinafter, an embodiment of the ashless coal production method according to the present invention will be described using the ashless coal production apparatus 1 having such a configuration as an example.
 図2に示すように、本発明の一実施形態に係る無灰炭製造方法は、分離工程S1と、無灰炭回収工程S2と、を含むものであって、さらに、油分回収工程S3と、添加工程S4と、を含んでいる。 As shown in FIG. 2, the ashless coal manufacturing method according to one embodiment of the present invention includes a separation step S1 and an ashless coal recovery step S2, and further includes an oil recovery step S3, Addition process S4.
 なお、本発明に係る無灰炭製造方法においては、分離工程S1前や添加工程S4後または前記した各工程間に、通常行われ得る適宜の工程が含まれるのを許容しつつも、前記した手順で実施される。適宜の工程としては、例えば、分離工程S1で得られた溶剤可溶成分を含む溶剤や油分回収工程S3で得られた油分等からダストや硫黄化合物、微量金属等の不純物を除去する工程、溶剤や油分を任意の温度に調節する工程等が挙げられる。 In addition, in the ashless coal manufacturing method according to the present invention, the above-described process is allowed while including an appropriate process that can be normally performed before the separation process S1 or after the addition process S4 or between the above-described processes. Implemented in the procedure. As an appropriate process, for example, a process for removing impurities such as dust, sulfur compounds, and trace metals from the solvent containing the solvent-soluble component obtained in the separation process S1 and the oil obtained in the oil recovery process S3, solvent And a step of adjusting the oil content to an arbitrary temperature.
(分離工程S1)
 分離工程S1は、石炭と石炭を溶解することのできる溶剤とを混合して、この溶剤に可溶な無灰炭と、この溶剤に不溶で灰分を含む残渣炭と、に分離する工程である。かかる工程は、図1に示す溶剤供給槽2、石炭供給槽3、抽出槽4および分離槽5によって行われる。
(Separation step S1)
Separation process S1 is a process of mixing coal and a solvent capable of dissolving coal, and separating the coal into ashless coal that is soluble in this solvent and residual coal that is insoluble in this solvent and contains ash. . This process is performed by the solvent supply tank 2, the coal supply tank 3, the extraction tank 4, and the separation tank 5 shown in FIG.
 原料となる石炭は、瀝青炭が好ましいが、亜瀝青炭や褐炭、無煙炭等も使用することができる。石炭の水分含有率が高い場合には、分離工程S1に先立って図示しない脱水工程にて脱水を行うのが好ましい。水分含有率は、10%以下程度であればよい。また、石炭の粒径は、5mm以下にするのが好ましい。溶剤による溶解を効率的に行うためと、残渣炭の粒径を均一に保つためである。 The raw material coal is preferably bituminous coal, but subbituminous coal, lignite, anthracite, etc. can also be used. When the moisture content of coal is high, it is preferable to perform dehydration in a dehydration step (not shown) prior to the separation step S1. The moisture content may be about 10% or less. Moreover, it is preferable that the particle size of coal shall be 5 mm or less. This is for efficient dissolution with a solvent and for keeping the particle size of the residual charcoal uniform.
 溶剤は、二環芳香族化合物を含むものが好ましく、これを主成分として含むものがより好ましい。なお、主成分とは、含有される成分として量的に大部を占めることをいう。また、二環芳香族化合物と併用可能な溶剤としては、原料の石炭を溶解できるものであればよい。
 二環芳香族化合物としては、例えば、ナフタレン、ビフェニルまたはこれらのアルキル置換体を挙げることができる。特に、メチルナフタレンが好ましい。メチルナフタレンは、1-メチルナフタレンまたは2-メチルナフタレンのどちらでもよい。なお、二環芳香族化合物は、ナフタレン、ビフェニルまたはそれらのジメチル置換体でもよいし、エチル置換体でもよい。このような二環芳香族化合物は、石炭に対する可溶成分の抽出力が強いが、沸点が比較的低く、また、熱的な安定性も高いので、本発明で用いる溶剤として好ましい。
The solvent preferably contains a bicyclic aromatic compound, and more preferably contains this as a main component. In addition, a main component means occupying most as a component contained quantitatively. The solvent that can be used in combination with the bicyclic aromatic compound may be any solvent that can dissolve the raw material coal.
Examples of the bicyclic aromatic compound include naphthalene, biphenyl, and alkyl-substituted products thereof. In particular, methyl naphthalene is preferable. The methylnaphthalene may be either 1-methylnaphthalene or 2-methylnaphthalene. The bicyclic aromatic compound may be naphthalene, biphenyl or a dimethyl-substituted product thereof, or an ethyl-substituted product. Such a bicyclic aromatic compound is preferable as a solvent used in the present invention because it has a strong extractability of soluble components to coal but has a relatively low boiling point and high thermal stability.
 ここで、石炭を溶解するために用いられる溶剤として、一般的には、アントラセン油やクレオソート油が用いられている。これらは、石炭に対して高い抽出力があるが、コークスを製造するための石炭乾留の副生品であり、必ずしも安価ではない。また、生産量が限られているため、石炭溶剤抽出プロセスを賄うことは困難である。これら既知の物質に伴うさらに大きな欠点は、無灰炭からの完全な回収が容易でないことである。すなわち、アントラセン油やクレオソート油には高沸点の成分や、石炭との親和性がきわめて強い極性成分をかなりの高濃度で含んでいる。従って、製品である無灰炭や残渣炭から溶剤を回収するときに、高温に加熱しても回収が不十分となったり、加熱し過ぎて製品が変質したりする問題が生じ易い。
 従って、前記したとおり、本発明で用いる溶剤としては、二環芳香族化合物を含むものが好ましく、これを主成分として含むものがより好ましい。
Here, as a solvent used for dissolving coal, anthracene oil or creosote oil is generally used. These have a high extraction power for coal, but are a byproduct of coal dry distillation for producing coke and are not necessarily inexpensive. Also, because the production volume is limited, it is difficult to cover the coal solvent extraction process. A further disadvantage associated with these known materials is that complete recovery from ashless coal is not easy. That is, anthracene oil and creosote oil contain a component with a high boiling point and a polar component having a very strong affinity with coal in a considerably high concentration. Therefore, when recovering a solvent from ashless coal or residual coal, which is a product, problems such as insufficient recovery even when heated to a high temperature, and deterioration of the product due to excessive heating are likely to occur.
Therefore, as described above, the solvent used in the present invention preferably includes a bicyclic aromatic compound, and more preferably includes this as a main component.
 可溶成分である無灰炭と、不溶成分である残渣炭と、の分離(固液分離)は、例えば、ろ過法や重力沈降法等で行うことができる。分離時の加熱温度および圧力は、溶剤で石炭を溶解したときと同条件とするのが好ましい。 Separation (solid-liquid separation) of ashless coal, which is a soluble component, and residual coal, which is an insoluble component, can be performed by, for example, a filtration method or a gravity sedimentation method. The heating temperature and pressure at the time of separation are preferably set to the same conditions as when coal is dissolved with a solvent.
 溶解時、抽出時および分離時の条件はともに、加熱温度を、例えば300~420℃とするのが好ましいが、一般的には400℃以下に設定される。分離工程S1での加熱時間は、後記する油分回収工程S3よりも短持間で行うのが好ましい。例えば、20~60分間などとするのが好ましい。圧力は、例えば0.8~2.5MPaとするのが好ましい。また、溶解時、抽出時および分離時は、窒素ガス等の不活性ガス雰囲気下で行うのが好ましい。石炭等の酸化等を防止するためである。 The heating temperature is preferably set to 300 to 420 ° C., for example, at the time of dissolution, extraction and separation, but is generally set to 400 ° C. or lower. The heating time in the separation step S1 is preferably shorter than the oil recovery step S3 described later. For example, it is preferably 20 to 60 minutes. The pressure is preferably 0.8 to 2.5 MPa, for example. Moreover, it is preferable to carry out in an inert gas atmosphere such as nitrogen gas at the time of dissolution, extraction and separation. This is to prevent oxidation of coal and the like.
(無灰炭回収工程S2)
 無灰炭回収工程S2は、分離工程S1で分離した無灰炭を回収する工程である。つまり、分離工程S1で残渣炭と分離した溶液部には溶剤が含まれているので、無灰炭回収工程S2で溶剤を蒸発等して無灰炭から除去し、溶剤を含まない無灰炭を得る。かかる工程は、図1に示す無灰炭回収槽6によって行われる。蒸発等させた溶剤は、溶剤供給槽2に戻して再利用することができる。
 溶剤が除去された、製品としての無灰炭は、各種炭素材料の原料や、製鉄コークスおよび成形炭のバインダー等として好適に使用することができる。
(Ashless coal recovery process S2)
The ashless coal recovery step S2 is a step of recovering the ashless coal separated in the separation step S1. That is, since the solvent part is contained in the solution part isolate | separated from the residue charcoal in separation process S1, the solvent is removed from ashless charcoal by evaporating etc. in ashless charcoal recovery process S2, and the ashless charcoal which does not contain a solvent Get. This process is performed by the ashless coal recovery tank 6 shown in FIG. The evaporated solvent can be returned to the solvent supply tank 2 and reused.
The ashless coal as a product from which the solvent has been removed can be suitably used as a raw material for various carbon materials, a binder for iron-making coke and forming coal, and the like.
 以上に説明した工程は、通常行われている工程である。本発明では、以上に説明した工程に引き続いて以下の工程を行うことを特徴としている。 The process described above is a commonly performed process. The present invention is characterized in that the following steps are performed subsequent to the steps described above.
(油分回収工程S3)
 油分回収工程S3は、分離工程S1で分離した残渣炭を400℃以上の温度で熱処理し、生成する油分を回収する工程である。かかる工程は、図1に示す熱処理槽7および油分回収槽8によって行われる。
(Oil content recovery step S3)
The oil component recovery step S3 is a step of recovering the oil component produced by heat-treating the residual coal separated in the separation step S1 at a temperature of 400 ° C. or higher. This process is performed by the heat treatment tank 7 and the oil recovery tank 8 shown in FIG.
 油分回収工程S3の熱処理で残渣炭に生じる主な物理化学的変化は以下のようなものである。
(1)水素、CO、CO、メタン、エタン、エチレン等のガスの発生。
(2)脱水素芳香族化による炭素前駆体の生成。
(3)脱アルキル化、脱カルボキシル化等による芳香族側鎖の分解(前記(1)のガスの発生の原因となる。)。
(4)熱分解による、ナフタレン類やビフェニル類を含む油分の生成。 
 このうち、本発明で重要なものは(4)である。 
The main physicochemical changes that occur in the residual coal during the heat treatment in the oil recovery step S3 are as follows.
(1) Generation of gases such as hydrogen, CO, CO 2 , methane, ethane, and ethylene.
(2) Generation of a carbon precursor by dehydroaromatization.
(3) Decomposition of aromatic side chains by dealkylation, decarboxylation, etc. (causes generation of gas of (1) above).
(4) Generation of oil containing naphthalenes and biphenyls by thermal decomposition.
Of these, (4) is important in the present invention.
 ここで、熱分解による油分の生成は、分離工程S1の溶剤抽出時でも進行し得る。しかしながら、分離工程S1での加熱温度は、例えば、300~420℃、一般的には400℃以下に設定されるため熱分解速度が遅く、油分の生成が十分でない。熱処理時間を長くすれば低い温度でも油分の生成量を増加させることは可能であるが、無灰炭となる溶剤可溶成分が重縮合して不溶化し、残渣炭に移行してしまう。つまり、無灰炭の収率が低下する。
 従って、本発明では、石炭を溶解して溶剤可溶成分を抽出して分離するという分離工程S1本来の目的を達成するのに適する条件で行うこととした。そして、これとは別に、溶剤のコスト問題を解決するため、油分を生成して回収する油分回収工程S3を設け、当該工程を独自に最適な条件で行うこととした。
Here, the production of oil by pyrolysis can proceed even during the solvent extraction in the separation step S1. However, the heating temperature in the separation step S1 is set to, for example, 300 to 420 ° C., generally 400 ° C. or lower, so that the thermal decomposition rate is low and the oil content is not sufficiently generated. If the heat treatment time is lengthened, it is possible to increase the amount of oil produced even at a low temperature, but the solvent-soluble component that becomes ashless coal is polycondensed and insolubilized, and shifts to residual coal. That is, the yield of ashless coal decreases.
Therefore, in this invention, it decided to carry out on the conditions suitable for achieving the original objective of separation process S1 of melt | dissolving coal and extracting and isolate | separating a solvent soluble component. In addition to this, in order to solve the solvent cost problem, an oil component recovery step S3 for generating and recovering an oil component is provided, and the process is performed under optimum conditions uniquely.
 そのため、油分回収工程S3では、残渣炭から油分を効率よく生成させるため、熱処理温度を400℃以上とする必要がある。熱処理温度が400℃未満であると、温度が低過ぎるために熱分解速度が遅く、十分な油分を生成させることができない。熱処理温度の上限値については、800℃程度にすることができる。なお、熱処理温度を高くし過ぎても、生成される油分中のナフタレン類やビフェニル類の量は増加しない上に、加熱コストが嵩むためコスト的に好ましくない。このため、熱処理温度の好ましい範囲は400℃~600℃である。
 熱処理時間は、5~30分程度であればよいが、15~30分程度とするのが好ましく、20~30分程度とするのがより好ましい。残渣炭の酸化等を防止するため熱処理時は不活性ガス雰囲気とする。熱処理時の圧力は常圧でよい。
 熱処理を行う装置は、キルン方式、流動層方式、バッチ式のもの等を用いることができる。これらによれば、油分回収工程S3における残渣炭の熱処理を連続的に行うことができる。
 油分の回収は、前記した熱処理温度で加熱すると、残渣炭から生成された油分は気体化するのでこれを凝縮器で凝縮し、液体化することで回収することができる。 
Therefore, in the oil recovery step S3, the heat treatment temperature needs to be 400 ° C. or higher in order to efficiently generate the oil from the residual coal. When the heat treatment temperature is less than 400 ° C., the temperature is too low, the thermal decomposition rate is slow, and a sufficient oil content cannot be generated. About the upper limit of heat processing temperature, it can be set to about 800 degreeC. Even if the heat treatment temperature is set too high, the amount of naphthalenes and biphenyls in the produced oil does not increase, and the heating cost increases, which is not preferable in terms of cost. Therefore, the preferable range of the heat treatment temperature is 400 ° C. to 600 ° C.
The heat treatment time may be about 5 to 30 minutes, but is preferably about 15 to 30 minutes, more preferably about 20 to 30 minutes. An inert gas atmosphere is used during heat treatment to prevent oxidation of residual charcoal. The pressure during the heat treatment may be normal pressure.
As an apparatus for performing the heat treatment, a kiln type, a fluidized bed type, a batch type, or the like can be used. According to these, the heat treatment of the residual coal in the oil recovery step S3 can be performed continuously.
When the oil component is heated at the heat treatment temperature described above, the oil component generated from the residual charcoal is gasified, so that it can be recovered by condensing it with a condenser and liquefying it.
 油分回収工程S3で油分が回収された残渣炭は、質量基準では、油分が回収される前の残渣炭と同等の発熱量を有するので、燃料として使用することができる。もちろん、油分回収工程S3の熱処理に使用することもできる。 The residual coal from which the oil has been collected in the oil collecting step S3 has a calorific value equivalent to that of the residual coal before the oil is collected on a mass basis, and therefore can be used as fuel. Of course, it can also be used for the heat treatment of the oil recovery step S3.
(添加工程S4)
 添加工程S4は、油分回収工程S3で回収した油分の一部または全部を、分離工程S1で用いる溶剤に添加する工程である。かかる工程は、図1に示す油分回収槽8および導入管9によって行われる。
 ここで、油分の一部とは、回収した油分を分留等してさらに精製し、例えば二環芳香族化合物の濃度を選択的に高めて、回収した油分のうちから質的に一部を取り出すこと、およびこのような精製を行わない場合であっても、単に量的にその一部のみを分取することをいう。前者のように、質的に一部を取り出して溶剤に添加すると、分離工程S1で用いる溶剤中の二環芳香族化合物の濃度が高くなる。そのため、これが添加された溶剤は、石炭に対する可溶成分の抽出力がより強くなり、沸点が比較的低く、また、熱的な安定性もより高くなるので、より好ましいものとすることができる。また、後者の場合、必要に応じた量を添加することができるため、分離工程S1で用いる溶剤の量的な管理を容易にすることができる。このように、油分の一部を分離工程S1で用いる溶剤に添加する場合、当該溶剤に添加されないその他の油分は、例えば、燃料や化成品の原料として使用することができる。前記した回収した油分の分留条件としては、例えば、常圧下における沸点範囲とすることができる。本発明の場合、例えば、150~400℃などとすればよい。
 なお、油分の全部とは、文字どおり、油分回収工程S3で回収された油分の全てをいう。
(Addition step S4)
The addition step S4 is a step of adding a part or all of the oil recovered in the oil recovery step S3 to the solvent used in the separation step S1. Such a process is performed by the oil recovery tank 8 and the introduction pipe 9 shown in FIG.
Here, the part of the oil component is further refined by fractionating the recovered oil component, for example, by selectively increasing the concentration of the bicyclic aromatic compound, and qualitatively selecting a part of the recovered oil component. It means that only a part of the sample is taken out quantitatively, even if such purification is not performed. If a part is taken out qualitatively and added to the solvent as in the former, the concentration of the bicyclic aromatic compound in the solvent used in the separation step S1 increases. Therefore, the solvent to which this is added can be made more preferable because the extractability of soluble components to coal is stronger, the boiling point is relatively low, and the thermal stability is also higher. Further, in the latter case, since an amount as required can be added, it is possible to easily manage the amount of the solvent used in the separation step S1. As described above, when a part of the oil is added to the solvent used in the separation step S1, the other oil not added to the solvent can be used as a raw material for fuel or a chemical product, for example. As the above-described fractionation conditions of the recovered oil component, for example, the boiling point range under normal pressure can be set. In the present invention, for example, the temperature may be 150 to 400 ° C.
In addition, the whole oil component literally means all the oil components recovered in the oil recovery step S3.
 次に、本発明の効果を確認した実施例について説明する。 Next, examples in which the effects of the present invention have been confirmed will be described.
 メチルナフタレンを用いて下記〔条件〕で石炭を溶解し、溶剤可溶性分を抽出した。
〔条件〕
・溶剤(メチルナフタレン)/石炭比:1/5(質量基準)
・温度:370℃
・抽出時間:15分
・初期圧力:1MPa(窒素雰囲気) 
Coal was dissolved using methylnaphthalene under the following [conditions] to extract a solvent-soluble component.
〔conditions〕
・ Solvent (methylnaphthalene) / coal ratio: 1/5 (mass basis)
・ Temperature: 370 ℃
Extraction time: 15 minutes Initial pressure: 1 MPa (nitrogen atmosphere)
 そして、上記〔条件〕と同じ条件の温度および圧力下でろ過し、溶剤可溶成分を含む溶剤(溶液部)と溶液に不溶な成分(残渣炭)とを分離した。
 溶液部の溶剤を蒸発させて除去したところ、無灰炭を58質量%の収率(無水無灰炭基準)で得ることができた。
And it filtered under the temperature and pressure of the same conditions as said [Condition], and isolate | separated the solvent (solution part) containing a solvent soluble component, and the component (residue charcoal) insoluble in a solution.
When the solvent in the solution part was removed by evaporation, ashless coal could be obtained in a yield of 58% by mass (based on anhydrous ashless coal).
 次いで、生成された残渣炭を窒素雰囲気中にて350℃で加熱し、溶剤を蒸発させた。
 次いで、加熱した残渣炭10gを50mL/分の窒素気流中で下記表1の比較例1および実施例1~5に示す加熱温度にて20分間加熱した。当該加熱により生成した油分の収率を算出するとともに、油分の成分分析を行った。成分分析はガスクロマトグラフィー質量分析計にて行った。成分分析の結果、二環芳香族化合物であるナフタレン類とビフェニル類が主成分であることがわかった。
Next, the produced residual charcoal was heated at 350 ° C. in a nitrogen atmosphere to evaporate the solvent.
Next, 10 g of the heated residual charcoal was heated for 20 minutes in a nitrogen stream at 50 mL / min at the heating temperatures shown in Comparative Example 1 and Examples 1 to 5 in Table 1 below. While calculating the yield of the oil produced | generated by the said heating, the component analysis of the oil was performed. Component analysis was performed with a gas chromatography mass spectrometer. As a result of component analysis, it was found that naphthalenes and biphenyls, which are bicyclic aromatic compounds, are the main components.
 当該加熱により生成した油分の収率[質量%]と、ナフタレン類とビフェニル類の総和[mol%]とを、比較例1および実施例1~5の加熱温度[℃]とともに下記表1に示す。 The yield [mass%] of the oil produced by the heating and the total [mol%] of naphthalenes and biphenyls are shown in Table 1 below together with the heating temperature [° C.] of Comparative Example 1 and Examples 1-5. .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、比較例1は加熱温度が本発明の要件よりも低かったので、油分を生成させて回収することができなかった。
 これに対し、実施例1~5はいずれも加熱温度が本発明の要件を満たしていたので、油分を生成させて回収することができた。
As shown in Table 1, since the heating temperature of Comparative Example 1 was lower than the requirements of the present invention, it was not possible to generate and recover an oil component.
On the other hand, in all of Examples 1 to 5, since the heating temperature satisfied the requirements of the present invention, an oil component could be generated and recovered.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2011年6月22日出願の日本特許出願(特願2011-138623)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on June 22, 2011 (Japanese Patent Application No. 2011-138623), the contents of which are incorporated herein by reference.
 本発明は、各種炭素材料の原料や、製鉄コークスおよび成形炭のバインダー等に利用される無灰炭の製造方法として有用である。 The present invention is useful as a method for producing ashless coal used as a raw material for various carbon materials, iron-making coke, and a binder for forming coal.
1 無灰炭製造装置 
2 溶剤供給槽 
3 石炭供給槽 
4 抽出槽 
5 分離槽 
6 無灰炭回収槽 
7 熱処理槽 
8 油分回収槽 
9 導入管 
S1 分離工程 
S2 無灰炭回収工程 
S3 油分回収工程 
S4 添加工程
1 Ashless coal production equipment
2 Solvent supply tank
3 Coal supply tank
4 Extraction tank
5 Separation tank
6 Ashless coal recovery tank
7 Heat treatment tank
8 Oil recovery tank
9 Introduction pipe
S1 Separation process
S2 Ashless coal recovery process
S3 Oil recovery process
S4 addition process

Claims (2)

  1.  石炭と石炭を溶解することのできる溶剤とを混合して、前記溶剤に可溶な無灰炭と、前記溶剤に不溶で灰分を含む残渣炭と、に分離する分離工程と、
     分離した前記無灰炭を回収する無灰炭回収工程と、
    を含む無灰炭製造方法であって、
     前記分離工程で分離した残渣炭を400℃以上の温度で熱処理し、生成する油分を回収する油分回収工程と、
     前記油分回収工程で回収した油分の一部または全部を前記溶剤に添加する添加工程と、を含むことを特徴とする無灰炭製造方法。
    A separation step in which coal and a solvent capable of dissolving coal are mixed, and separated into ashless coal soluble in the solvent and residual coal insoluble in the solvent and containing ash;
    An ashless coal recovery step of recovering the separated ashless coal;
    An ashless coal manufacturing method including
    An oil component recovery step in which the residual coal separated in the separation step is heat-treated at a temperature of 400 ° C. or higher, and an oil component to be generated is recovered;
    And an addition step of adding a part or all of the oil recovered in the oil recovery step to the solvent.
  2.  前記油分回収工程における残渣炭の熱処理が連続的に行われることを特徴とする請求項1に記載の無灰炭製造方法。 The method for producing ashless coal according to claim 1, wherein the heat treatment of the residual coal in the oil recovery step is continuously performed.
PCT/JP2012/066051 2011-06-22 2012-06-22 Method for producing ashless coal WO2012176896A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011138623A JP2013006907A (en) 2011-06-22 2011-06-22 Method for producing ashless coal
JP2011-138623 2011-06-22

Publications (1)

Publication Number Publication Date
WO2012176896A1 true WO2012176896A1 (en) 2012-12-27

Family

ID=47422723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066051 WO2012176896A1 (en) 2011-06-22 2012-06-22 Method for producing ashless coal

Country Status (2)

Country Link
JP (1) JP2013006907A (en)
WO (1) WO2012176896A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015224278A (en) * 2014-05-27 2015-12-14 株式会社神戸製鋼所 Apparatus and method for producing ashless coal
AU2014245203B2 (en) * 2013-03-28 2016-05-19 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Ashless-coal production device, and ashless-coal production method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4974201A (en) * 1972-10-12 1974-07-17
JP2005120185A (en) * 2003-10-15 2005-05-12 Kobe Steel Ltd Method for producing ashless coal
JP2009215505A (en) * 2008-03-12 2009-09-24 Kobe Steel Ltd Method of manufacturing ashless coal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4974201A (en) * 1972-10-12 1974-07-17
JP2005120185A (en) * 2003-10-15 2005-05-12 Kobe Steel Ltd Method for producing ashless coal
JP2009215505A (en) * 2008-03-12 2009-09-24 Kobe Steel Ltd Method of manufacturing ashless coal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2014245203B2 (en) * 2013-03-28 2016-05-19 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Ashless-coal production device, and ashless-coal production method
US9938477B2 (en) 2013-03-28 2018-04-10 Kobe Steel, Ltd. Ashless-coal production device, and ashless-coal production method
JP2015224278A (en) * 2014-05-27 2015-12-14 株式会社神戸製鋼所 Apparatus and method for producing ashless coal

Also Published As

Publication number Publication date
JP2013006907A (en) 2013-01-10

Similar Documents

Publication Publication Date Title
JP4061351B1 (en) Production method of ashless coal
JP4708463B2 (en) Production method of ashless coal
KR101365365B1 (en) Method for producing carbon materials
JP5314299B2 (en) Production method of ashless coal
US20230091961A1 (en) Supercritical CO2 Solvated Process to Convert Coal to Carbon Fibers
JP5128351B2 (en) Carbon material manufacturing method
WO2012176896A1 (en) Method for producing ashless coal
JP2013249360A (en) Method for producing ashless coal
JP6017371B2 (en) Ashless coal manufacturing method and carbon material manufacturing method
WO2013114920A1 (en) Solvent separation method
JP5328180B2 (en) Production method of ashless coal
JP3920899B1 (en) Method for producing modified coal
JP5426832B2 (en) Production method of ashless coal
JP5998373B2 (en) Production method of by-product coal
JP5710459B2 (en) Production method of ashless coal
JP6602168B2 (en) Caking filler and method for producing coal pitch
JP2013136692A (en) Production method for ashless coal
JPH0386789A (en) Method for fractionating beta resin
JPS6123958B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12802988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12802988

Country of ref document: EP

Kind code of ref document: A1