JPH05148067A - Ceramic substrate and its production - Google Patents

Ceramic substrate and its production

Info

Publication number
JPH05148067A
JPH05148067A JP33780491A JP33780491A JPH05148067A JP H05148067 A JPH05148067 A JP H05148067A JP 33780491 A JP33780491 A JP 33780491A JP 33780491 A JP33780491 A JP 33780491A JP H05148067 A JPH05148067 A JP H05148067A
Authority
JP
Japan
Prior art keywords
powder paste
ceramic substrate
substrate
silver
surface roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33780491A
Other languages
Japanese (ja)
Inventor
Masami Kawashima
正実 川島
Shinichi Iwata
伸一 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP33780491A priority Critical patent/JPH05148067A/en
Publication of JPH05148067A publication Critical patent/JPH05148067A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/381Improvement of the adhesion between the insulating substrate and the metal by special treatment of the substrate

Abstract

PURPOSE:To obtain a substrate causing no circuit burnout, malsoldering, deterioration of heat-resistant characteristics, etc., by filling recesses on a ceramic substrate with a metallic powder paste followed by baking and then by abrading and smoothing the surface. CONSTITUTION:Recesses 3 on the surface of a ceramic substrate 1 is filled with a metallic powder paste 2 containing at least one kind of metal among Ag, Cu, Au, Pt, Rd, Tl, Zr, and Ni, followed by baking. Then, the resulting surface is sprayed with a fine diamond particle-contg. solution and abraded to form a smooth surface with a decree of smoothness Ra of <=0.4mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はセラミックス回路基板に
使用する窒化アルミニウム基板の表面に存在する凹部を
金属粉末ペーストで埋め込み、研磨して平滑なセラミッ
クス基板の表面を得るセラミックス基板及びその製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic substrate which is used for a ceramic circuit substrate, a recess existing on the surface of the aluminum nitride substrate is filled with a metal powder paste and is polished to obtain a smooth ceramic substrate surface, and a method for producing the same. It is a thing.

【0002】[0002]

【従来の技術】従来の窒化アルミニウム基板おいて焼成
上がりの、窒化アルミニウム基板を金属定盤を用いて、
数μmのダイヤモンドの溶液をノズルから噴射して表面
粗さRaを測定したところ、Raは1.3〜1.5μm
であった。研磨時間は8時間以上を要した。前記窒化ア
ルミニウム基板上に10mm角のSiウェハーを半田付
実装した結果、半田層に300μm程度のボイドが観察
された。ボイドを70μm以下に押さえるためには、表
面粗さRaを0.3μm以下にすることが望ましい。
2. Description of the Related Art A conventional aluminum nitride substrate, which has just been fired, is prepared by using a metal surface plate.
The surface roughness Ra was measured by jetting a diamond solution of several μm from a nozzle, and Ra was 1.3 to 1.5 μm.
Met. The polishing time required 8 hours or more. As a result of soldering and mounting a 10 mm square Si wafer on the aluminum nitride substrate, a void of about 300 μm was observed in the solder layer. In order to suppress the voids to 70 μm or less, it is desirable that the surface roughness Ra be 0.3 μm or less.

【0003】比較例1のように、窒化アルミニウム基板
をダイヤモンドで直接研磨すると、Raを0.3μm以
下にするためには、24時間も研磨時間を要し、しかも
脱粒の防止を勘案しながらゆっくりと研磨しなければな
らない。実際は、比較例1では上記の理由から作業性が
悪いので、比較例2では窒化アルミニウム基板にTiを
0.1μm,Ptを0.1μm,Auを0.6μmの膜
をスパッタリングし、同様な研磨を施して、表面粗さR
aを測定したが、結果は殆どスパッタリングした効果が
みられず、Raが1.3〜1.5μmとなり、比較例1
とかわらなかった。従って、ボイドも同様の結果となっ
た。
When the aluminum nitride substrate is directly polished with diamond as in Comparative Example 1, it takes as long as 24 hours to reduce Ra to 0.3 μm or less, and slowly while taking into consideration the prevention of shedding. And must be polished. In fact, since the workability in Comparative Example 1 is poor for the above reason, in Comparative Example 2, a film of 0.1 μm of Ti, 0.1 μm of Pt, and 0.6 μm of Au was sputtered on the aluminum nitride substrate, and the same polishing was performed. Surface roughness R
When a was measured, the result was that the effect of sputtering was hardly seen, and Ra was 1.3 to 1.5 μm.
I didn't know. Therefore, the voids have similar results.

【0004】ガラスコーテングしたセラミックス基板に
おいても、比較例1と比較例2と同様に、研磨時間を種
々かえて結果を検討した。その結果、ガラスコーテング
した窒化アルミニウム基板とガラスコーテングの密着度
が悪く、ガラスコーテングが研磨中に剥離し、飛んでし
まい、全く研磨ができなかったので、比較例からも削除
した。従って、セラミックス基板の表面を研磨し、平滑
な表面を得るためには、セラミックス基板の表面の凹部
を埋め、ある平滑度を有する基板の表面にする必要があ
る。
Also for the glass-coated ceramic substrate, the polishing time was variously changed and the results were examined in the same manner as in Comparative Example 1 and Comparative Example 2. As a result, the adhesion between the glass-coated aluminum nitride substrate and the glass coating was poor, and the glass coating peeled off and flew during polishing, and polishing could not be performed at all, so it was also deleted from the comparative example. Therefore, in order to polish the surface of the ceramic substrate to obtain a smooth surface, it is necessary to fill the recesses on the surface of the ceramic substrate to form a surface of the substrate having a certain smoothness.

【0005】セラミックス基板の表面を研磨した場合、
前記基板の表面に脱粒が発生し、表面に凹部の欠陥を生
じ易い。前記凹部が薄膜回路に使用した場合に、回路断
線を起こす原因となる。又実装基板として使用した場合
は、凹部が半田ペースト中のボイドの発生源となり、半
田不良、熱抵抗特性の劣化の問題を引き起こす。このた
めガラスコーテングしたガラスコートアルミニウム基板
を一般的に用いるのが普通であるが、ガラスコーテング
のセラミックス基板は前述したようにセラミックス基板
表面との密着度が小さい。このためガラスコーテングが
研磨中に剥離し飛んでしまう。又アルミニウム基板を用
いて、ガラスコーテングした場合は、アルミニウム基板
しか使用できず、ガラスコートアルミニウム基板が高価
であり、しかもセラミックス基板には適用できず、任意
のセラミックス基板を自由に選択できない欠点と課題が
あった。
When the surface of the ceramic substrate is polished,
Graining is likely to occur on the surface of the substrate and defects in the recesses are likely to occur on the surface. When the recess is used in a thin film circuit, it may cause a circuit disconnection. When it is used as a mounting substrate, the concave portion becomes a source of voids in the solder paste, causing problems such as poor soldering and deterioration of thermal resistance characteristics. For this reason, a glass-coated glass-coated aluminum substrate is generally used, but the glass-coated ceramic substrate has a low degree of adhesion to the surface of the ceramic substrate as described above. Therefore, the glass coating peels off and flies during polishing. Further, when glass coating is performed using an aluminum substrate, only the aluminum substrate can be used, the glass-coated aluminum substrate is expensive, and it cannot be applied to the ceramic substrate, and any ceramic substrate cannot be freely selected. was there.

【0006】[0006]

【発明が解決しようとする課題】本発明はこれらの欠点
を除去するために、セラミックス基板の表面の凹部を全
て埋めるように厚く表面を金属粉末ペーストを被覆コー
テングし、その後焼付けし、数μmのダイヤモンドの溶
液をノズルから噴射して、表面粗さRaが0.4μm以
下、ボイドが100μm以下の、研磨所要時間が2時間
以下にする、鏡面研磨された低コストで凹部の無いセラ
ミックス基板及びその製造方法を提供することを目的と
する。
In order to eliminate these drawbacks, the present invention coats the surface of the ceramic substrate thickly with a metal powder paste so as to fill all the concave portions of the surface of the ceramic substrate, and then bake it to a thickness of several μm. A low-cost, mirror-polished ceramic substrate having a surface roughness Ra of 0.4 μm or less, a void of 100 μm or less, and a polishing time of 2 hours or less, which is jetted with a diamond solution, It is intended to provide a manufacturing method.

【0007】[0007]

【課題を解決するための手段】即ち本発明は、1.セラ
ミックス基板の製造方法において、セラミックス基板の
表面に存在する凹部に、Ag,Cu,Au,Pt,R
d,Ti,Zr,Niの1種又は1種以上を含む金属粉
末ペーストを充填して、その後焼成焼付けし、数μm以
下の粒子のダイヤモンドの溶液を噴射して研磨し、平滑
度Raが0.4μm以下の平滑面を得ることを特徴とす
るセラミックス基板の製造方法である。2.請求項1記
載のセラミックス基板において、請求項1記載のセラミ
ックス基板の製造方法によって製造されたことを特徴と
するセラミックス基板である。3.請求項1記載のA
g,Cu,Au,Pt,Rd,Ti,Zr,Niの1種
又は1種以上を含む金属粉末ペーストにガラスフリット
を加え、前記金属粉末ペーストを充填し、その後焼成焼
付けし、数μm以下の粒子のダイヤモンドの溶液を噴射
して研磨し、平滑度Raが0.4μm以下の平滑面を得
ることを特徴とするセラミックス基板の製造方法であ
る。4.請求項3記載のセラミックス基板において、請
求項3記載のセラミックス基板の製造方法によって製造
されたことを特徴とするセラミックス基板である。
That is, the present invention is as follows. In the method for manufacturing a ceramic substrate, Ag, Cu, Au, Pt, R are formed in the recesses on the surface of the ceramic substrate.
A metal powder paste containing one or more of d, Ti, Zr, and Ni is filled, then baked and baked, and a diamond solution of particles having a particle size of several μm or less is sprayed and polished to have a smoothness Ra of 0. A method of manufacturing a ceramic substrate, characterized in that a smooth surface of 4 μm or less is obtained. 2. The ceramic substrate according to claim 1, which is manufactured by the method for manufacturing a ceramic substrate according to claim 1. 3. A according to claim 1.
Glass frit is added to a metal powder paste containing one or more of g, Cu, Au, Pt, Rd, Ti, Zr, and Ni, the metal powder paste is filled, and then baked and baked. A method for producing a ceramic substrate, characterized in that a diamond solution of particles is sprayed and polished to obtain a smooth surface having a smoothness Ra of 0.4 μm or less. 4. The ceramic substrate according to claim 3 is manufactured by the method for manufacturing a ceramic substrate according to claim 3.

【0008】[0008]

【作用】窒化アルミニウム基板の表面を金属定盤を用い
て、数μmのダイヤモンドの溶液を噴射ノズルから噴射
することにより、基板の表面の平滑度Raが約0.4μ
m以下程度の表面が得られると、基板表面の凹部が薄膜
回路基板に使用した場合、回路断線の原因となることを
防止できる。同様に基板表面の凹部は半田ペースト中の
ボイドの発生の原因となるので、ボイドも極力小さくな
るように窒化アルミニウム基板の表面をできるだけ平滑
度をあげ、ボイドも100μm以下に押さえたい。更に
Raが約0.4μm以下、ボイドも100μm以下を満
足させて、研磨所要時間も8時間から24時間も要する
のでは作業性が悪いので、2時間以下にしたい。
The smoothness Ra of the surface of the substrate is about 0.4 μm by injecting a diamond solution of several μm from the injection nozzle on the surface of the aluminum nitride substrate using a metal surface plate.
When a surface of about m or less is obtained, it is possible to prevent a circuit disconnection from being caused when the concave portion of the substrate surface is used for a thin film circuit board. Similarly, since the recesses on the substrate surface cause the generation of voids in the solder paste, it is desirable to increase the smoothness of the surface of the aluminum nitride substrate so that the voids are as small as possible and to keep the voids to 100 μm or less. Further, if Ra is 0.4 μm or less and the void is 100 μm or less and the polishing time is 8 hours to 24 hours, workability is poor.

【0009】上述したように、本発明はセラミックス基
板の表面に存在する凹部にAg,Cu,Au,Pt,P
d,Ti,Nb,Niの1種又は1種以上を含む金属粉
末ペーストを充填する。又は前記金属粉末ペーストにガ
ラスフリットを加えて、該金属粉末ペーストを充填す
る。Ag,Cu,Au,Pt,Pd,Ti,Nb,Ni
の1種又は1種以上を含む金属粉末ペースト、又は該金
属粉末ペーストにガラスフリットを加えた二種類の金属
粉末ペーストを窒化アルミニウム基板上にコーティング
して、500〜1900℃で10分間〜2時間焼成焼付
けし、その後数μmの粒子のダイヤモンドの溶液をノズ
ルから噴射して研磨する。その結果は、表面粗さRaが
従来の比較例1,比較例2の1.3〜1.5μmから
0.1〜0.3μm以下に改善され、研磨時間は従来の
8時間から1時間以下に改善され、ボイドも従来の30
0μmから100μm以下の50μm〜70μm以下に
改善された。尚、このセラミックス基板の表面に、厚さ
1μmのAuめっきを施した後に、Auめっき膜のダイ
シアー強度の密着強度を測定した結果、4〜10Kg/
4mm2程度であり、ワイヤボンデングの強度は、20
〜35gr程度である。この程度の密着強度があると、
剥離して研磨できなくなることはない。
As described above, according to the present invention, Ag, Cu, Au, Pt, P is formed in the concave portion existing on the surface of the ceramic substrate.
A metal powder paste containing one or more of d, Ti, Nb, and Ni is filled. Alternatively, a glass frit is added to the metal powder paste to fill the metal powder paste. Ag, Cu, Au, Pt, Pd, Ti, Nb, Ni
Of 1 or 1 or more of metal powder paste, or two kinds of metal powder paste obtained by adding glass frit to the metal powder paste is coated on an aluminum nitride substrate, and at 500 to 1900 ° C. for 10 minutes to 2 hours. After firing and baking, a diamond solution of particles of several μm is sprayed from a nozzle to polish. As a result, the surface roughness Ra was improved from 1.3 to 1.5 μm of the conventional Comparative Examples 1 and 2 to 0.1 to 0.3 μm or less, and the polishing time was 8 hours to 1 hour or less. It is improved to 30 and the void is 30
It was improved from 0 μm to 100 μm or less and 50 μm to 70 μm or less. The surface of this ceramic substrate was plated with Au having a thickness of 1 μm, and the adhesion strength of the Au plating film, which was the dicing strength, was measured.
A 2 order of 4 mm, the strength of the wire Bonn dengue, 20
It is about 35 gr. With this level of adhesion strength,
It does not peel and cannot be polished.

【0010】上記のように、Ag,Cu,Au,Pt,
Pd,Ti,Nb,Niの1種又は1種以上を含む金属
粉末ペーストを充填するか、該金属粉末ペーストにガラ
スフリットを加えた金属粉末ペーストを充填するかし
て、窒化アルミニウム基板にコーテングして焼成焼付け
し、ダイヤモンドの溶液で研磨することによって、表面
粗さRaが0.4μm以下、ボイドが100μm以下、
研磨時間が2時間以下の作業性のよい、低コストの、凹
部のないセラミックス基板及びその製造方法が提供でき
る。
As described above, Ag, Cu, Au, Pt,
A metal powder paste containing one or more of Pd, Ti, Nb, and Ni is filled, or a metal powder paste obtained by adding glass frit to the metal powder paste is filled, and the aluminum nitride substrate is coated. By firing and baking and polishing with a diamond solution, the surface roughness Ra is 0.4 μm or less, and the void is 100 μm or less,
It is possible to provide a low-cost ceramic substrate having no recesses and a method for manufacturing the same, which has good workability with a polishing time of 2 hours or less.

【0011】[0011]

【実施例】図1は、セラミックス基板1の凹部3に金属
粉末ペースト2を充填して焼成焼付けし、研磨したセラ
ミックス基板の断面図である。
EXAMPLE FIG. 1 is a cross-sectional view of a ceramics substrate in which a recess 3 of a ceramics substrate 1 is filled with a metal powder paste 2, baked and baked, and polished.

【0012】[0012]

【実施例1】窒化アルミニウム基板の表面に銀(Ag)
を主成分とする金属粉末に有機バインダーを加えた銀
(Ag)粉末ペーストA1と、この金属粉末ペーストに
ガラスフリット成分を加えた銀(Ag)粉末ペーストB
1とを印刷機により印刷した後、送風乾燥機で150℃
で30分間乾燥した。乾燥したセラミックス基板を連続
焼成炉を用いて、500〜1900℃で10分間〜2時
間、好ましくは10〜35分間の焼成焼付けし、この焼
成上がりのセラミックス基板を金属定盤を用いて、数μ
mの粒子のダイヤモンドの溶液をノズルから噴射させ
て、30分間から2時間の研磨を行い、セラミックス基
板の凹部に銀(Ag)粉末ペーストA1,B1を充填し
たセラミックス基板A1,B1を得た。このセラミック
ス基板A1,B1の表面粗さRaは0.1μm以下であ
った。本実施例1のセラミックス基板A1,B1に、厚
さ1μmの金(Au)めっきを施した後に、金(Au)
めっき膜のダイシアー強度である密着強度を測定した結
果、セラミックス基板A1,B1とも4〜6Kg/mm
2の強度が得られた。又同じ処理のセラミックス基板A
1,B1にφ50μmの金(Au)線を超音波加熱ボン
デングを行ってワイヤボンデング強度を測定した結果、
27〜32grの強度が得られた。これらの強度は、い
ずれも問題を生じない満足すべきものであった。又本実
施例の10mm角のシリコン(Si)ウェハーを半田実
装した結果、半田層に50μm以下のボイドが観察され
たが、従来の300μm以下のボイドから比較すると大
幅に改善され、研磨時間も従来品から比較すると24時
間も要したものが、1時間以下の時間でできることが判
明した。その結果を表1,表2,表3に示す。
Example 1 Silver (Ag) was formed on the surface of an aluminum nitride substrate.
Silver (Ag) powder paste A1 obtained by adding an organic binder to a metal powder containing as a main component, and silver (Ag) powder paste B obtained by adding a glass frit component to this metal powder paste.
After printing 1 and 1 with a printing machine, 150 ° C with a blast dryer
And dried for 30 minutes. The dried ceramics substrate is fired and baked at 500 to 1900 ° C. for 10 minutes to 2 hours, preferably 10 to 35 minutes using a continuous firing furnace, and the ceramics substrate after firing is heated to several μm using a metal surface plate.
A diamond solution of m particles was jetted from a nozzle and polished for 30 minutes to 2 hours to obtain ceramic substrates A1 and B1 in which recesses of the ceramic substrate were filled with silver (Ag) powder pastes A1 and B1. The surface roughness Ra of the ceramic substrates A1 and B1 was 0.1 μm or less. After gold (Au) plating with a thickness of 1 μm is applied to the ceramic substrates A1 and B1 of the first embodiment, gold (Au)
As a result of measuring the adhesion strength which is the dicing strength of the plating film, both ceramic substrates A1 and B1 have a bond strength of 4 to 6 kg / mm.
A strength of 2 was obtained. Ceramic substrate A with the same treatment
1, B1 was subjected to ultrasonic heating bonding with a φ50 μm gold (Au) wire to measure the wire bonding strength,
A strength of 27-32 gr was obtained. All of these strengths were satisfactory without causing any problems. Further, as a result of soldering the 10 mm square silicon (Si) wafer of this example, a void of 50 μm or less was observed in the solder layer, but it was significantly improved compared to the conventional void of 300 μm or less, and the polishing time was also conventional. Compared with the products, it was found that what took 24 hours can be done in less than 1 hour. The results are shown in Table 1, Table 2 and Table 3.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【表2】 [Table 2]

【0015】[0015]

【表3】 [Table 3]

【0016】[0016]

【実施例2】金(Au)粉末ペーストA2と金(Au)
粉末ペーストにガラスフリットを加えた金(Au)粉末
ペーストB2(A2,B2は実施例2の2の符号)を用
い、実施例1と同様な製造方法でセラミックス基板A
2,B2を得た。実施例1と同様な方法を用いて、表面
粗さRa、密着強度、ワイヤボンデング強度、研磨時
間、ボイドの諸特性を測定した結果、表1に示すような
結果が得られた。
Example 2 Gold (Au) powder paste A2 and gold (Au)
Using a gold (Au) powder paste B2 (A2 and B2 are the symbols of 2 of Example 2) obtained by adding glass frit to the powder paste, the ceramic substrate A was manufactured by the same manufacturing method as in Example 1.
2, B2 was obtained. Using the same method as in Example 1, the surface roughness Ra, the adhesion strength, the wire bonding strength, the polishing time, and the various characteristics of the void were measured, and the results shown in Table 1 were obtained.

【0017】[0017]

【実施例3】銅(Cu)粉末ペーストA3と銅(Cu)
粉末ペーストにガラスフリットを加えた銅(Cu)粉末
ペーストB3(A3,B3は実施例3の3の符号)を用
い、実施例1と同様な製造方法でセラミックス基板A
3,B3を得た。実施例1と同様な方法を用いて、表面
粗さRa、密着強度、ワイヤボンデング強度、研磨時
間、ボイドの諸特性を測定した結果、表1に示すような
結果が得られた。
[Example 3] Copper (Cu) powder paste A3 and copper (Cu)
Using a copper (Cu) powder paste B3 (A3 and B3 are the symbols 3 of Example 3) obtained by adding glass frit to the powder paste, the ceramic substrate A was manufactured by the same manufacturing method as in Example 1.
3, B3 was obtained. Using the same method as in Example 1, the surface roughness Ra, the adhesion strength, the wire bonding strength, the polishing time, and the various characteristics of the void were measured, and the results shown in Table 1 were obtained.

【0018】[0018]

【実施例4】ニッケル(Ni)粉末ペーストA4とニッ
ケル(Ni)粉末ペーストにガラスフリットを加えたニ
ッケル(Ni)粉末ペーストB4(A4,B4は実施例
4の4の符号)を用い、実施例1と同様な製造方法でセ
ラミックス基板A4,B4を得た。実施例1と同様な方
法を用いて、表面粗さRa、密着強度、ワイヤボンデン
グ強度、研磨時間、ボイドの諸特性を測定した結果、表
1に示すような結果が得られた。
[Example 4] Using a nickel (Ni) powder paste A4 and a nickel (Ni) powder paste B4 (A4 and B4 are the symbols 4 of Example 4) obtained by adding glass frit to the nickel (Ni) powder paste, Ceramic substrates A4 and B4 were obtained by the same manufacturing method as in Example 1. Using the same method as in Example 1, the surface roughness Ra, the adhesion strength, the wire bonding strength, the polishing time, and the various characteristics of the void were measured, and the results shown in Table 1 were obtained.

【0019】[0019]

【実施例5】パラジウム(Pd)粉末ペーストA5とパ
ラジウム(Pd)粉末ペーストにガラスフリットを加え
たパラジウム(Pd)粉末ペーストB5(A5,B5は
実施例5の5の符号)を用い、実施例1と同様な製造方
法でセラミックス基板A5,B5を得た。実施例1と同
様な方法を用いて、表面粗さRa、密着強度、ワイヤボ
ンデング強度、研磨時間、ボイドの諸特性を測定した結
果、表1に示すような結果が得られた。
EXAMPLE 5 Palladium (Pd) powder paste A5 and palladium (Pd) powder paste B5 (A5 and B5 are the symbols of Example 5) obtained by adding glass frit to palladium (Pd) powder paste were used. Ceramic substrates A5 and B5 were obtained by the same manufacturing method as in 1. Using the same method as in Example 1, the surface roughness Ra, the adhesion strength, the wire bonding strength, the polishing time, and the various characteristics of the void were measured, and the results shown in Table 1 were obtained.

【0020】[0020]

【実施例6】白金(Pt)粉末ペーストA6と白金(P
t)粉末ペーストにガラスフリットを加えた白金(P
t)粉末ペーストB6(A6,B6は実施例6の6の符
号)を用い、実施例1と同様な製造方法でセラミックス
基板A6,B6を得た。実施例1と同様な方法を用い
て、表面粗さRa、密着強度、ワイヤボンデング強度、
研磨時間、ボイドの諸特性を測定した結果、表1に示す
ような結果が得られた。
Example 6 Platinum (Pt) powder paste A6 and platinum (P
t) Platinum (P
t) Using the powder paste B6 (A6 and B6 are the symbols 6 in Example 6), the ceramic substrates A6 and B6 were obtained by the same manufacturing method as in Example 1. Using the same method as in Example 1, surface roughness Ra, adhesion strength, wire bonding strength,
As a result of measuring the polishing time and various properties of the voids, the results shown in Table 1 were obtained.

【0021】[0021]

【実施例7】チタン(Ti)粉末ペーストA7とチタン
(Ti)粉末ペーストにガラスフリットを加えたチタン
(Ti)粉末ペーストB7(A7,B7は実施例7の7
の符号)を用い、実施例1と同様な製造方法でセラミッ
クス基板A7,B7を得た。実施例1と同様な方法を用
いて、表面粗さRa、密着強度、ワイヤボンデング強
度、研磨時間、ボイドの諸特性を測定した結果、表1に
示すような結果が得られた。但し、チタン(Ti)は酸
化しやすいので、焼成炉で500℃〜1900℃で焼成
する際は、アルゴンガス、又は真空雰囲気で処理した。
[Embodiment 7] Titanium (Ti) powder paste A7 and titanium (Ti) powder paste B7 (A7, B7 are the same as those in Embodiment 7).
(Reference numeral) was used to obtain ceramic substrates A7 and B7 by the same manufacturing method as in Example 1. Using the same method as in Example 1, the surface roughness Ra, the adhesion strength, the wire bonding strength, the polishing time, and the various characteristics of the void were measured, and the results shown in Table 1 were obtained. However, since titanium (Ti) easily oxidizes, when firing at 500 ° C. to 1900 ° C. in a firing furnace, it was treated in an argon gas or a vacuum atmosphere.

【0022】[0022]

【実施例8】ジルコン(Zr)粉末ペーストA8とジル
コン(Zr)粉末ペーストにガラスフリットを加えたジ
ルコン(Zr)粉末ペーストB8(A8,B8は実施例
8の8の符号)を用い、実施例1と同様な製造方法でセ
ラミックス基板A8,B8を得た。実施例1と同様な方
法を用いて、表面粗さRa、密着強度、ワイヤボンデン
グ強度、研磨時間、ボイドの諸特性を測定した結果、表
1に示すような結果が得られた。
[Embodiment 8] A zircon (Zr) powder paste A8 and a zircon (Zr) powder paste B8 (A8 and B8 are the symbols 8 in Embodiment 8) obtained by adding glass frit to the zircon (Zr) powder paste are used. Ceramic substrates A8 and B8 were obtained by the same manufacturing method as in 1. Using the same method as in Example 1, the surface roughness Ra, the adhesion strength, the wire bonding strength, the polishing time, and the various characteristics of the void were measured, and the results shown in Table 1 were obtained.

【0023】[0023]

【実施例9】銀金(Ag−Au)粉末ペーストA9と銀
金(Ag−Au)粉末ペーストにガラスフリットを加え
た銀金(Ag−Au)粉末ペーストB9(A9,B9は
実施例9の9の符号)を用い、実施例1と同様な製造方
法でセラミックス基板A9,B9を得た。実施例1と同
様な方法を用いて、表面粗さRa、密着強度、ワイヤボ
ンデング強度、研磨時間、ボイドの諸特性を測定した結
果、表1に示すような結果が得られた。
[Example 9] Silver gold (Ag-Au) powder paste A9 and silver gold (Ag-Au) powder paste B9 (A9, B9 are the same as those of Example 9). (Reference numeral 9) was used to obtain ceramic substrates A9 and B9 by the same manufacturing method as in Example 1. Using the same method as in Example 1, the surface roughness Ra, the adhesion strength, the wire bonding strength, the polishing time, and the various characteristics of the void were measured, and the results shown in Table 1 were obtained.

【0024】[0024]

【実施例10】銀銅(Ag−Cu)粉末ペーストA10
と銀銅(Ag−Cu)粉末ペーストにガラスフリットを
加えた銀銅(Ag−Cu)粉末ペーストB10(A1
0,B10は実施例10の10の符号)を用い、実施例
1と同様な製造方法でセラミックス基板A10,B10
を得た。実施例1と同様な方法を用いて、表面粗さR
a、密着強度、ワイヤボンデング強度、研磨時間、ボイ
ドの諸特性を測定した結果、表1に示すような結果が得
られた。
Example 10 Silver-copper (Ag-Cu) powder paste A10
And silver-copper (Ag-Cu) powder paste with glass frit added, silver-copper (Ag-Cu) powder paste B10 (A1)
0 and B10 are the same as those in Example 10), and the ceramic substrates A10 and B10 are manufactured by the same manufacturing method as in Example 1.
Got Using the same method as in Example 1, the surface roughness R
As a result of measuring a, adhesion strength, wire bonding strength, polishing time, and various characteristics of voids, the results shown in Table 1 were obtained.

【0025】[0025]

【実施例11】銀ニッケル(Ag−Ni)粉末ペースト
A11と銀ニッケル(Ag−Ni)粉末ペーストにガラ
スフリットを加えた銀ニッケル(Ag−Ni)粉末ペー
ストB11(A11,B11は実施例11の11の符
号)を用い、実施例1と同様な製造方法でセラミックス
基板A11,B11を得た。実施例1と同様な方法を用
いて、表面粗さRa、密着強度、ワイヤボンデング強
度、研磨時間、ボイドの諸特性を測定した結果、表1に
示すような結果が得られた。
[Example 11] Silver nickel (Ag-Ni) powder paste A11 and silver nickel (Ag-Ni) powder paste B11 (A11 and B11 are the same as those of Example 11). 11) was used to obtain ceramic substrates A11 and B11 by the same manufacturing method as in Example 1. Using the same method as in Example 1, the surface roughness Ra, the adhesion strength, the wire bonding strength, the polishing time, and the various characteristics of the void were measured, and the results shown in Table 1 were obtained.

【0026】[0026]

【実施例12】銀パラジウム(Ag−Pd)粉末ペース
トA12と銀パラジウム(Ag−Pd)粉末ペーストに
ガラスフリットを加えた銀パラジウム(Ag−Pd)粉
末ペーストB12(A12,B12は実施例12の12
の符号)を用い、実施例1と同様な製造方法でセラミッ
クス基板A12,B12を得た。実施例1と同様な方法
を用いて、表面粗さRa、密着強度、ワイヤボンデング
強度、研磨時間、ボイドの諸特性を測定した結果、表2
に示すような結果が得られた。
[Example 12] Silver palladium (Ag-Pd) powder paste A12 and silver palladium (Ag-Pd) powder paste B12 (A12 and B12 are the same as those in Example 12). 12
(Reference numeral) was used to obtain ceramic substrates A12 and B12 by the same manufacturing method as in Example 1. Using the same method as in Example 1, the surface roughness Ra, the adhesion strength, the wire bonding strength, the polishing time, and various characteristics of the void were measured, and the results are shown in Table 2.
The results shown in are obtained.

【0027】[0027]

【実施例13】銀白金(Ag−Pt)粉末ペーストA1
3と銀白金(Ag−Pt)粉末ペーストにガラスフリッ
トを加えた銀白金(Ag−Pt)粉末ペーストB13
(A13,B13は実施例13の13の符号)を用い、
実施例1と同様な製造方法でセラミックス基板A13,
B13を得た。実施例1と同様な方法を用いて、表面粗
さRa、密着強度、ワイヤボンデング強度、研磨時間、
ボイドの諸特性を測定した結果、表2に示すような結果
が得られた。
Example 13 Silver Platinum (Ag-Pt) Powder Paste A1
3 and silver-platinum (Ag-Pt) powder paste with glass frit added, silver-platinum (Ag-Pt) powder paste B13
(A13 and B13 are the symbols of 13 of Example 13),
In the same manufacturing method as in Example 1, the ceramic substrate A13,
B13 was obtained. Using the same method as in Example 1, surface roughness Ra, adhesion strength, wire bonding strength, polishing time,
As a result of measuring various characteristics of the void, the results shown in Table 2 were obtained.

【0028】[0028]

【実施例14】銀チタン(Ag−Ti)粉末ペーストA
14と銀チタン(Ag−Ti)粉末ペーストにガラスフ
リットを加えた銀チタン(Ag−Ti)粉末ペーストB
14(A14,B14は実施例14の14の符号)を用
い、実施例1と同様な製造方法でセラミックス基板A1
4,B14を得た。実施例1と同様な方法を用いて、表
面粗さRa、密着強度、ワイヤボンデング強度、研磨時
間、ボイドの諸特性を測定した結果、表2に示すような
結果が得られた。但し、チタン(Ti)は酸化しやすい
ので、焼成炉で500℃〜1900℃で焼成する際は、
アルゴンガス、又は真空雰囲気で処理した。
Example 14 Silver Titanium (Ag-Ti) Powder Paste A
14 and silver titanium (Ag-Ti) powder paste B to which a glass frit is added.
14 (A14 and B14 are the symbols of 14 of Example 14) and the same manufacturing method as in Example 1 was used.
4, B14 was obtained. Using the same method as in Example 1, the surface roughness Ra, the adhesion strength, the wire bonding strength, the polishing time, and the various characteristics of the void were measured, and the results shown in Table 2 were obtained. However, since titanium (Ti) is easily oxidized, when firing at 500 ° C to 1900 ° C in a firing furnace,
It was processed in an argon gas or vacuum atmosphere.

【0029】[0029]

【実施例15】銀ジルコニウム(Ag−Zr)粉末ペー
ストA15と銀ジルコニウム(Ag−Zr)粉末ペース
トにガラスフリットを加えた銀ジルコニウム(Ag−Z
r)粉末ペーストB15(A15,B15は実施例15
の15の符号)を用い、実施例1と同様な製造方法でセ
ラミックス基板A15,B15を得た。実施例1と同様
な方法を用いて、表面粗さRa、密着強度、ワイヤボン
デング強度、研磨時間、ボイドの諸特性を測定した結
果、表2に示すような結果が得られた。
[Example 15] Silver zirconium (Ag-Zr) powder paste A15 and silver zirconium (Ag-Zr) powder paste to which a glass frit was added.
r) Powder paste B15 (A15 and B15 are used in Example 15)
(15 reference numeral) was used to obtain ceramic substrates A15 and B15 by the same manufacturing method as in Example 1. Using the same method as in Example 1, the surface roughness Ra, the adhesion strength, the wire bonding strength, the polishing time, and the various characteristics of the void were measured, and the results shown in Table 2 were obtained.

【0030】[0030]

【実施例16】金銅(Au−Cu)粉末ペーストA16
と金銅(Au−Cu)粉末ペーストにガラスフリットを
加えた金銅(Au−Cu)粉末ペーストB16(A1
6,B16は実施例16の16の符号)を用い、実施例
1と同様な製造方法でセラミックス基板A16,B16
を得た。実施例1と同様な方法を用いて、表面粗さR
a、密着強度、ワイヤボンデング強度、研磨時間、ボイ
ドの諸特性を測定した結果、表2に示すような結果が得
られた。
Example 16 Gold-copper (Au-Cu) powder paste A16
And gold-copper (Au-Cu) powder paste with glass frit added, gold-copper (Au-Cu) powder paste B16 (A1)
6, B16 are the reference numerals of 16 of Example 16), and the same manufacturing method as in Example 1 is used to produce the ceramic substrates A16, B16.
Got Using the same method as in Example 1, the surface roughness R
As a result of measuring a, adhesion strength, wire bonding strength, polishing time, and various characteristics of voids, the results shown in Table 2 were obtained.

【0031】[0031]

【実施例17】金ニッケル(Au−Ni)粉末ペースト
A17と金ニッケル(Au−Ni)粉末ペーストにガラ
スフリットを加えた金ニッケル(Au−Ni)粉末ペー
ストB17(A17,B17は実施例17の17の符
号)を用い、実施例1と同様な製造方法でセラミックス
基板A17,B17を得た。実施例1と同様な方法を用
いて、表面粗さRa、密着強度、ワイヤボンデング強
度、研磨時間、ボイドの諸特性を測定した結果、表2に
示すような結果が得られた。
EXAMPLE 17 Gold nickel (Au-Ni) powder paste A17 and gold nickel (Au-Ni) powder paste B17 (A17 and B17 are the same as those of Example 17). (Numeral 17) was used to obtain ceramic substrates A17 and B17 by the same manufacturing method as in Example 1. Using the same method as in Example 1, the surface roughness Ra, the adhesion strength, the wire bonding strength, the polishing time, and the various characteristics of the void were measured, and the results shown in Table 2 were obtained.

【0032】[0032]

【実施例18】金パラジウム(Au−Pd)粉末ペース
トA18と金パラジウム(Au−Pd)粉末ペーストに
ガラスフリットを加えた金パラジウム(Au−Pd)粉
末ペーストB18(A18,B18は実施例18の18
の符号)を用い、実施例1と同様な製造方法でセラミッ
クス基板A18,B18を得た。実施例1と同様な方法
を用いて、表面粗さRa、密着強度、ワイヤボンデング
強度、研磨時間、ボイドの諸特性を測定した結果、表2
に示すような結果が得られた。
Example 18 Gold palladium (Au-Pd) powder paste A18 and gold palladium (Au-Pd) powder paste B18 (A18 and B18 are the same as those of Example 18). 18
(Reference numeral) was used to obtain ceramic substrates A18 and B18 by the same manufacturing method as in Example 1. Using the same method as in Example 1, the surface roughness Ra, the adhesion strength, the wire bonding strength, the polishing time, and various characteristics of the void were measured, and the results are shown in Table 2.
The results shown in are obtained.

【0033】[0033]

【実施例19】ニッケルパラジウム(Ni−Pd)粉末
ペーストA19とニッケルパラジウム(Ni−Pd)粉
末ペーストにガラスフリットを加えたニッケルパラジウ
ム(Ni−Pd)粉末ペーストB19(A19,B19
は実施例19の19の符号)を用い、実施例1と同様な
製造方法でセラミックス基板A19,B19を得た。実
施例1と同様な方法を用いて、表面粗さRa、密着強
度、ワイヤボンデング強度、研磨時間、ボイドの諸特性
を測定した結果、表2に示すような結果が得られた。
Example 19 Nickel Palladium (Ni-Pd) Powder Paste A19 and Nickel Palladium (Ni-Pd) Powder Paste B19 (A19, B19)
Is the reference numeral 19 of Example 19), and ceramic substrates A19 and B19 were obtained by the same manufacturing method as in Example 1. Using the same method as in Example 1, the surface roughness Ra, the adhesion strength, the wire bonding strength, the polishing time, and the various characteristics of the void were measured, and the results shown in Table 2 were obtained.

【0034】[0034]

【実施例20】銀銅ニッケル(Ag−Cu−Ni)粉末
ペーストA20と銀銅ニッケル(Ag−Cu−Ni)粉
末ペーストにガラスフリットを加えた銀銅ニッケル(A
g−Cu−Ni)粉末ペーストB20(A20,B20
は実施例20の20の符号)を用い、実施例1と同様な
製造方法でセラミックス基板A20,B20を得た。実
施例1と同様な方法を用いて、表面粗さRa、密着強
度、ワイヤボンデング強度研磨時間、ボイドの諸特性を
測定した結果、表2に示すような結果が得られた。
Example 20 Silver-copper-nickel (Ag-Cu-Ni) powder paste A20 and silver-copper-nickel (Ag-Cu-Ni) powder paste with glass frit added thereto.
g-Cu-Ni) powder paste B20 (A20, B20)
Is the reference numeral 20 of Example 20) and ceramic substrates A20 and B20 were obtained by the same manufacturing method as in Example 1. Using the same method as in Example 1, the surface roughness Ra, the adhesion strength, the wire bonding strength polishing time, and various void characteristics were measured, and the results shown in Table 2 were obtained.

【0035】[0035]

【実施例21】銀銅パラジウム(Ag−Cu−Pd)粉
末ペーストA21と銀銅パラジウム(Ag−Cu−P
d)粉末ペーストにガラスフリットを加えた銀銅パラジ
ウム(Ag−Cu−Pd)粉末ペーストB21(A2
1,B21は実施例21の21の符号)を用い、実施例
1と同様な製造方法でセラミックス基板A21,B21
を得た。実施例1と同様な方法を用いて、表面粗さR
a、密着強度、ワイヤボンデング強度研磨時間、ボイド
の諸特性を測定した結果、表2に示すような結果が得ら
れた。
[Example 21] Silver copper palladium (Ag-Cu-Pd) powder paste A21 and silver copper palladium (Ag-Cu-P)
d) Silver copper palladium (Ag-Cu-Pd) powder paste B21 (A2) obtained by adding glass frit to the powder paste.
1, B21 are the reference numerals of 21 of Example 21), and the ceramic substrates A21 and B21 are manufactured by the same manufacturing method as in Example 1.
Got Using the same method as in Example 1, the surface roughness R
As a result of measuring a, adhesion strength, wire bonding strength polishing time, and various characteristics of voids, the results shown in Table 2 were obtained.

【0036】[0036]

【実施例22】銀銅チタン(Ag−Cu−Ti)粉末ペ
ーストA22と銀銅チタン(Ag−Cu−Ti)粉末ペ
ーストにガラスフリットを加えた銀銅チタン(Ag−C
u−Ti)粉末ペーストB22(A22,B22は実施
例22の22の符号)を用い、実施例1と同様な製造方
法でセラミックス基板A22,B22を得た。実施例1
と同様な方法を用いて、表面粗さRa、密着強度、ワイ
ヤボンデング強度研磨時間、ボイドの諸特性を測定した
結果、表2に示すような結果が得られた。但し、チタン
(Ti)は酸化しやすいので、焼成炉で500℃〜19
00℃で焼成する際は、アルゴンガス、又は真空雰囲気
で処理した。
[Example 22] Silver copper titanium (Ag-Cu-Ti) powder paste A22 and silver copper titanium (Ag-Cu-Ti) powder paste to which glass frit was added.
Using u-Ti) powder paste B22 (A22 and B22 are the symbols 22 of Example 22), ceramic substrates A22 and B22 were obtained by the same manufacturing method as in Example 1. Example 1
The surface roughness Ra, the adhesion strength, the wire bonding strength polishing time, and the various characteristics of the voids were measured by using the same method as described above, and the results shown in Table 2 were obtained. However, since titanium (Ti) is easily oxidized, 500 ° C to 19 ° C in a firing furnace.
When firing at 00 ° C., it was processed in an argon gas or vacuum atmosphere.

【0037】[0037]

【実施例23】金銅ニッケル(Au−Cu−Ni)粉末
ペーストA23と金銅ニッケル(Ag−Cu−Ni)粉
末ペーストにガラスフリットを加えた金銅ニッケル(A
g−Cu−Ni)粉末ペーストB23(A23,B23
は実施例23の23の符号)を用い、実施例1と同様な
製造方法でセラミックス基板A23,B23を得た。実
施例1と同様な方法を用いて、表面粗さRa、密着強
度、ワイヤボンデング強度研磨時間、ボイドの諸特性を
測定した結果、表3に示すような結果が得られた。
Example 23 Gold-copper nickel (Au-Cu-Ni) powder paste A23 and gold-copper nickel (Ag-Cu-Ni) powder paste with glass frit added thereto.
g-Cu-Ni) powder paste B23 (A23, B23
Is the same as the reference numeral 23 in Example 23), and ceramic substrates A23 and B23 were obtained by the same manufacturing method as in Example 1. Using the same method as in Example 1, the surface roughness Ra, the adhesion strength, the wire bonding strength polishing time, and various void characteristics were measured, and the results shown in Table 3 were obtained.

【0038】[0038]

【実施例24】金銅パラジウム(Au−Cu−Pd)粉
末ペーストA24と金銅パラジウム(Ag−Cu−P
d)粉末ペーストにガラスフリットを加えた金銅パラジ
ウム(Ag−Cu−Pd)粉末ペーストB24(A2
4,B24は実施例24の24の符号)を用い、実施例
1と同様な製造方法でセラミックス基板A24,B24
を得た。実施例1と同様な方法を用いて、表面粗さR
a、密着強度、ワイヤボンデング強度研磨時間、ボイド
の諸特性を測定した結果、表3に示すような結果が得ら
れた。
Example 24 Gold Copper Palladium (Au-Cu-Pd) Powder Paste A24 and Gold Copper Palladium (Ag-Cu-P)
d) Gold-copper-palladium (Ag-Cu-Pd) powder paste B24 (A2) obtained by adding glass frit to the powder paste.
4, B24 are the reference numerals of 24 of Example 24), and the ceramic substrates A24, B24 are manufactured by the same manufacturing method as in Example 1.
Got Using the same method as in Example 1, the surface roughness R
As a result of measuring a, adhesion strength, wire bonding strength polishing time, and various characteristics of voids, the results shown in Table 3 were obtained.

【0039】[0039]

【実施例25】金パラジウムニッケル(Au−Pd−N
i)粉末ペーストA25と金パラジウムニッケル(Au
−Pd−Ni)粉末ペーストにガラスフリットを加えた
金パラジウムニッケル(Au−Pd−Ni)粉末ペース
トB25(A25,B25は実施例25の25の符号)
を用い、実施例1と同様な製造方法でセラミックス基板
A25,B25を得た。実施例1と同様な方法を用い
て、表面粗さRa、密着強度、ワイヤボンデング強度研
磨時間、ボイドの諸特性を測定した結果、表3に示すよ
うな結果が得られた。
Example 25 Gold Palladium Nickel (Au-Pd-N
i) Powder paste A25 and gold palladium nickel (Au
Gold Palladium Nickel (Au-Pd-Ni) powder paste B25 (A25, B25 are the symbols of 25 of Example 25) obtained by adding glass frit to -Pd-Ni) powder paste.
Using, the ceramic substrates A25 and B25 were obtained by the same manufacturing method as in Example 1. Using the same method as in Example 1, the surface roughness Ra, the adhesion strength, the wire bonding strength polishing time, and various void characteristics were measured, and the results shown in Table 3 were obtained.

【0040】[0040]

【実施例26】銀銅ニッケルチタン(Ag−Cu−Ni
−Ti)粉末ペーストA26と銀銅ニッケルチタン(A
g−Cu−Ni−Ti)粉末ペーストにガラスフリット
を加えた銀銅ニッケルチタン(Ag−Cu−Ni−T
i)粉末ペーストB26(A26,B26は実施例26
の26の符号)を用い、実施例1と同様な製造方法でセ
ラミックス基板A26,B26を得た。実施例1と同様
な方法を用いて、表面粗さRa、密着強度、ワイヤボン
デング強度研磨時間、ボイドの諸特性を測定した結果、
表3に示すような結果が得られた。但し、チタン(T
i)は酸化しやすいので、焼成炉で500〜1900℃
で焼成する際は、アルゴンガス、又は真空雰囲気で処理
した。
Example 26 Silver copper nickel titanium (Ag-Cu-Ni
-Ti) powder paste A26 and silver copper nickel titanium (A
g-Cu-Ni-Ti) Powder paste with glass frit added to silver copper nickel titanium (Ag-Cu-Ni-T)
i) Powder paste B26 (A26 and B26 are used in Example 26)
26) were used to obtain ceramic substrates A26 and B26 by the same manufacturing method as in Example 1. Using the same method as in Example 1, the surface roughness Ra, the adhesion strength, the wire bonding strength polishing time, and the various characteristics of the void were measured.
The results shown in Table 3 were obtained. However, titanium (T
i) is easy to oxidize, so 500-1900 ° C in a firing furnace
In the case of firing in, the treatment was carried out in an argon gas or vacuum atmosphere.

【0041】[0041]

【実施例27】銀銅ニッケルパラジウム(Ag−Cu−
Ni−Pd)粉末ペーストA27と銀銅ニッケルパラジ
ウム(Ag−Cu−Ni−Pd)粉末ペーストにガラス
フリットを加えた銀銅ニッケルパラジウム(Ag−Cu
−Ni−Pd)粉末ペーストB27(A27,B27は
実施例27の27の符号)を用い、実施例1と同様な製
造方法でセラミックス基板A27,B27を得た。実施
例1と同様な方法を用いて、表面粗さRa、密着強度、
ワイヤボンデング強度研磨時間、ボイドの諸特性を測定
した結果、表3に示すような結果が得られた。
Example 27 Silver copper nickel palladium (Ag-Cu-
Ni-Pd) powder paste A27 and silver-copper nickel-palladium (Ag-Cu-Ni-Pd) powder paste with glass frit added to silver-copper nickel-palladium (Ag-Cu).
Using -Ni-Pd) powder paste B27 (A27 and B27 are the symbols 27 of Example 27), ceramic substrates A27 and B27 were obtained by the same manufacturing method as in Example 1. Using the same method as in Example 1, the surface roughness Ra, the adhesion strength,
As a result of measuring wire bonding strength polishing time and various characteristics of voids, the results shown in Table 3 were obtained.

【0042】[0042]

【実施例28】金銅ニッケルチタン(Au−Cu−Ni
−Ti)粉末ペーストA28と金銅ニッケルチタン(A
u−Cu−Ni−Ti)粉末ペーストにガラスフリット
を加えた金銅ニッケルチタン(Au−Cu−Ni−T
i)粉末ペーストB28(A28,B28は実施例28
の28の符号)を用い、実施例1と同様な製造方法でセ
ラミックス基板A28,B28を得た。実施例1と同様
な方法を用いて、表面粗さRa、密着強度、ワイヤボン
デング強度研磨時間、ボイドの諸特性を測定した結果表
3に示すような結果が得られた。但し、チタン(Ti)
は酸化しやすいので、焼成炉で500℃〜1900℃で
焼成する際は、アルゴンガス、又は真空雰囲気で処理し
た。
Example 28 Gold Copper Nickel Titanium (Au-Cu-Ni
-Ti) powder paste A28 and gold copper nickel titanium (A
u-Cu-Ni-Ti) powder paste with glass frit added to gold copper nickel titanium (Au-Cu-Ni-T)
i) Powder paste B28 (A28 and B28 are used in Example 28)
28) was used to obtain ceramic substrates A28 and B28 by the same manufacturing method as in Example 1. Using the same method as in Example 1, the surface roughness Ra, the adhesion strength, the wire bonding strength polishing time, and various characteristics of the void were measured. The results shown in Table 3 were obtained. However, titanium (Ti)
Is easily oxidized, so when firing in a firing furnace at 500 ° C. to 1900 ° C., it was treated in an argon gas or vacuum atmosphere.

【0043】[0043]

【実施例29】銀銅ニッケルチタンパラジウム(Ag−
Cu−Ni−Ti−Pd)粉末ペーストA29と銀銅ニ
ッケルチタンパラジウム(Ag−Cu−Ni−Ti−P
d)粉末ペーストにガラスフリットを加えた銀銅ニッケ
ルチタンパラジウム(Ag−Cu−Ni−Ti−Pd)
粉末ペーストB29(A29,B29は実施例29の2
9の符号)を用い、実施例1と同様な製造方法でセラミ
ックス基板A29,B29を得た。実施例1と同様な方
法を用いて、表面粗さRa、密着強度、ワイヤボンデン
グ強度研磨時間、ボイドの諸特性を測定した結果、表3
に示すような結果が得られた。但し、チタン(Ti)は
酸化しやすいので、焼成炉で500〜1900℃で焼成
する際は、アルゴンガス、又は真空雰囲気で処理した。
[Example 29] Silver copper nickel titanium palladium (Ag-
Cu-Ni-Ti-Pd) powder paste A29 and silver copper nickel titanium palladium (Ag-Cu-Ni-Ti-P)
d) Silver copper nickel titanium palladium (Ag-Cu-Ni-Ti-Pd) obtained by adding glass frit to the powder paste.
Powder paste B29 (A29 and B29 are 2 of Example 29)
9) was used to obtain ceramic substrates A29 and B29 by the same manufacturing method as in Example 1. Using the same method as in Example 1, the surface roughness Ra, the adhesion strength, the wire bonding strength polishing time, and various characteristics of the voids were measured.
The results shown in are obtained. However, since titanium (Ti) is easily oxidized, it was treated with argon gas or a vacuum atmosphere when firing at 500 to 1900 ° C. in a firing furnace.

【0044】[0044]

【実施例30】金銅ニッケル銀パラジウム(Au−Cu
−Ni−Ag−Pd)粉末ペーストA30と金銅ニッケ
ル銀パラジウム(Au−Cu−Ni−Ag−Pd)粉末
ペーストにガラスフリットを加えた金銅ニッケル銀パラ
ジウム(Au−Cu−Ni−Ag−Pd)粉末ペースト
B30(A30,B30は実施例30の30の符号)を
用い、実施例1と同様な製造方法でセラミックス基板A
30,B30を得た。実施例1と同様な方法を用いて、
表面粗さRa、密着強度、ワイヤボンデング強度研磨時
間、ボイドの諸特性を測定した結果、表3に示すような
結果が得られた。
Example 30 Gold Copper Nickel Silver Palladium (Au-Cu
-Ni-Ag-Pd) powder paste A30 and gold-copper-nickel-silver-palladium (Au-Cu-Ni-Ag-Pd) powder paste to which a glass frit was added, and gold-copper-nickel-silver-palladium (Au-Cu-Ni-Ag-Pd) powder. Using paste B30 (A30 and B30 are the symbols of 30 of Example 30) and the same manufacturing method as in Example 1, the ceramic substrate A
30 and B30 were obtained. Using the same method as in Example 1,
As a result of measuring the surface roughness Ra, the adhesion strength, the wire bonding strength polishing time, and various characteristics of the void, the results shown in Table 3 were obtained.

【0045】比較例1は従来の技術のところで述べた
が、金属粉末ペーストを使用していないので、窒化アル
ミニウム基板を実施例1と同様に研磨し、表面粗さRa
と研磨所要時間とボイドを測定した結果、表面粗さRa
は1.3〜1.5μmで、研磨所要時間は8時間であ
り、Raを0.3〜0.4μm以下にするためには、2
4時間程度研磨所要時間がかかる。表面粗さRaが1.
3〜1.5μmでボイドをみると、300μmであり、
表3に示す結果になった。
Although Comparative Example 1 was described in the prior art, since the metal powder paste was not used, the aluminum nitride substrate was polished in the same manner as in Example 1 to obtain the surface roughness Ra.
As a result of measuring the polishing time and the void, the surface roughness Ra
Is 1.3 to 1.5 μm, the polishing time is 8 hours, and in order to reduce Ra to 0.3 to 0.4 μm, 2 is required.
It takes about 4 hours for polishing. The surface roughness Ra is 1.
When you see a void at 3 to 1.5 μm, it is 300 μm,
The results shown in Table 3 were obtained.

【0046】比較例2は、窒化アルミニウム基板にチタ
ン(Ti)、白金(Pt)、金(Au)のスパッタリン
グを施して、実施例1と同様な方法により表面粗さRa
とダイシアー強度の密着強度、ワイヤボンデングの強
度、研磨時間、ボイドの諸特性をみたが、表3のように
なり、殆ど比較例1と比較して改善されていない。
In Comparative Example 2, titanium (Ti), platinum (Pt), and gold (Au) were sputtered on an aluminum nitride substrate, and the surface roughness Ra was increased by the same method as in Example 1.
The adhesive strength such as the die shear strength, the strength of wire bonding, the polishing time, and the various characteristics of the void were examined, and the results are as shown in Table 3, which is hardly improved compared with Comparative Example 1.

【0047】[0047]

【発明の効果】この結果、本発明により作製した窒化ア
ルミニウム基板では、ボイドが70μm以下に改善さ
れ、基板の表面の平滑化が容易になり、半田の濡れ性が
改善され、半導体素子の表面実装にあたって熱抵抗特性
の改善に効果がある。又窒化アルミニウムの研磨中の脱
粒が生じやすく、研磨面の平滑化が難しい。このような
セラミックス基板では、金属粉末ペーストのコーテング
により、平滑面を容易に得ることができる。従来8時間
以上も要していた鏡面研磨に、1時間以内の短時間で研
磨できることが可能となって、表面粗さRaが0.3μ
m以下、ボイドが70μm以下、研磨時間が1時間以下
の低コストで、凹部のない鏡面研磨のセラミックス基板
とその製造方法を提供できた。
As a result, in the aluminum nitride substrate manufactured according to the present invention, the void is improved to 70 μm or less, the surface of the substrate is easily smoothed, the wettability of the solder is improved, and the surface mounting of the semiconductor element is improved. This is effective in improving the heat resistance characteristics. Further, the aluminum nitride is likely to be shed during polishing, and it is difficult to smooth the polished surface. In such a ceramic substrate, a smooth surface can be easily obtained by coating the metal powder paste. It becomes possible to polish in a short time of less than 1 hour, which is required for mirror polishing which has conventionally required 8 hours or more, and the surface roughness Ra is 0.3 μm.
It was possible to provide a low-cost mirror-finished ceramics substrate with no recesses and a method for producing the same, with a m or less, a void of 70 μm or less and a polishing time of 1 hour or less.

【図面の簡単な説明】[Brief description of drawings]

【図1】セラミックス基板の凹部に金属粉末ペーストを
充填して、焼成し研磨したセラミックス基板の断面図。
FIG. 1 is a cross-sectional view of a ceramics substrate obtained by filling a concave portion of the ceramics substrate with a metal powder paste, firing and polishing.

【符号の説明】[Explanation of symbols]

1 セラミックス基板 2 金属粉末ペースト 3 凹部 1 ceramics substrate 2 metal powder paste 3 recess

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 セラミックス基板の製造方法において、
セラミックス基板の表面に存在する凹部に、Ag,C
u,Au,Pt,Rd,Ti,Zr,Niの1種又は1
種以上を含む金属粉末ペーストを充填して、その後焼成
焼付けし、数μm以下の粒子のダイヤモンドの溶液を噴
射して研磨し、平滑度Raが0.4μm以下の平滑面を
得ることを特徴とするセラミックス基板の製造方法。
1. A method of manufacturing a ceramic substrate, comprising:
Ag, C are formed in the recesses on the surface of the ceramic substrate.
u, Au, Pt, Rd, Ti, Zr, Ni, 1 or 1
Characterized in that it is filled with a metal powder paste containing at least one kind and then baked and baked, and a diamond solution of particles of several μm or less is sprayed and polished to obtain a smooth surface having a smoothness Ra of 0.4 μm or less. Of manufacturing a ceramic substrate.
【請求項2】 請求項1記載のセラミックス基板におい
て、請求項1記載のセラミックス基板の製造方法によっ
て製造されたことを特徴とするセラミックス基板。
2. A ceramic substrate according to claim 1, which is manufactured by the method for manufacturing a ceramic substrate according to claim 1.
【請求項3】 請求項1記載のAg,Cu,Au,P
t,Rd,Ti,Zr,Niの1種又は1種以上を含む
金属粉末ペーストにガラスフリットを加え、前記金属ペ
ーストを充填し、その後焼成焼付けし、数μm以下の粒
子のダイヤモンドの溶液を噴射して研磨し、平滑度Ra
が0.4μm以下の平滑面を得ることを特徴とするセラ
ミックス基板の製造方法。
3. Ag, Cu, Au, P according to claim 1.
Glass frit is added to a metal powder paste containing one or more of t, Rd, Ti, Zr, and Ni, the metal paste is filled, then baked and baked, and a diamond solution of particles of several μm or less is sprayed. Then polished to a smoothness Ra
Of 0.4 μm or less is obtained, a method for producing a ceramic substrate.
【請求項4】 請求項3記載のセラミックス基板におい
て、請求項3記載のセラミックス基板の製造方法によっ
て製造されたことを特徴とするセラミックス基板。
4. A ceramic substrate according to claim 3, which is manufactured by the method for manufacturing a ceramic substrate according to claim 3.
JP33780491A 1991-11-26 1991-11-26 Ceramic substrate and its production Pending JPH05148067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33780491A JPH05148067A (en) 1991-11-26 1991-11-26 Ceramic substrate and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33780491A JPH05148067A (en) 1991-11-26 1991-11-26 Ceramic substrate and its production

Publications (1)

Publication Number Publication Date
JPH05148067A true JPH05148067A (en) 1993-06-15

Family

ID=18312129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33780491A Pending JPH05148067A (en) 1991-11-26 1991-11-26 Ceramic substrate and its production

Country Status (1)

Country Link
JP (1) JPH05148067A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1300064C (en) * 2004-09-30 2007-02-14 太原理工大学 Surface alloying ceramic and its preparing process
CN100434218C (en) * 2004-09-30 2008-11-19 太原理工大学 Application method of surface alloying ceramic
US20160068448A1 (en) * 2013-04-27 2016-03-10 Byd Company Limited Metal-ceramic composite and method of preparing the same
CN105522137A (en) * 2014-10-24 2016-04-27 比亚迪股份有限公司 Metal ceramic composite and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1300064C (en) * 2004-09-30 2007-02-14 太原理工大学 Surface alloying ceramic and its preparing process
CN100434218C (en) * 2004-09-30 2008-11-19 太原理工大学 Application method of surface alloying ceramic
US20160068448A1 (en) * 2013-04-27 2016-03-10 Byd Company Limited Metal-ceramic composite and method of preparing the same
CN105522137A (en) * 2014-10-24 2016-04-27 比亚迪股份有限公司 Metal ceramic composite and preparation method thereof
CN105522137B (en) * 2014-10-24 2018-09-11 比亚迪股份有限公司 A kind of cermet complex and preparation method thereof
US10940532B2 (en) 2014-10-24 2021-03-09 Byd Company Limited Metal-ceramic composite structure and fabrication method thereof

Similar Documents

Publication Publication Date Title
US20060063024A1 (en) Metallized substrate
JP3336741B2 (en) Metal thin film laminated ceramic substrate
JPH05148067A (en) Ceramic substrate and its production
JPH0957487A (en) Brazing filler metal
EP3588035A1 (en) A wire bonding arrangement and method of manufacturing a wire bonding arrangement
JPS59232692A (en) Brazing filler metal for joining ceramics and metal or the like and composite body composed of ceramics and metal or the like using said brazing filler metal
JPH09246694A (en) Circuit board having conductive thick film and manufacture thereof
JPH05319946A (en) Ceramic substrate joined to metallic plate
JP3186750B2 (en) Ceramic plate for semiconductor manufacturing and inspection equipment
JP3387655B2 (en) Joining method of ceramics and silicon
JPH08204302A (en) Glazed substrate
JP2541823B2 (en) Ceramic wiring board
JPH04300259A (en) Joining member and joining
JPH06169150A (en) Ceramic wiring board and manufacture thereof
JP2986117B2 (en) Manufacturing method of semiconductor device storage package
JPS63242985A (en) Aluminum nitride substrate
JPH0727803B2 (en) Electrode treatment method for laminated chip varistor
JPS62291154A (en) Ceramic circuit substrate
JP3752755B2 (en) Manufacturing method of ceramic circuit board
JP3335751B2 (en) Metallizing method for alumina substrate
JPS62291153A (en) Ceramic circuit substrate
JPS6378591A (en) Ceramic wiring board
JPH02101131A (en) Metallizing composition on the surface of ceramics and metallizing method
JPS5936948A (en) Ceramic substrate
JP4953112B2 (en) Bonding structure of conductive ceramic and electrode terminal and manufacturing method thereof