JP3752755B2 - Manufacturing method of ceramic circuit board - Google Patents

Manufacturing method of ceramic circuit board Download PDF

Info

Publication number
JP3752755B2
JP3752755B2 JP31877796A JP31877796A JP3752755B2 JP 3752755 B2 JP3752755 B2 JP 3752755B2 JP 31877796 A JP31877796 A JP 31877796A JP 31877796 A JP31877796 A JP 31877796A JP 3752755 B2 JP3752755 B2 JP 3752755B2
Authority
JP
Japan
Prior art keywords
glass layer
protective glass
firing
conductor circuit
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31877796A
Other languages
Japanese (ja)
Other versions
JPH09283890A (en
Inventor
芳彦 白石
明広 小林
太志 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP31877796A priority Critical patent/JP3752755B2/en
Publication of JPH09283890A publication Critical patent/JPH09283890A/en
Application granted granted Critical
Publication of JP3752755B2 publication Critical patent/JP3752755B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

【0001】
【技術分野】
本発明は,セラミック回路基板の製造方法に関し,特に,セラミック基板上の導体回路の表面に保護ガラス層を形成する方法に関する。
【0002】
【従来技術】
従来,セラミック回路基板としては,図6に示すごとく,セラミック基板91の上に導体回路92を設け,該導体回路92の表面を保護ガラス層93により被覆してなるものがある。保護ガラス層93は,導体回路92の表面保護,及び隣接する導体回路92間の電気絶縁性を確保し,また半田ダムとしての役割を果たし,セラミック回路基板9において必要不可欠である。
【0003】
上記セラミック回路基板9の製造方法としては,例えば,セラミック基板91の上に,金属922及びガラス921を主成分とする導体材料を印刷し,焼成することにより,導体回路92を形成する。次に,導体回路92の表面に保護ガラスを印刷して保護ガラス層93を形成する。
【0004】
次いで,保護ガラス層93を焼成する。この焼成の際,導体回路92の中のガラス921と保護ガラス層93との間に化学結合が形成される。更に,導体回路92の表面は,比較的ポーラスであり,多数の気孔920が観察される。
そのため,気孔920の内部には保護ガラス層93のガラス931が侵入することによって,ガラス931のアンカー効果が働き,導体回路92と保護ガラス層93との間に,機械的結合が得られる。それ故,保護ガラス層は導体回路に対して高い密着力を有する。
【0005】
【解決しようとする課題】
しかしながら,上記従来のセラミック回路基板の製造方法においては,導体回路92はガラス921を含有するため,導体抵抗が高く,また,導体回路の半田付着性が低い。それ故,保護ガラス層より露出した導体回路92に,ボンディングワイヤーを接合した場合に,ボンディングワイヤーの接合強度が低い。
【0006】
そこで,図7に示すごとく,導体回路929を金属めっきにより形成することが考えられる。金属めっきにより形成された導体回路929は,ガラスを含まない純金属であり,平滑である。そのため,導体回路は,導体抵抗が低く,また半田付着性に優れている。
【0007】
しかし,金属めっきにより形成した導体回路は,上記のようにガラスを含まない純金属で,かつ平滑であるため,半田付着性が良好であるにもかかわらず,その平滑表面に保護ガラス層を形成すると,保護ガラス層の密着力が非常に弱くなる。それ故,保護ガラス層に熱ストレスを与えると,保護ガラス層が導体回路から容易に剥離してしまうという問題がある。
【0008】
本発明はかかる従来の問題点に鑑み,導体抵抗が低く,かつ半田付着性が高い導体回路を有し,かつ導体回路と保護ガラス層との間の密着強度が高いセラミック回路基板の製造方法を提供しようとするものである。
【0009】
【課題の解決手段】
請求項1に記載の発明は,セラミック基板上に,金属よりなる導体回路を形成し,次いで,該導体回路の表面に結晶化ガラスからなる保護ガラス層を形成し,該保護ガラス層を焼成するセラミック回路基板の製造方法であって,
上記保護ガラス層の焼成は,結晶化ガラスの軟化点よりも50℃低い温度以上で且つ結晶化ガラスの結晶化点未満の範囲内の温度において,上記保護ガラス層を焼成する第1焼成工程を行い,
その後,上記結晶化ガラス結晶化させるに必要な温度の範囲内において,上記保護ガラス層を焼成する第2焼成工程を行うことを特徴とするセラミック回路基板の製造方法である。
【0010】
本発明において最も注目すべきことは,保護ガラス層の焼成の際に,一旦,第1焼成工程において,結晶化ガラスの軟化点よりも50℃低い温度以上で且つ結晶化点未満の範囲内の温度で保護ガラス層を焼成することにより保護ガラス層の結晶化ガラスを溶融させ,その後第2焼成工程において,結晶化させるに必要な温度で焼成することにより保護ガラス層を結晶化させることにある。
【0011】
本発明は,結晶化ガラスの軟化点及び結晶化点に着目したものである。即ち,まず,第1焼成工程において,結晶化ガラスよりなる保護ガラス層の焼成を,結晶化ガラスの軟化点よりも50℃低い温度以上で且つ結晶化点未満で保持する。これにより,結晶化ガラスが溶融して,導体成分と結晶化ガラス成分との相互拡散が進行する。
次いで,第2焼成工程において,結晶化ガラスを結晶化させるために必要な温度で保護ガラス層を焼成して,保護ガラス層を結晶化させる。これによって,保護ガラス層と導体回路との間の密着強度を高めるとともに保護ガラス層の電気的特性の確保ができる。
【0012】
本発明は,上記の着眼点を具体化したものである。以下,本発明について,詳細に説明する。
まず,第1焼成工程において,保護ガラス層の焼成温度は,結晶化ガラスの軟化点よりも50℃低い温度以上で且つ結晶化ガラスの結晶化点未満である。かかる焼成温度で保護ガラス層を焼成すると,図1に示すごとく,保護ガラス層1の中の結晶化ガラス成分11が溶融し,結晶化ガラス成分11と導体回路2の導体成分21とが相互拡散し,保護ガラス層1と導体回路2との界面22で拡散層3が生成する。
【0013】
第1焼成工程において,焼成温度が上記軟化点よりも50℃低い温度未満の場合には,結晶化ガラスの溶融が不十分となり,結晶化ガラスの流動性が悪く,導体回路との濡れが悪くなるため,保護ガラス層の導体回路への密着力が低下する。一方,焼成温度が上記結晶化点以上の場合には,結晶化ガラスが結晶化し,結晶化ガラスの流動性が悪くなり,導体回路との濡れが悪くなるため,保護ガラス層の密着力が低下する。
【0014】
次に,第2焼成工程において,保護ガラス層の焼成温度は,結晶化ガラスを結晶化させるのに必要な温度の範囲内である。かかる焼成温度で保護ガラス層を焼成すると,保護ガラス層の中の結晶化ガラス成分は,結晶化し,これによって,保護ガラス層の電気的特性の確保をする。
【0015】
以上のように,本発明によれば,導体抵抗が低く,かつ半田付着性が高い導体回路を有し,かつ導体回路と保護ガラス層との間のセラミック回路基板の製造方法を提供することができる。
尚,上記軟化点及び結晶化点は,結晶化ガラスの種類により異なる。
【0016】
次に,請求項2に記載のように,第1焼成工程における焼成時間は,10分間以上であることが好ましい。焼成時間は長い程保護ガラス層の密着力が高くなる。10分間未満の場合には,結晶化ガラスの溶融が不十分となり,また結晶化ガラス成分と導体成分との相互拡散が不十分となって,導体回路の金属粒の界面にまで結晶化ガラスが侵入せず,導体回路に対する保護ガラス層の密着力が低下するおそれがある。但し,焼成時間を長くする程,セラミック回路基板の生産性は悪くなるので,強度を確保できる最短時間とすることが好ましい。
【0017】
上記第1焼成工程及び第2焼成工程は,別個におこなってもよい。例えば,導体回路の表面に保護ガラス層を形成したセラミック基板を,第1焼成工程を行なう加熱炉内,次いで,第2焼成工程を行なう加熱炉内に,順に通過させる。
また,第1焼成工程を行った後に続いて昇温させて第2焼成工程の焼成温度となし,第2焼成工程を行ってもよい。例えば,上記セラミック基板を加熱炉の中に載置し,第1焼成工程を行なった後,同一の加熱炉において温度調整を行い連続的に第2焼成工程を行なう。
【0018】
次に,保護ガラス層に用いる結晶化ガラスは,結晶化するガラスであればどのガラス系でも本発明を用い強度の向上が得られるが,請求項3に記載のようにホウケイ酸鉛系の結晶化ガラスであることが好ましい。これにより,導体回路の表面保護及び隣接する導体間の電気絶縁性確保,また,保護ガラス層に半田ダムの役割を与え,更には,良好な抵抗体の保護膜特性を得ることができる。
【0019】
次に,請求項4に記載のように,上記セラミック基板上への導体回路の形成は,金属めっき処理により行うことが好ましい。金属めっき処理によれば,純金属により導体回路を形成することができる。
そのため,金属めっき処理により形成した導体回路は,導体抵抗が低く,電気的特性に優れている。また,めっき表面が表面粗さ(Ra)が2μm以下と非常に平滑で且つ緻密である。それ故,導体回路表面の半田付着性が高く,ボンディングワイヤーの接合強度が高い。
【0020】
また,導体回路と保護ガラス層との界面は,上記第1焼成工程において軟化点よりも50℃低い温度以上でかつ結晶化点未満の温度で焼成することにより,保護ガラス層の結晶化ガラス成分が導体回路へ,また,導体回路の導体成分が保護ガラス層へ相互に拡散し,拡散層を生成する。その後,第2焼成工程において結晶化させるに必要な温度で焼成することにより,保護ガラス層の中の結晶化ガラス成分を結晶化させる。これにより,導体回路に対する保護ガラス層の高い密着強度を発現するとともに,保護ガラス層の電気的特性の確保をすることができる。
【0021】
次に,請求項5に記載のように,上記導体回路は,W(タングステン),又はMo(モリブデン)を主成分とする金属上に金属めっき処理により形成すると,本発明の効果が非常に大きいものとなる。
また,これにより,導体回路の導体特性が高くなる。上記導体回路形成のための金属めっき処理は,電気めっき又は無電解めっき等のいずれによっても行うことができる。また,上記導体回路は,Cu(銅),Ni(ニッケル),Au(金)を用いることもできる。
また,めっき処理から形成する導体回路は,金属めっき処理だけから形成することができるが,印刷し,又は導体箔をエッチングして形成した導体パターンの表面に金属めっき処理を行うことによっても形成することもできる。
【0022】
次に,上記セラミック基板は,第2焼成工程における焼成温度で変形,変質しないものであればよい。かかるセラミック基板としては,例えば,請求項6に記載のように,アルミナを用いる。また,窒化アルミナ(AlN),ガラス系の基板でもよい。
【0023】
【発明の実施の形態】
実施形態例1
本発明の実施形態例に係るセラミック回路基板の製造方法について,図2を用いて説明する。
本例は,セラミック基板上に,金属よりなる導体回路を形成し,次いで,該導体回路の表面に結晶化ガラスからなる保護ガラス層を形成し,焼成するセラミック回路基板の製造方法である。以下,これを詳細に説明する。
【0024】
まず,図2に示すごとく,セラミック基板5の表面に,Wよりなる導体パターン27をスクリーン印刷により形成した。セラミック基板5は,96重量%のアルミナと4重量%の無機焼結助剤とからなる。次いで,セラミック基板5と導体パターン27とを,還元雰囲気において1580℃で同時焼成した。
【0025】
次いで,導体パターン27の表面に,無電解めっき法により,厚み7μmの銅めっき26を析出させた。次いで,加熱炉にて,還元雰囲気,最高温度900℃の条件において60分間加熱して,銅めっき26のアニールをした。このときの銅めっき26の表面粗さ(Ra)は1μmであった。これにより,導体パターン27と,導体パターン27を被覆する銅めっき26とからなる導体回路2を形成した。
【0026】
次に,銅めっき26を覆うように結晶化ガラスをスクリーン印刷し,乾燥,焼成をして,保護ガラス層1を形成した。結晶化ガラスはホウケイ酸鉛結晶化ガラスであり,その軟化点は約550℃であり,結晶化点は約655℃である。
次に,保護ガラス層1の焼成を2回行った。まず第1焼成工程においては,保護ガラス層1を,550〜600℃,20分間焼成した。これにより,銅めっき成分と保護ガラス層との相互拡散を進行させた。次いで,第2焼成工程において,保護ガラス層1を,655〜665℃,5分間焼成した。これにより,結晶化ガラス成分を結晶化させて,上記セラミック回路基板7を得た。
【0027】
次に,保護ガラス層の密着強度をピール法により測定した。具体的な測定方法は,銅めっき表面に形成した保護ガラス層に,耐熱テープを張りつけた。耐熱テープの中央部を切り出して,大きさ2mm×2mmの窓を形成した。次いで,耐熱テープの窓から保護ガラス層の表面に接着剤を塗布し,六角ナットを接着して,150℃,10分間乾燥した。その後,六角ナットにU字形のワイヤを通し,そのワイヤを上方に引き上げた。このときの引き上げ力を測定した。そして,引き上げ力が大きいほど保護ガラス層の密着力が増加することから,この引き上げ力を,銅めっき26と保護ガラス層1との間の密着強度とした。
測定の結果,保護ガラス層と導体回路との間の密着強度は,10kgf/2mm□(一辺が2mmの四角形当たり)以上と高かった。
【0028】
実施形態例2
本例においては,第1,第2焼成工程における焼成温度の変化が,保護ガラス層と導体回路との間の密着強度の関係に与える影響について測定した。
測定に当たり,表1に示すごとく,第1焼成工程における焼成温度は400〜675℃の間で,また第2焼成工程における焼成温度は655〜675℃の間で種々に変化させた。このとき,第1焼成工程における焼成温度は,第2焼成工程における焼成温度よりも低くなるように設定した。
第1焼成工程における焼成時間は20分間,第2焼成工程における焼成時間は5分間とした。
【0029】
保護ガラス層と導体回路との間の密着強度の測定は,上記実施形態例1と同様の測定方法により行った。
測定の結果,表1,図3に示すごとく,密着強度が10kgf/2mm□以上と高い値を示した。即ち,(第1焼成工程,第2焼成工程)=(550℃,655℃),(550℃,665℃),(600℃,655℃),(600℃,665℃),(600℃,675℃)の温度条件の場合に,優れた密着強度が得られた。
【0030】
これらの温度条件の場合に保護ガラス層が優れた密着強度を発揮したのは,図1に示すごとく,第1焼成工程において,保護ガラス層1の結晶化ガラス成分11が導体回路2へ,また,導体回路2の導体成分21が保護ガラス層1へ相互に拡散して拡散層3を生成することにより,保護ガラス層1と導体回路2とが拡散層3を介して相互拡散接合したためである。
【0031】
【表1】

Figure 0003752755
【0032】
実施形態例3
本例においては,図4に示すごとく,第1焼成工程と第2焼成工程とを連続的に行った。
即ち,まず,加熱炉の中に,導体回路の表面に保護ガラス層を形成したセラミック基板を載置した。次いで,以下の第1,第2焼成工程を行なった。
即ち,第1焼成工程において,600℃において保護ガラス層を焼成した。これにより,結晶化ガラスを溶融させた状態において,導体成分と結晶化ガラス成分との相互拡散を進行させた。
【0033】
続いて,加熱炉の温度を連続的に昇温して,665℃とし,この温度で第2焼成工程を行い,保護ガラス層を焼成した。これにより,結晶化ガラスを結晶化させた。
その他は,実施形態例1と同様である。
本例のセラミック回路基板について,保護ガラス層の密着強度を測定したところ,実施形態例1と同様に10kgf/2mm□以上と高い値を示した。
【0034】
実施形態例4
本例においては,第1焼成工程の焼成時間と保護ガラス層の密着強度との関係について測定した。
測定に際し,第1焼成工程の焼成温度は600℃とし,焼成時間を種々に変化させた。また,第2焼成工程の焼成温度は675℃とし,焼成時間は5分間とした。その他は,実施形態例1と同様の条件でセラミック回路基板を製造した。
得られたセラミック回路基板について,保護ガラス層の密着強度を測定し,その結果を図5に示した。
【0035】
その結果,第1焼成工程において,焼成時間が1分間の場合には,1.5kgf/2mm□程度であった。1〜10分と長くなるに連れて保護ガラス層の密着強度が高くなった。10分間以上になると,密着強度は10kgf/2mm□以上と,高い値を維持した。このことから,第1焼成工程においては,10分間以上焼成することにより,高い密着強度が得られることがわかる。
【0036】
【発明の効果】
本発明によれば,導体抵抗が低く,かつ半田付着性が高い導体回路を有し,かつ導体回路と保護ガラス層との間の密着強度が高いセラミック回路基板の製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明における,導体回路と保護ガラス層との界面における,結晶化ガラス成分と導体成分との相互の拡散を示す説明図。
【図2】実施形態例1における,セラミック回路基板の断面図。
【図3】実施形態例2における,導体回路に対する保護ガラス層の密着強度を示す図。
【図4】実施形態例3における,保護ガラス層の焼成方法を示す説明図。
【図5】実施形態例4における,第1焼成工程の焼成時間と,導体回路に対する保護ガラス層の密着強度との関係を示す図。
【図6】従来例における,印刷法により導体回路を形成したセラミック回路基板の断面図。
【図7】従来例における,めっき法により導体回路を形成したセラミック回路基板の断面図。
【符号の説明】
1...保護ガラス層,
11...結晶化ガラス成分,
2...導体回路,
21...導体成分,
22...界面,
26...銅めっき,
27...導体パターン,
3...拡散層.
5...セラミック基板,
7...セラミック回路基板,[0001]
【Technical field】
The present invention relates to a method for manufacturing a ceramic circuit board, and more particularly to a method for forming a protective glass layer on the surface of a conductor circuit on a ceramic substrate.
[0002]
[Prior art]
Conventionally, as shown in FIG. 6, there is a ceramic circuit board in which a conductor circuit 92 is provided on a ceramic substrate 91 and the surface of the conductor circuit 92 is covered with a protective glass layer 93. The protective glass layer 93 ensures the surface protection of the conductor circuit 92 and the electrical insulation between the adjacent conductor circuits 92, and also serves as a solder dam, and is essential for the ceramic circuit board 9.
[0003]
As a method for manufacturing the ceramic circuit board 9, for example, a conductor material mainly composed of a metal 922 and glass 921 is printed on the ceramic substrate 91 and fired to form the conductor circuit 92. Next, a protective glass layer 93 is formed by printing protective glass on the surface of the conductor circuit 92.
[0004]
Next, the protective glass layer 93 is fired. During the firing, a chemical bond is formed between the glass 921 and the protective glass layer 93 in the conductor circuit 92. Furthermore, the surface of the conductor circuit 92 is relatively porous, and a large number of pores 920 are observed.
Therefore, when the glass 931 of the protective glass layer 93 penetrates into the pores 920, the anchor effect of the glass 931 works, and mechanical coupling is obtained between the conductor circuit 92 and the protective glass layer 93. Therefore, the protective glass layer has a high adhesion to the conductor circuit.
[0005]
[Problems to be solved]
However, in the above-described conventional method of manufacturing a ceramic circuit board, the conductor circuit 92 contains the glass 921, so that the conductor resistance is high and the solder adhesion of the conductor circuit is low. Therefore, when the bonding wire is bonded to the conductor circuit 92 exposed from the protective glass layer, the bonding strength of the bonding wire is low.
[0006]
Therefore, as shown in FIG. 7, it is conceivable to form the conductor circuit 929 by metal plating. The conductor circuit 929 formed by metal plating is a pure metal containing no glass and is smooth. Therefore, the conductor circuit has a low conductor resistance and excellent solder adhesion.
[0007]
However, since the conductor circuit formed by metal plating is pure metal that does not contain glass as described above and is smooth, a protective glass layer is formed on the smooth surface despite good solder adhesion. Then, the adhesion of the protective glass layer becomes very weak. Therefore, when heat stress is applied to the protective glass layer, there is a problem that the protective glass layer easily peels from the conductor circuit.
[0008]
In view of the conventional problems, the present invention provides a method for producing a ceramic circuit board having a conductor circuit with low conductor resistance and high solder adhesion and high adhesion strength between the conductor circuit and the protective glass layer. It is something to be offered.
[0009]
[Means for solving problems]
The invention according to claim 1 forms a conductive circuit made of metal on a ceramic substrate, then forms a protective glass layer made of crystallized glass on the surface of the conductive circuit, and fires the protective glass layer A method for manufacturing a ceramic circuit board, comprising:
Firing the protective glass layer includes a first firing step of firing the protective glass layer at a temperature that is 50 ° C. lower than the softening point of the crystallized glass and less than the crystallizing point of the crystallized glass. Done,
Thereafter, a second firing step of firing the protective glass layer is performed within a temperature range necessary for crystallizing the crystallized glass.
[0010]
What is most remarkable in the present invention is that, when the protective glass layer is fired, once in the first firing step, the temperature is 50 ° C. lower than the softening point of the crystallized glass and within the range below the crystallization point. The protective glass layer is fired at a temperature to melt the crystallized glass of the protective glass layer, and then the protective glass layer is crystallized by firing at a temperature necessary for crystallization in the second firing step. .
[0011]
The present invention focuses on the softening point and crystallization point of crystallized glass. That is, first, in the first firing step, firing of the protective glass layer made of crystallized glass is maintained at a temperature of 50 ° C. lower than the softening point of the crystallized glass and below the crystallisation point. As a result, the crystallized glass is melted and the mutual diffusion of the conductor component and the crystallized glass component proceeds.
Next, in the second firing step, the protective glass layer is fired at a temperature necessary for crystallizing the crystallized glass to crystallize the protective glass layer. As a result, the adhesion strength between the protective glass layer and the conductor circuit can be increased and the electrical characteristics of the protective glass layer can be ensured.
[0012]
The present invention embodies the above points of interest. Hereinafter, the present invention will be described in detail.
First, in the first firing step, the firing temperature of the protective glass layer is at least 50 ° C. lower than the softening point of the crystallized glass and lower than the crystallisation point of the crystallized glass. When the protective glass layer is fired at such a firing temperature, as shown in FIG. 1, the crystallized glass component 11 in the protective glass layer 1 is melted, and the crystallized glass component 11 and the conductor component 21 of the conductor circuit 2 are mutually diffused. Then, the diffusion layer 3 is generated at the interface 22 between the protective glass layer 1 and the conductor circuit 2.
[0013]
In the first firing step, when the firing temperature is less than 50 ° C. lower than the softening point, the crystallized glass is not sufficiently melted, the crystallized glass has poor fluidity, and the conductor circuit is poorly wetted. Therefore, the adhesion of the protective glass layer to the conductor circuit is reduced. On the other hand, when the firing temperature is higher than the above crystallization point, the crystallized glass is crystallized, the fluidity of the crystallized glass is deteriorated, and the wettability with the conductor circuit is deteriorated. To do.
[0014]
Next, in the second firing step, the firing temperature of the protective glass layer is within the range of the temperature necessary to crystallize the crystallized glass. When the protective glass layer is fired at such a firing temperature, the crystallized glass component in the protective glass layer is crystallized, thereby ensuring the electrical characteristics of the protective glass layer.
[0015]
As described above, according to the present invention, it is possible to provide a method for producing a ceramic circuit board having a conductor circuit with low conductor resistance and high solder adhesion and between the conductor circuit and the protective glass layer. it can.
The softening point and crystallization point differ depending on the type of crystallized glass.
[0016]
Next, as described in claim 2, the firing time in the first firing step is preferably 10 minutes or more. The longer the firing time, the higher the adhesion of the protective glass layer. In the case of less than 10 minutes, the crystallized glass is not sufficiently melted, and the mutual diffusion between the crystallized glass component and the conductor component is insufficient, so that the crystallized glass reaches the interface between the metal grains of the conductor circuit. There is a possibility that the adhesion of the protective glass layer to the conductor circuit may be reduced without entering. However, the longer the firing time, the worse the productivity of the ceramic circuit board. Therefore, it is preferable to set the shortest time to ensure the strength.
[0017]
The first firing step and the second firing step may be performed separately. For example, a ceramic substrate having a protective glass layer formed on the surface of a conductor circuit is sequentially passed through a heating furnace that performs a first firing process and then a heating furnace that performs a second firing process.
Moreover, after performing a 1st baking process, it heats up continuously, it may be set as the baking temperature of a 2nd baking process, and a 2nd baking process may be performed. For example, after the ceramic substrate is placed in a heating furnace and the first firing process is performed, the temperature is adjusted in the same heating furnace and the second firing process is continuously performed.
[0018]
Next, as for the crystallized glass used for the protective glass layer, any glass system that can be crystallized can improve the strength by using the present invention. It is preferably a vitrified glass. As a result, it is possible to protect the surface of the conductor circuit, ensure electrical insulation between adjacent conductors, give the protective glass layer a role of a solder dam, and obtain a good protective film characteristic of the resistor.
[0019]
Next, as described in claim 4, it is preferable to form the conductor circuit on the ceramic substrate by metal plating. According to the metal plating process, a conductor circuit can be formed of pure metal.
For this reason, conductor circuits formed by metal plating have low conductor resistance and excellent electrical characteristics. Further, the plating surface is very smooth and dense with a surface roughness (Ra) of 2 μm or less. Therefore, the solder adhesion on the surface of the conductor circuit is high, and the bonding strength of the bonding wire is high.
[0020]
Further, the interface between the conductor circuit and the protective glass layer is fired at a temperature that is 50 ° C. lower than the softening point and lower than the crystallization point in the first firing step, so that the crystallized glass component of the protective glass layer is obtained. Diffuses into the conductor circuit and the conductor components of the conductor circuit mutually diffuse into the protective glass layer to form a diffusion layer. Thereafter, the crystallized glass component in the protective glass layer is crystallized by firing at a temperature necessary for crystallization in the second firing step. Thereby, while exhibiting the high adhesive strength of the protective glass layer with respect to a conductor circuit, the electrical property of a protective glass layer can be ensured.
[0021]
Next, as described in claim 5, when the conductor circuit is formed by metal plating on a metal mainly composed of W (tungsten) or Mo (molybdenum), the effect of the present invention is very large. It will be a thing.
This also increases the conductor characteristics of the conductor circuit. The metal plating process for forming the conductor circuit can be performed by either electroplating or electroless plating. Moreover, Cu (copper), Ni (nickel), Au (gold) can also be used for the said conductor circuit.
In addition, the conductor circuit formed from the plating process can be formed only from the metal plating process, but it can also be formed by performing metal plating on the surface of the conductor pattern formed by printing or etching the conductor foil. You can also.
[0022]
Next, the ceramic substrate may be any substrate that does not deform or deteriorate at the firing temperature in the second firing step. As such a ceramic substrate, for example, alumina is used as described in claim 6. Further, alumina nitride (AlN) or a glass substrate may be used.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1
A method for manufacturing a ceramic circuit board according to an embodiment of the present invention will be described with reference to FIG.
This example is a method of manufacturing a ceramic circuit board in which a conductor circuit made of metal is formed on a ceramic substrate, and then a protective glass layer made of crystallized glass is formed on the surface of the conductor circuit and fired. This will be described in detail below.
[0024]
First, as shown in FIG. 2, a conductor pattern 27 made of W was formed on the surface of the ceramic substrate 5 by screen printing. The ceramic substrate 5 is composed of 96 wt% alumina and 4 wt% inorganic sintering aid. Next, the ceramic substrate 5 and the conductor pattern 27 were simultaneously fired at 1580 ° C. in a reducing atmosphere.
[0025]
Subsequently, a copper plating 26 having a thickness of 7 μm was deposited on the surface of the conductor pattern 27 by an electroless plating method. Next, the copper plating 26 was annealed by heating in a heating furnace for 60 minutes in a reducing atmosphere at a maximum temperature of 900 ° C. At this time, the surface roughness (Ra) of the copper plating 26 was 1 μm. Thereby, the conductor circuit 2 including the conductor pattern 27 and the copper plating 26 covering the conductor pattern 27 was formed.
[0026]
Next, the crystallized glass was screen-printed so as to cover the copper plating 26, dried and fired to form the protective glass layer 1. The crystallized glass is lead borosilicate crystallized glass having a softening point of about 550 ° C. and a crystallization point of about 655 ° C.
Next, the protective glass layer 1 was fired twice. First, in the first firing step, the protective glass layer 1 was fired at 550 to 600 ° C. for 20 minutes. Thereby, the mutual diffusion of the copper plating component and the protective glass layer was advanced. Next, in the second firing step, the protective glass layer 1 was fired at 655 to 665 ° C. for 5 minutes. As a result, the crystallized glass component was crystallized to obtain the ceramic circuit board 7.
[0027]
Next, the adhesion strength of the protective glass layer was measured by a peel method. As a specific measurement method, heat-resistant tape was attached to a protective glass layer formed on the copper plating surface. A central portion of the heat-resistant tape was cut out to form a window having a size of 2 mm × 2 mm. Next, an adhesive was applied to the surface of the protective glass layer from the window of the heat-resistant tape, and a hexagon nut was adhered thereto, followed by drying at 150 ° C. for 10 minutes. Thereafter, a U-shaped wire was passed through the hex nut, and the wire was pulled upward. The pulling force at this time was measured. Since the adhesion force of the protective glass layer increases as the pulling force increases, this pulling force is defined as the adhesion strength between the copper plating 26 and the protective glass layer 1.
As a result of the measurement, the adhesion strength between the protective glass layer and the conductor circuit was as high as 10 kgf / 2 mm □ (per square with a side of 2 mm) or more.
[0028]
Embodiment 2
In this example, the effect of the change in the firing temperature in the first and second firing steps on the relationship of the adhesion strength between the protective glass layer and the conductor circuit was measured.
In the measurement, as shown in Table 1, the firing temperature in the first firing step was varied between 400 and 675 ° C., and the firing temperature in the second firing step was varied between 655 and 675 ° C. At this time, the firing temperature in the first firing step was set to be lower than the firing temperature in the second firing step.
The firing time in the first firing step was 20 minutes, and the firing time in the second firing step was 5 minutes.
[0029]
The measurement of the adhesion strength between the protective glass layer and the conductor circuit was performed by the same measurement method as in the first embodiment.
As a result of the measurement, as shown in Table 1 and FIG. 3, the adhesion strength was as high as 10 kgf / 2 mm □ or more. That is, (first firing step, second firing step) = (550 ° C., 655 ° C.), (550 ° C., 665 ° C.), (600 ° C., 655 ° C.), (600 ° C., 665 ° C.), (600 ° C., In the case of a temperature condition of 675 ° C., excellent adhesion strength was obtained.
[0030]
In these temperature conditions, the protective glass layer exhibited excellent adhesion strength, as shown in FIG. 1, in the first firing step, the crystallized glass component 11 of the protective glass layer 1 is transferred to the conductor circuit 2, This is because the protective glass layer 1 and the conductor circuit 2 are bonded to each other through the diffusion layer 3 by the diffusion of the conductor component 21 of the conductor circuit 2 to the protective glass layer 1 to form the diffusion layer 3. .
[0031]
[Table 1]
Figure 0003752755
[0032]
Embodiment 3
In this example, as shown in FIG. 4, the first firing step and the second firing step were continuously performed.
That is, first, a ceramic substrate having a protective glass layer formed on the surface of a conductor circuit was placed in a heating furnace. Next, the following first and second firing steps were performed.
That is, in the first firing step, the protective glass layer was fired at 600 ° C. As a result, the interdiffusion between the conductor component and the crystallized glass component proceeded in the state where the crystallized glass was melted.
[0033]
Subsequently, the temperature of the heating furnace was continuously raised to 665 ° C., and the second firing step was performed at this temperature to fire the protective glass layer. Thereby, the crystallized glass was crystallized.
Others are the same as in the first embodiment.
When the adhesion strength of the protective glass layer was measured for the ceramic circuit board of this example, it showed a high value of 10 kgf / 2 mm □ or more as in Example 1.
[0034]
Embodiment 4
In this example, the relationship between the firing time of the first firing step and the adhesion strength of the protective glass layer was measured.
In the measurement, the firing temperature in the first firing step was 600 ° C., and the firing time was variously changed. The firing temperature in the second firing step was 675 ° C., and the firing time was 5 minutes. Otherwise, a ceramic circuit board was manufactured under the same conditions as in the first embodiment.
With respect to the obtained ceramic circuit board, the adhesion strength of the protective glass layer was measured, and the result is shown in FIG.
[0035]
As a result, in the first firing step, when the firing time was 1 minute, it was about 1.5 kgf / 2 mm □. The adhesion strength of the protective glass layer was increased as the length increased from 1 to 10 minutes. After 10 minutes or more, the adhesion strength maintained a high value of 10 kgf / 2 mm □ or more. From this, it can be seen that in the first firing step, high adhesion strength can be obtained by firing for 10 minutes or more.
[0036]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, it can provide the manufacturing method of a ceramic circuit board which has a conductor circuit with low conductor resistance and high solder adhesiveness, and high adhesive strength between a conductor circuit and a protective glass layer. .
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing mutual diffusion of a crystallized glass component and a conductor component at an interface between a conductor circuit and a protective glass layer in the present invention.
2 is a cross-sectional view of a ceramic circuit board in Embodiment 1. FIG.
FIG. 3 is a view showing the adhesion strength of a protective glass layer to a conductor circuit in Embodiment 2;
4 is an explanatory view showing a method for firing a protective glass layer in Embodiment 3. FIG.
5 is a graph showing the relationship between the firing time of the first firing step and the adhesion strength of the protective glass layer to the conductor circuit in Embodiment Example 4. FIG.
FIG. 6 is a cross-sectional view of a ceramic circuit board on which a conductor circuit is formed by a printing method in a conventional example.
FIG. 7 is a cross-sectional view of a ceramic circuit board on which a conductor circuit is formed by plating in a conventional example.
[Explanation of symbols]
1. . . Protective glass layer,
11. . . Crystallized glass component,
2. . . Conductor circuit,
21. . . Conductor component,
22. . . interface,
26. . . Copper plating,
27. . . Conductor pattern,
3. . . Diffusion layer.
5. . . Ceramic substrate,
7). . . Ceramic circuit board,

Claims (6)

セラミック基板上に,金属よりなる導体回路を形成し,
次いで,該導体回路の表面に結晶化ガラスからなる保護ガラス層を形成し,該保護ガラス層を焼成するセラミック回路基板の製造方法であって,
上記保護ガラス層の焼成は,結晶化ガラスの軟化点よりも50℃低い温度以上で且つ結晶化ガラスの結晶化点未満の範囲内の温度において,上記保護ガラス層を焼成する第1焼成工程を行い,
その後,上記結晶化ガラス結晶化させるに必要な温度の範囲内において,上記保護ガラス層を焼成する第2焼成工程を行うことを特徴とするセラミック回路基板の製造方法。
A conductor circuit made of metal is formed on a ceramic substrate,
Next, a method for producing a ceramic circuit board comprising forming a protective glass layer made of crystallized glass on the surface of the conductor circuit, and firing the protective glass layer,
Firing the protective glass layer includes a first firing step of firing the protective glass layer at a temperature that is 50 ° C. lower than the softening point of the crystallized glass and less than the crystallizing point of the crystallized glass. Done,
Then, the manufacturing method of the ceramic circuit board characterized by performing the 2nd baking process which bakes the said protective glass layer within the range of the temperature required to crystallize the said crystallized glass.
請求項1において,上記第1焼成工程の焼成時間は,10分以上であることを特徴とするセラミック回路基板の製造方法。2. The method of manufacturing a ceramic circuit board according to claim 1, wherein the firing time of the first firing step is 10 minutes or more. 請求項1又は2のいずれか一項において,上記保護ガラス層に用いる結晶化ガラスは,ホウケイ酸鉛系の結晶化ガラスであることを特徴とするセラミック回路基板の製造方法。3. The method of manufacturing a ceramic circuit board according to claim 1, wherein the crystallized glass used for the protective glass layer is a lead borosilicate crystallized glass. 請求項1〜3のいずれか一項において,上記セラミック基板上への導体回路の形成は,金属めっき処理により行うことを特徴とするセラミック回路基板の製造方法。4. The method for manufacturing a ceramic circuit board according to claim 1, wherein the conductor circuit is formed on the ceramic substrate by metal plating. 請求項1〜4のいずれか一項において,上記導体回路は,W又はMoを主成分とする金属上に金属めっき処理により形成することを特徴とするセラミック回路基板の製造方法。5. The method of manufacturing a ceramic circuit board according to claim 1, wherein the conductor circuit is formed by metal plating on a metal containing W or Mo as a main component. 請求項1〜5のいずれか一項において,上記セラミック基板は,アルミナであることを特徴とするセラミック回路基板の製造方法。6. The method of manufacturing a ceramic circuit board according to claim 1, wherein the ceramic substrate is alumina.
JP31877796A 1996-02-13 1996-11-13 Manufacturing method of ceramic circuit board Expired - Lifetime JP3752755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31877796A JP3752755B2 (en) 1996-02-13 1996-11-13 Manufacturing method of ceramic circuit board

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5098296 1996-02-13
JP8-50982 1996-02-13
JP31877796A JP3752755B2 (en) 1996-02-13 1996-11-13 Manufacturing method of ceramic circuit board

Publications (2)

Publication Number Publication Date
JPH09283890A JPH09283890A (en) 1997-10-31
JP3752755B2 true JP3752755B2 (en) 2006-03-08

Family

ID=26391481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31877796A Expired - Lifetime JP3752755B2 (en) 1996-02-13 1996-11-13 Manufacturing method of ceramic circuit board

Country Status (1)

Country Link
JP (1) JP3752755B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4717689B2 (en) * 2006-04-12 2011-07-06 ローム株式会社 Heating body and manufacturing method thereof

Also Published As

Publication number Publication date
JPH09283890A (en) 1997-10-31

Similar Documents

Publication Publication Date Title
JPS6245720B2 (en)
JP3331083B2 (en) Low temperature firing ceramic circuit board
JPS60500837A (en) thick film resistor circuit
JP3238051B2 (en) Brazing material
JP3752755B2 (en) Manufacturing method of ceramic circuit board
JP2002026528A (en) Conductive paste and multilayer ceramic substrate
JP3493310B2 (en) Multilayer wiring board
JP2002362987A (en) Electronic component and method for manufacturing the same
JPH0774445A (en) Thick film conductor and manufacture thereof
JP3495773B2 (en) Circuit board
JPH11284296A (en) Wiring board
JP2002016176A (en) Wiring board and connection structure therefor
JP2816742B2 (en) Circuit board
JPH08298359A (en) Thick copper film circuit board
JP2537653B2 (en) Aluminum nitride substrate, manufacturing method, and semiconductor device
JP2000223821A (en) Ceramic wiring board
JP2892220B2 (en) Manufacturing method of ceramic wiring board
JP3297615B2 (en) Semiconductor device
JPS5911554B2 (en) Metal film formation method for insulator substrates
JPS62291153A (en) Ceramic circuit substrate
JPH0286188A (en) Ceramic wiring board baked at a low temperature
JPS62291154A (en) Ceramic circuit substrate
JP2000022294A (en) Electronic component circuit board
JPH08125310A (en) Ceramic printed wiring board and its manufacture
JP2005268515A (en) Ceramic wiring substrate and its manufacturing method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term