JPH05144805A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH05144805A
JPH05144805A JP33435791A JP33435791A JPH05144805A JP H05144805 A JPH05144805 A JP H05144805A JP 33435791 A JP33435791 A JP 33435791A JP 33435791 A JP33435791 A JP 33435791A JP H05144805 A JPH05144805 A JP H05144805A
Authority
JP
Japan
Prior art keywords
region
silicon substrate
element isolation
oxygen
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33435791A
Other languages
Japanese (ja)
Inventor
Kiwa Yoneda
喜和 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP33435791A priority Critical patent/JPH05144805A/en
Publication of JPH05144805A publication Critical patent/JPH05144805A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form an element isolation region with which bird's beaks can be reduced and the level difference on substrate surface can be suppressed by a method wherein an element isolation oxidizing operation is conducted by injecting high concentration oxygen into the region which will be used as the element isolation region of a silicon substrate and then injecting high concentration nitrogen using the energy higher than that of the oxygen injection process. CONSTITUTION:A thin oxide film 2 and a nitride film 3 are formed on a silicon substrate 1, and after the nitride film 3 has been patternized, oxygen is injected (5), nitrogen is injected (6), LOCOS oxidization 2 is conducted, and the oxide film 2 is removed. Also, a thin oxide film 2 and a nitrogen film 3 are formed on the silicon substrate 1, and after the nitride film 3 has been patternized, an etching treatment is conducted, oxygen 5 and nitrogen 6 are injected, LOCOS- oxidized, and the nitrogen film 3 and the oxide film 2 are removed. As a result, the form of element isolation can be controlled, the depth of isolation is made deeper, and bird's beaks can also be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は半導体装置の製造方法
に関し、特に半導体基板上に素子分離領域を形成する方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of forming an element isolation region on a semiconductor substrate.

【0002】[0002]

【従来の技術】シリコン基板を素子分離するには、LO
COS分離,トレンチ分離などがある。ここでは、最も
一般的な分離であるLOCOS分離を図を用いて説明す
る。
2. Description of the Related Art In order to isolate a silicon substrate from elements, LO is used.
There are COS isolation and trench isolation. Here, LOCOS separation, which is the most general separation, will be described with reference to the drawings.

【0003】図6は従来のLOCOS分離を示す工程断
面図である。まず、シリコン基板1に薄い熱酸化膜2と
CVD窒化膜3を堆積する。次に、フォトリソグラフィ
ーにより素子の形成される領域(活性領域)にレジスト
パターンを形成する。これをマスクとして、窒化膜3を
エッチングする。レジストを除去した後(図6(a))に、
窒化膜3をマスクとしてO2 /H2 O雰囲気で、例えば
1000℃で酸化する。このとき、窒化膜は耐酸化性が
強いため、活性領域はほとんど酸化されず、非活性領域
(フィールド領域)のみが酸化される(図6(b))。この
工程をLOCOS(Local Oxidation of Silicon) 酸化
と呼び、分離酸化膜をフィールド酸化膜4と呼ぶ。この
後、窒化膜3を除去し、下地の薄い熱酸化膜2をエッチ
ングする。これでLOCOS素子分離が完了する(図6
(c))。
FIG. 6 is a process sectional view showing a conventional LOCOS separation. First, a thin thermal oxide film 2 and a CVD nitride film 3 are deposited on a silicon substrate 1. Next, a resist pattern is formed in a region (active region) where the element will be formed by photolithography. Using this as a mask, the nitride film 3 is etched. After removing the resist (Fig. 6 (a)),
Oxidation is performed at 1000 ° C. in an O 2 / H 2 O atmosphere using the nitride film 3 as a mask. At this time, since the nitride film has strong oxidation resistance, the active region is hardly oxidized, and only the non-active region (field region) is oxidized (FIG. 6B). This process is called LOCOS (Local Oxidation of Silicon) oxidation, and the isolation oxide film is called a field oxide film 4. After that, the nitride film 3 is removed, and the underlying thin thermal oxide film 2 is etched. This completes the LOCOS element isolation (see FIG. 6).
(c)).

【0004】[0004]

【発明が解決しようとする課題】従来のシリコン基板の
LOCOS分離は以上のようになされているので、図6
(b) に図示されているように、分離の深さや横方向への
広がりを制御できない。また、活性領域の仕上がり寸法
l+2mは、マスク寸法lに比べてバーズビーク分2m
だけ小さくなるといった問題点があった。
Since the conventional LOCOS separation of the silicon substrate is performed as described above, the structure shown in FIG.
As shown in (b), it is not possible to control the depth of separation or the lateral spread. In addition, the finished area l + 2m of the active region is 2m for the bird's beak compared to the mask dimension l
There was a problem that it became smaller.

【0005】この発明は上記のような問題点を解消する
ためになされたもので、分離酸化膜の形状を素子に適す
る形に製造することができ、バーズビークの低減やシリ
コン基板表面の段差を小さくすることができる素子分離
領域の形成方法を提供することを目的とする。
The present invention has been made in order to solve the above problems, and it is possible to manufacture the isolation oxide film in a shape suitable for an element, thereby reducing the bird's beak and the step difference on the surface of the silicon substrate. It is an object of the present invention to provide a method for forming an element isolation region that can be formed.

【0006】[0006]

【課題を解決するための手段】この発明に係る、シリコ
ン基板上に素子分離領域を形成する方法は、シリコン基
板の素子分離領域となるべき領域に高濃度の酸素を注入
し、さらに前記酸素注入工程よりも高エネルギーで高濃
度の窒素を注入し、素子分離酸化を行うものである。
According to a method of forming an element isolation region on a silicon substrate according to the present invention, a high concentration of oxygen is implanted into a region of the silicon substrate which is to be an element isolation region, and the oxygen implantation is further performed. Nitrogen is injected with a higher energy and a higher concentration than in the step, and element isolation oxidation is performed.

【0007】またこの発明に係る、シリコン基板上に素
子分離領域を形成する方法は、シリコン基板の素子分離
領域となるべき領域に高濃度の酸素を注入し、前記高濃
度酸素注入層の両側部にのみ、前記酸素注入工程よりも
高濃度の窒素を注入し、素子分離酸化を行うものであ
る。
In the method of forming an element isolation region on a silicon substrate according to the present invention, a high concentration of oxygen is injected into a region of the silicon substrate to be an element isolation region, and both side portions of the high concentration oxygen implantation layer are formed. Only, the element isolation oxidation is performed by injecting nitrogen at a higher concentration than in the oxygen injecting step.

【0008】またこの発明に係る、シリコン基板上に素
子分離領域を形成する方法は、シリコン基板の素子分離
領域となるべき領域に高濃度の酸素を注入し、前記高濃
度の酸素注入層の両側部の一方のみに、前記酸素注入工
程よりも高濃度の窒素を注入し、素子分離酸化を行うも
のである。
Further, according to the method of forming an element isolation region on a silicon substrate according to the present invention, a high concentration of oxygen is injected into a region of the silicon substrate to be an element isolation region, and both sides of the high concentration oxygen implantation layer are formed. Nitrogen having a higher concentration than that in the oxygen injecting step is injected into only one of the portions to perform element isolation oxidation.

【0009】またこの発明に係る、シリコン基板上に素
子分離領域を形成する方法は、シリコン基板の素子分離
領域となるべき領域をエッチングし、高濃度の酸素を注
入し、前記エッチングしてできた凹部の両側面に高濃度
の窒素を注入し、素子分離酸化を行うものである。
Further, according to the method of forming the element isolation region on the silicon substrate according to the present invention, the region of the silicon substrate which is to be the element isolation region is etched, a high concentration of oxygen is injected, and the etching is performed. High-concentration nitrogen is injected into both side surfaces of the recess to perform element isolation oxidation.

【0010】またこの発明に係る、シリコン基板上に素
子分離領域を形成する方法は、シリコン基板の素子分離
領域となるべき領域をエッチングし、高濃度の酸素を注
入し、前記エッチングしてできた凹部の片側側面に高濃
度の窒素を注入し、素子分離酸化を行うものである。
Further, according to the method of the present invention for forming an element isolation region on a silicon substrate, a region of the silicon substrate to be the element isolation region is etched, a high concentration of oxygen is injected, and the etching is performed. High-concentration nitrogen is injected into one side surface of the recess to perform element isolation oxidation.

【0011】[0011]

【作用】この発明に係るシリコン基板の素子分離方法に
おいては、シリコン基板の素子分離領域となるべき領域
に高濃度の酸素を注入し、さらに前記酸素注入工程より
も高エネルギーで高濃度の窒素を注入し、素子分離酸化
を行うするようにしたので、また、シリコン基板の素子
分離領域となるべき領域に高濃度の酸素を注入し、前記
高濃度酸素注入層の両側部、あるいはその一方にのみ、
前記酸素注入工程よりも高濃度の窒素を注入し、素子分
離酸化を行うようにしたので、また、シリコン基板の素
子分離領域となるべき領域をエッチングし、高濃度の酸
素を注入し、前記エッチングしてできた凹部の両、ある
いは片側側面に高濃度の窒素を注入し、素子分離酸化を
行うようにしたので、分離の形状を制御し、分離の深さ
を深くするとともに、バーズビークを低減することがで
きる。
In the element isolation method for a silicon substrate according to the present invention, a high concentration of oxygen is injected into a region to be an element isolation region of a silicon substrate, and further, a higher concentration of nitrogen with higher energy than the oxygen implantation step is added. Since oxygen is injected to perform element isolation oxidation, high-concentration oxygen is injected into a region which is to be an element isolation region of a silicon substrate, and both sides of the high-concentration oxygen-implanted layer or only one of them is injected. ,
Since nitrogen is injected at a higher concentration than in the oxygen injection step to perform element isolation oxidation, the region to be the element isolation region of the silicon substrate is also etched, high concentration oxygen is injected, and the etching is performed. High-concentration nitrogen is injected into both or one side surface of the formed recess to perform element isolation oxidation, so the shape of isolation is controlled, the depth of isolation is increased, and bird's beak is reduced. be able to.

【0012】[0012]

【実施例】以下、この発明の一実施例を図を用いて説明
する。図1は本発明の第1の実施例による素子分離方法
を示す断面図である。図1(a) において、1はシリコン
基板、2は薄い熱酸化膜、3は窒化膜であり、これらは
従来例と同様に、薄い熱酸化膜2,CVD窒化膜3を形
成した後、窒化膜3をリソグラフィーによってパターニ
ングしたものである。図1(b) において、5は高濃度の
酸素イオン注入層、6は高濃度の窒素イオン注入層であ
る。酸素イオンの注入エネルギーは窒素イオンの注入エ
ネルギーよりも小さく、窒素イオンの注入エネルギーに
より、分離酸化膜の深さが決められる。次に、図1(c)
に示すように、素子全面を酸化し、フィールド酸化膜4
を形成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing a device isolation method according to a first embodiment of the present invention. In FIG. 1 (a), 1 is a silicon substrate, 2 is a thin thermal oxide film, and 3 is a nitride film. The film 3 is patterned by lithography. In FIG. 1 (b), 5 is a high concentration oxygen ion implantation layer, and 6 is a high concentration nitrogen ion implantation layer. The implantation energy of oxygen ions is smaller than the implantation energy of nitrogen ions, and the implantation energy of nitrogen ions determines the depth of the isolation oxide film. Next, Fig. 1 (c)
As shown in FIG.
To form.

【0013】最後に、図1(d) では、窒化膜3と薄い酸
化膜2を除去し、LOCOS分離を完了する。
Finally, in FIG. 1D, the nitride film 3 and the thin oxide film 2 are removed to complete the LOCOS separation.

【0014】このように本実施例では、従来のLOCO
S分離工程と異なり、LOCOS酸化前に非活性領域に
高濃度の酸素の注入と、より高エネルギーで高濃度の窒
素を注入しているために、フィールド分離酸化膜は酸素
イオンの存在によりシリコン基板内での厚みを増すこと
ができ、また窒素イオンの注入エネルギーを制御するこ
とによりフィールド酸化膜のシリコン基板内の厚みを制
御することができる。また、素子分離膜のシリコン基板
内での厚みを増すことにより、シリコン基板表面の段差
を小さくすることができる。
As described above, in this embodiment, the conventional LOCO is used.
Unlike the S separation process, since the high concentration oxygen is injected into the non-active region before the LOCOS oxidation, and the high concentration nitrogen is injected into the non-active region, the field isolation oxide film is formed on the silicon substrate due to the presence of oxygen ions. The thickness of the field oxide film in the silicon substrate can be controlled by controlling the implantation energy of nitrogen ions. Further, by increasing the thickness of the element isolation film in the silicon substrate, the step difference on the surface of the silicon substrate can be reduced.

【0015】図2は本発明の第2の実施例による素子分
離を示す断面図である。上記第1の実施例と同様に、窒
化膜パターン3を形成した後、高濃度酸素を注入(図2
(a))する。次に、図2(b) に示すように、レジストパタ
ーン7を形成した後、前記高濃度酸素注入領域15の片
端部により高濃度な窒素を注入し、窒素領域16aを設
ける。そして、レジストパターン7を除去した後、図2
(c) に示すように、再びレジストパターン8を形成し、
高濃度酸素注入領域15のもう一方の端部に窒素領域1
6aと同様、高濃度な窒素を注入し、窒素領域16bを
形成する。次に、レジストパターン8を除去した後、L
OCOS酸化を行い、フィールド酸化膜24を形成する
(図2(d))。最後に、図2(e) に示すように、薄い熱酸
化膜2と窒化膜3を除去し、LOCOS素子分離法を完
了する。
FIG. 2 is a sectional view showing element isolation according to the second embodiment of the present invention. Similar to the first embodiment, after forming the nitride film pattern 3, high concentration oxygen is injected (see FIG. 2).
(a)) Do. Next, as shown in FIG. 2 (b), after forming the resist pattern 7, high-concentration nitrogen is injected into one end of the high-concentration oxygen injection region 15 to provide a nitrogen region 16a. Then, after removing the resist pattern 7, FIG.
As shown in (c), a resist pattern 8 is formed again,
At the other end of the high concentration oxygen implantation region 15, the nitrogen region 1
Similarly to 6a, high-concentration nitrogen is implanted to form the nitrogen region 16b. Next, after removing the resist pattern 8, L
OCOS oxidation is performed to form a field oxide film 24 (FIG. 2 (d)). Finally, as shown in FIG. 2 (e), the thin thermal oxide film 2 and the nitride film 3 are removed, and the LOCOS element isolation method is completed.

【0016】このように本実施例では、非活性領域に高
濃度な酸素を注入し、その酸素注入領域の両端部に、よ
り高濃度な窒素領域を設けたので、フィールド酸化膜の
シリコン基板内の厚みを増すことができ、シリコン基板
表面の段差を小さくすることができる上に、非活性領域
両端部の高濃度窒素領域によりバーズビークを抑えるこ
とができ、活性領域の縮小を防ぐことができる。
As described above, in this embodiment, high-concentration oxygen is implanted into the non-active region, and the higher-concentration nitrogen regions are provided at both ends of the oxygen-implanted region. Of the silicon substrate, the step difference on the surface of the silicon substrate can be reduced, and bird's beak can be suppressed by the high-concentration nitrogen regions at both ends of the non-active region, and the reduction of the active region can be prevented.

【0017】図3は本発明の第3の実施例による素子分
離を示す断面図である。上記第2の実施例と同様に、ま
ず高濃度酸素注入層25を形成した後、図3(b) に図示
されているように、高濃度窒素注入層26を形成する。
その後、LOCOS酸化を行い、フィールド酸化膜34
を形成する(図3(c))。最後に図3(d)に示したよう
に、薄い熱酸化膜2と窒化膜3を除去し、素子分離方法
を完了する。
FIG. 3 is a sectional view showing element isolation according to the third embodiment of the present invention. Similar to the second embodiment, first, the high-concentration oxygen implantation layer 25 is formed, and then the high-concentration nitrogen implantation layer 26 is formed as shown in FIG. 3 (b).
Then, LOCOS oxidation is performed to form the field oxide film 34.
Are formed (FIG. 3 (c)). Finally, as shown in FIG. 3D, the thin thermal oxide film 2 and the nitride film 3 are removed, and the element isolation method is completed.

【0018】このように本実施例では、非活性領域に高
濃度な酸素を注入し、その酸素注入領域の片端部に、よ
り高濃度な窒素領域を設けたので、フィールド酸化膜の
シリコン基板内の厚みを増すことができ、シリコン基板
表面の段差を小さくすることができる上に、非活性領域
片端部の高濃度窒素領域によりバーズビークを抑えるこ
とができ、活性領域の縮小を防ぐことができる。
As described above, in the present embodiment, high-concentration oxygen is implanted into the non-active region, and a higher-concentration nitrogen region is provided at one end of the oxygen-implanted region. Of the silicon substrate, the step difference on the surface of the silicon substrate can be reduced, and the bird's beak can be suppressed by the high-concentration nitrogen region at one end of the non-active region, so that the active region can be prevented from being reduced.

【0019】本実施例では、第2の実施例に比べてバー
ズビークを抑える効果は少ないが、製造工程が少なく、
かつ非対称な形状を形成することができる。
In this embodiment, the effect of suppressing bird's beaks is smaller than that in the second embodiment, but the number of manufacturing steps is small,
And an asymmetrical shape can be formed.

【0020】図4は本発明の第4の実施例による素子分
離を示す断面図である。前記第1の実施例と同様、シリ
コン基板1上に薄い熱酸化膜2、CVD窒化膜3を形成
する。前記窒化膜パターン3を形成した後、シリコン基
板をエッチング9する(図4(b))。次に、高濃度酸素を
注入する(図4(b))。そして、高濃度の窒素10をエッ
チング領域9の両側に斜めに注入し、高濃度窒素注入領
域36を形成する(図4(c))。次に、LOCOS酸化を
行い、フィールド酸化膜44を形成する(図4(e))。最
後に、図4(f) に示すように、薄い熱酸化膜2と窒化膜
3を除去し、素子分離方法を完了する。
FIG. 4 is a sectional view showing element isolation according to the fourth embodiment of the present invention. Similar to the first embodiment, the thin thermal oxide film 2 and the CVD nitride film 3 are formed on the silicon substrate 1. After forming the nitride film pattern 3, the silicon substrate is etched 9 (FIG. 4B). Next, high-concentration oxygen is injected (FIG. 4 (b)). Then, high-concentration nitrogen 10 is obliquely injected into both sides of the etching region 9 to form a high-concentration nitrogen injection region 36 (FIG. 4C). Next, LOCOS oxidation is performed to form a field oxide film 44 (FIG. 4 (e)). Finally, as shown in FIG. 4F, the thin thermal oxide film 2 and the nitride film 3 are removed, and the element isolation method is completed.

【0021】このように本実施例では、非活性領域とな
る領域のシリコン基板をエッチングして、高濃度な酸素
を注入し、エッチング領域9の両側に高濃度な窒素領域
を設けたので、フィールド酸化膜のシリコン基板内の厚
みを増すことができ、シリコン基板表面の段差を小さく
することができる上に、エッチング領域両端部の高濃度
窒素領域によりバーズビークを抑えることができ、活性
領域の縮小を防ぐことができる。
As described above, in this embodiment, the silicon substrate in the region which becomes the non-active region is etched, high-concentration oxygen is injected, and the high-concentration nitrogen regions are provided on both sides of the etching region 9. The thickness of the oxide film in the silicon substrate can be increased, the step on the surface of the silicon substrate can be reduced, and bird's beak can be suppressed by the high-concentration nitrogen regions at both ends of the etching region, reducing the active region. Can be prevented.

【0022】図5は本発明の第5の実施例による素子分
離を示す断面図である。上記第4の実施例と同様に、シ
リコン基板をエッチングした後(図5(b))、高濃度の窒
素10をエッチング領域9の片側に斜めに注入し、高濃
度窒素注入領域46を形成する(図5(d))。
FIG. 5 is a sectional view showing element isolation according to the fifth embodiment of the present invention. Similar to the fourth embodiment, after the silicon substrate is etched (FIG. 5B), high concentration nitrogen 10 is obliquely injected into one side of the etching region 9 to form a high concentration nitrogen injection region 46. (Fig. 5 (d)).

【0023】次に、LOCOS酸化を行い、フィールド
酸化膜54を形成する(図5(e))。最後に、図5(f) に
示すように、薄い熱酸化膜2と窒化膜3を除去し、素子
分離方法を完了する。
Next, LOCOS oxidation is performed to form a field oxide film 54 (FIG. 5 (e)). Finally, as shown in FIG. 5F, the thin thermal oxide film 2 and the nitride film 3 are removed, and the element isolation method is completed.

【0024】このように本実施例では、第4の実施例に
比べてバーズビークを抑える効果は少ないが、同様の効
果を奏し、さらに非対称な形状を形成できる。
As described above, in the present embodiment, the effect of suppressing bird's beak is less than that of the fourth embodiment, but the same effect can be obtained and an asymmetrical shape can be formed.

【0025】[0025]

【発明の効果】以上のように、この発明によれば、シリ
コン基板の素子分離領域となるべき領域に高濃度の酸素
を注入し、さらに前記酸素注入工程よりも高エネルギー
で高濃度の窒素を注入し、素子分離酸化を行うようにし
たので、素子分離をシリコン基板深くまで行えるととも
にシリコン基板表面の段差を小さくすることができる。
As described above, according to the present invention, a high concentration of oxygen is implanted into a region to be an element isolation region of a silicon substrate, and further, a higher concentration of nitrogen with higher energy than that of the oxygen implantation step is added. Since the implantation is performed and the element isolation oxidation is performed, the element isolation can be performed deep in the silicon substrate and the step on the surface of the silicon substrate can be reduced.

【0026】また、シリコン基板の素子分離領域となる
べき領域に高濃度の酸素を注入し、前記高濃度酸素注入
層の両側部、あるいはその一方にのみ、前記酸素注入工
程よりも高濃度の窒素を注入し、素子分離酸化を行うよ
うにしたので、素子分離をシリコン基板深くまで行える
とともにシリコン基板表面の段差を小さくすることがで
き、さらにバーズビークを低減することができる。
Further, high-concentration oxygen is injected into a region to be an element isolation region of the silicon substrate, and nitrogen having a higher concentration than that in the oxygen-implanting step is introduced into both sides or one side of the high-concentration oxygen implantation layer. Since the element isolation oxidization is performed by implanting silicon, the element isolation can be performed deep in the silicon substrate, the step on the surface of the silicon substrate can be reduced, and the bird's beak can be reduced.

【0027】また、シリコン基板の素子分離領域となる
べき領域をエッチングし、高濃度の酸素を注入し、前記
エッチングしてできた凹部の両、あるいは片側側面に高
濃度の窒素を注入し、素子分離酸化を行うようにしたの
で、素子分離をシリコン基板深くまで行えるとともにシ
リコン基板表面の段差を小さくすることができ、さらに
バーズビークを低減することができるという効果があ
る。
Further, a region to be an element isolation region of the silicon substrate is etched, high-concentration oxygen is injected, and high-concentration nitrogen is injected into both or one side surface of the concave portion formed by the etching, thereby forming the element. Since the separation and oxidation are performed, there is an effect that the device can be separated deep into the silicon substrate, the step on the surface of the silicon substrate can be reduced, and the bird's beak can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1の実施例によるシリコン基板の
素子分離を示す断面図である。
FIG. 1 is a sectional view showing element isolation of a silicon substrate according to a first embodiment of the present invention.

【図2】この発明の第2の実施例によるシリコン基板の
素子分離を示す断面図である。
FIG. 2 is a sectional view showing element isolation of a silicon substrate according to a second embodiment of the present invention.

【図3】この発明の第3の実施例によるシリコン基板の
素子分離を示す断面図である。
FIG. 3 is a sectional view showing element isolation of a silicon substrate according to a third embodiment of the present invention.

【図4】この発明の第4の実施例によるシリコン基板の
素子分離を示す断面図である。
FIG. 4 is a sectional view showing element isolation of a silicon substrate according to a fourth embodiment of the present invention.

【図5】この発明の第5の実施例によるシリコン基板の
素子分離を示す断面図である。
FIG. 5 is a sectional view showing element isolation of a silicon substrate according to a fifth embodiment of the present invention.

【図6】従来のシリコン基板の素子分離を示す断面図で
ある。
FIG. 6 is a cross-sectional view showing element isolation of a conventional silicon substrate.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 薄い酸化膜 3 窒化膜 4 分離酸化膜 5 高濃度酸素注入層 6 高濃度窒素注入層 7 パターニングされたレジスト 8 パターニングされたレジスト 9 エッチング領域 10 斜め高濃度窒素注入 14 分離酸化膜 15 高濃度酸素注入層 16a 高濃度窒素注入層 16b 高濃度窒素注入層 17 パターニングされたレジスト 20 斜め高濃度窒素注入 24 分離酸化膜 25 高濃度酸素注入層 26 高濃度窒素注入層 34 分離酸化膜 35 高濃度酸素注入層 36 高濃度窒素注入層 44 分離酸化膜 45 高濃度酸素注入層 46 高濃度窒素注入層 54 分離酸化膜 l 窒化膜パターンの幅 m バーズビークの伸び 1 Silicon Substrate 2 Thin Oxide Film 3 Nitride Film 4 Isolation Oxide Film 5 High Concentration Oxygen Injection Layer 6 High Concentration Nitrogen Injection Layer 7 Patterned Resist 8 Patterned Resist 9 Etching Area 10 Oblique High Concentration Nitrogen Injection 14 Separation Oxide Film 15 High-concentration oxygen implantation layer 16a High-concentration nitrogen implantation layer 16b High-concentration nitrogen implantation layer 17 Patterned resist 20 Oblique high-concentration nitrogen implantation 24 Isolation oxide film 25 High-concentration oxygen implantation layer 26 High-concentration nitrogen implantation layer 34 Isolation oxide film 35 High High-concentration oxygen injection layer 36 High-concentration nitrogen injection layer 44 Isolation oxide film 45 High-concentration oxygen injection layer 46 High-concentration nitrogen injection layer 54 Isolation oxide film l Nitride film pattern width m Bird's beak elongation

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 シリコン基板上に素子分離領域を形成す
る方法において、 前記シリコン基板の素子分離領域となるべき領域に高濃
度の酸素を注入する工程と、 前記領域に前記酸素注入工程よりも高エネルギーで高濃
度の窒素を注入する工程と、 前記処理した領域を酸化する工程とを有することを特徴
とする半導体装置の製造方法。
1. A method of forming an element isolation region on a silicon substrate, comprising the steps of injecting a high concentration of oxygen into a region of the silicon substrate that is to be an element isolation region, A method of manufacturing a semiconductor device, comprising: a step of implanting high-concentration nitrogen with energy; and a step of oxidizing the treated region.
【請求項2】 シリコン基板上に素子分離領域を形成す
る方法において、 前記シリコン基板の素子分離領域となるべき領域に高濃
度の酸素を注入する工程と、 前記高濃度酸素注入層の両側部にのみ、前記酸素注入工
程よりも高濃度の窒素を注入する工程と、 前記処理した領域を酸化する工程とを有することを特徴
とする半導体装置の製造方法。
2. A method of forming an element isolation region on a silicon substrate, the method comprising injecting a high concentration of oxygen into a region of the silicon substrate to be an element isolation region, and forming a high concentration oxygen implantation layer on both sides thereof. Only, a method of manufacturing a semiconductor device comprising: a step of injecting nitrogen at a concentration higher than that of the oxygen injecting step; and a step of oxidizing the treated region.
【請求項3】 シリコン基板上に素子分離領域を形成す
る方法において、 前記シリコン基板の素子分離領域となるべき領域に高濃
度の酸素を注入する工程と、 前記高濃度の酸素注入層の両側部の一方のみに、前記酸
素注入工程よりも高濃度の窒素を注入する工程と、 前記処理した領域を酸化する工程とを有することを特徴
とする半導体装置の製造方法。
3. A method of forming an element isolation region on a silicon substrate, the step of injecting a high concentration of oxygen into a region of the silicon substrate to be an element isolation region, and both sides of the high concentration oxygen implantation layer. 2. A method of manufacturing a semiconductor device, comprising the steps of injecting only one of them with a higher concentration of nitrogen than the oxygen injecting step, and oxidizing the treated region.
【請求項4】 シリコン基板上に素子分離領域を形成す
る方法において、 前記シリコン基板の素子分離領域となるべき領域をエッ
チングする工程と、 前記領域に高濃度の酸素を注入する工程と、 前記エッチングしてできた凹部の両側面に高濃度の窒素
を注入する工程と、 前記処理した領域を酸化する工程とを有することを特徴
とする半導体装置の製造方法。
4. A method of forming an element isolation region on a silicon substrate, the step of etching a region of the silicon substrate to be the element isolation region, the step of injecting high-concentration oxygen into the region, and the etching. A method of manufacturing a semiconductor device, comprising: a step of injecting high-concentration nitrogen into both side surfaces of the recess thus formed; and a step of oxidizing the treated region.
【請求項5】 シリコン基板上に素子分離領域を形成す
る方法において、 前記シリコン基板の素子分離領域となるべき領域をエッ
チングする工程と、 前記領域に高濃度の酸素を注入する工程と、 前記エッチングしてできた凹部の片側側面に高濃度の窒
素を注入する工程と、 前記処理した領域を酸化する工程とを有することを特徴
とする半導体装置の製造方法。
5. A method for forming an element isolation region on a silicon substrate, the step of etching a region of the silicon substrate to be the element isolation region, the step of injecting high concentration oxygen into the region, and the etching. A method of manufacturing a semiconductor device, comprising: a step of injecting high-concentration nitrogen into one side surface of the recess thus formed; and a step of oxidizing the treated region.
JP33435791A 1991-11-22 1991-11-22 Manufacture of semiconductor device Pending JPH05144805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33435791A JPH05144805A (en) 1991-11-22 1991-11-22 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33435791A JPH05144805A (en) 1991-11-22 1991-11-22 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH05144805A true JPH05144805A (en) 1993-06-11

Family

ID=18276472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33435791A Pending JPH05144805A (en) 1991-11-22 1991-11-22 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH05144805A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5599731A (en) * 1994-07-06 1997-02-04 Hyundai Electronics Industries Co., Ltd. Method of forming a field oxide film in a semiconductor device
US5712186A (en) * 1996-06-12 1998-01-27 Micron Technology, Inc. Method for growing field oxide to minimize birds' beak length
US5841171A (en) * 1996-05-08 1998-11-24 Mitsubishi Denki Kabushiki Kaisha SOI Semiconductor devices
US6127242A (en) * 1994-02-10 2000-10-03 Micron Technology, Inc. Method for semiconductor device isolation using oxygen and nitrogen ion implantations to reduce lateral encroachment
US7855744B2 (en) 2005-06-24 2010-12-21 Canon Kabushiki Kaisha Image pickup apparatus and a notification operation control method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6127242A (en) * 1994-02-10 2000-10-03 Micron Technology, Inc. Method for semiconductor device isolation using oxygen and nitrogen ion implantations to reduce lateral encroachment
US5599731A (en) * 1994-07-06 1997-02-04 Hyundai Electronics Industries Co., Ltd. Method of forming a field oxide film in a semiconductor device
US5841171A (en) * 1996-05-08 1998-11-24 Mitsubishi Denki Kabushiki Kaisha SOI Semiconductor devices
US6096583A (en) * 1996-05-08 2000-08-01 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and manufacturing method thereof
US5712186A (en) * 1996-06-12 1998-01-27 Micron Technology, Inc. Method for growing field oxide to minimize birds' beak length
US6333243B1 (en) 1996-06-12 2001-12-25 Micron Technology, Inc. Method for growing field oxide to minimize birds' beak length
US7855744B2 (en) 2005-06-24 2010-12-21 Canon Kabushiki Kaisha Image pickup apparatus and a notification operation control method

Similar Documents

Publication Publication Date Title
US6358819B1 (en) Dual gate oxide process for deep submicron ICS
JPH05144805A (en) Manufacture of semiconductor device
KR100195846B1 (en) Method of fabricating semiconductor device
JPH08125010A (en) Isolation structure of semiconductor device and formation thereof
JPH098020A (en) Manufacture of semiconductor device
JPH07307305A (en) Method of forming field oxidizing layer of which field injection region forms lower layer with low temperature oxidizing layer used on injection mask
JPH0268930A (en) Manufacture of semiconductor device
KR960014453B1 (en) Manufacturing method for field oxide film
JPH0779101B2 (en) Manufacturing method of semiconductor device
KR100239669B1 (en) Mask of field oxidation in semiconductor device and method of manufacturing the same
JPS6331124A (en) Manufacture of semiconductor device
JPH0316150A (en) Manufacture of semiconductor element
JPH04123431A (en) Semiconductor device and its manufacture
JPH01179431A (en) Manufacture of semiconductor device
JPS61290754A (en) Manufacture of semiconductor device
JPS61184833A (en) Manufacture of semiconductor device
JPH06167802A (en) Production of phase shift mask
JPH03229421A (en) Manufacture of semiconductor device
JPH02206148A (en) Manufacture of semiconductor device
JPS58180062A (en) Manufacture of semiconductor device
JPS60245250A (en) Manufacture of semiconductor device
JPH1167752A (en) Manufacture of semiconductor device
JPH04309226A (en) Manufacture of semiconductor device
JPS62248236A (en) Manufacture of semiconductor device
JPH0499028A (en) Manufacture of semiconductor device