JPH05140642A - Method for dehydrogenizing hot rolled steel material - Google Patents

Method for dehydrogenizing hot rolled steel material

Info

Publication number
JPH05140642A
JPH05140642A JP3329828A JP32982891A JPH05140642A JP H05140642 A JPH05140642 A JP H05140642A JP 3329828 A JP3329828 A JP 3329828A JP 32982891 A JP32982891 A JP 32982891A JP H05140642 A JPH05140642 A JP H05140642A
Authority
JP
Japan
Prior art keywords
steel material
hot
reheating
cooling
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3329828A
Other languages
Japanese (ja)
Inventor
Toshihiko Sato
俊彦 佐藤
Akira Tanahashi
章 棚橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topy Industries Ltd
Original Assignee
Topy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topy Industries Ltd filed Critical Topy Industries Ltd
Priority to JP3329828A priority Critical patent/JPH05140642A/en
Publication of JPH05140642A publication Critical patent/JPH05140642A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Metal Rolling (AREA)

Abstract

PURPOSE:To dehydrogenize a hot-rolled steel material without changing the mechanical properties at a low cost by slowly cooling the steel material after completing hot-finish rolling and rapidly reheating it to neat the recrystallizing temp. at a specific heating rate in the slow-cooling stage. CONSTITUTION:The steel material is hot-rolled, and is slowly cooled to <=about 200 deg.C with air-cooling after completing the finish rolling. This steel material during slow-cooling stage is rapidly reheated to near the recrystallizing temp., e.g. to about 500 deg.C at >=1 deg.C/sec heating rate. It is preferable that the reheating is executed by using the induction coil. By this reheating, diffusion and discharge of the hydrogen in the steel material is made active and the dehydrogenization is completed till developing the delayed fracture. In this way the steel material can be dehydrogenized on line within a short time and at a low initial cost and low running cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱間圧延鋼材から水素
を抜く脱水素方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dehydrogenation method for removing hydrogen from hot rolled steel.

【0002】[0002]

【従来の技術】ある種の鉄鋼鋼材においては、鋼中水素
に起因する欠陥(遅れ破壊)が発生しやすいことがわか
っている。鋼中の水素を低減させる方法は、大別する
と、(1) 溶鋼段階で水素を低減する真空脱ガス処理
法、(2) ブルーム、ビレット、スラブあるいはそれ
らを圧延した段階で水素を低減させる鋼塊・鋼材脱ガス
処理法、に分けられる。本発明方法は鋼塊・鋼材脱ガス
処理法に属する。
2. Description of the Related Art It has been known that in some steel materials, defects (delayed fracture) due to hydrogen in steel are likely to occur. Methods for reducing hydrogen in steel are roughly classified into (1) a vacuum degassing treatment method for reducing hydrogen at the molten steel stage, (2) steel for reducing hydrogen at the stage of blooming, billet, slab or rolling thereof. Ingot / steel degassing method. The method of the present invention belongs to a steel ingot / steel material degassing treatment method.

【0003】真空脱ガス処理法には、RH脱ガス法、L
D脱ガス法、ASFA−SKF法などがあり、雰囲気中
の水素分圧を低くすることにより脱水素を促進させる。
鋼塊・鋼材脱ガス処理法には、鋼塊ザグ圧着、脱水素徐
冷法などがあり、ザグの圧着、徐冷による高温保持によ
り鋼中の水素を拡散除去する。
Vacuum degassing treatment methods include RH degassing method and L
There are a D degassing method, an ASFA-SKF method and the like, and dehydrogenation is promoted by lowering the hydrogen partial pressure in the atmosphere.
The steel ingot / steel material degassing treatment method includes a steel ingot zag press bonding, dehydrogenation gradual cooling method, and the like, in which hydrogen in the steel is diffused and removed by the high temperature holding by the zag press bonding and gradual cooling.

【0004】[0004]

【発明が解決しようとする課題】従来脱水素方法には、
脱水素という品質機能上の問題は少ないが、イニシャル
コスト、ランニングコストの上で問題がある。
The conventional dehydrogenation methods include:
Although there are few problems related to quality function of dehydrogenation, there are problems in terms of initial cost and running cost.

【0005】本発明の目的は、従来法に比べて、コスト
的に有利な、熱間圧延鋼材の脱水素方法を提供すること
にある。
An object of the present invention is to provide a dehydrogenation method for hot-rolled steel, which is more cost effective than conventional methods.

【0006】[0006]

【課題を解決するための手段】上記目的は、本発明によ
れば、熱間圧延の仕上げ圧延終了後の徐冷段階にある鋼
材を再結晶温度近傍まで1℃/sec 以上の加熱速度で急
速再加熱する熱間圧延鋼材の脱水素方法によって、達成
される。
According to the present invention, the above object is to rapidly cool a steel material in a slow cooling stage after finishing rolling of hot rolling to a temperature close to a recrystallization temperature at a heating rate of 1 ° C./sec or more. This is achieved by the method of dehydrogenation of hot-rolled steel material which is reheated.

【0007】[0007]

【作用】本発明方法においては、仕上げ圧延終了後、徐
冷、梱包されていた鋼材について、徐冷段階で約500
℃に急速再加熱することにより、水素の拡散放出が活発
化され、約30分程度で、したがって遅れ破壊が発生す
る前に、水素は放出される。
In the method of the present invention, after finishing rolling, the steel material which has been slowly cooled and packaged is about 500 at the slow cooling step.
Rapid reheating to ° C activates the diffusional release of hydrogen, which is released in about 30 minutes and thus before delayed fracture occurs.

【0008】[0008]

【実施例】以下に、本発明に係る熱間圧延鋼材の脱水素
方法の望ましい実施例を、図面を参照して説明する。図
1は、鋼材の熱間圧延、空冷、梱包工程を順に示してい
る。(イ)は熱間圧延の分塊圧延工程を示し、(ロ)は
熱間圧延の仕上げ工程を示し、(ハ)は熱間圧延後の徐
冷(空冷)工程を示し、(ホ)は鋼材が約200℃以下
まで冷却されたときに行われる梱包工程を示している。
本発明では、(ハ)と(ホ)の工程の間に、(ニ)の急
速再加熱工程を設け、徐冷段階にある鋼材を200℃前
後の温度から1℃/sec 以上の加熱速度で再結晶温度近
傍まで極力高温の温度に急速再加熱する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the hot-rolled steel dehydrogenation method according to the present invention will be described below with reference to the drawings. FIG. 1 shows the steps of hot rolling, air cooling, and packing of steel materials in order. (A) shows the slabbing process of hot rolling, (b) shows the finishing process of hot rolling, (c) shows the slow cooling (air cooling) process after hot rolling, and (e) shows The packing process performed when the steel material is cooled to about 200 ° C. or lower is shown.
In the present invention, the rapid reheating step (d) is provided between the steps (c) and (e), and the steel material in the slow cooling stage is heated from a temperature of around 200 ° C at a heating rate of 1 ° C / sec or more. Rapidly reheat to a temperature as high as possible up to near the recrystallization temperature.

【0009】急速再加熱手段としては、図1に示すよう
に、誘導コイル2を設け、その中に圧延鋼材4を通し、
圧延鋼材4にうず電流を生ぜしめ、発生するジュール熱
によって圧延鋼材を急速加熱する。
As a rapid reheating means, as shown in FIG. 1, an induction coil 2 is provided, and a rolled steel material 4 is passed through it,
An eddy current is generated in the rolled steel material 4, and the rolled steel material is rapidly heated by the generated Joule heat.

【0010】急速再加熱工程による脱水素メカニズムは
次の通りである。まず、水素が鋼材の遅れ破壊を誘発さ
せるメカニズムを整理すると次の如くにまとめられる。 (1) 鋼中に侵入固溶にしている水素原子は、鋳造段
階で鋼塊中央部のザグ部(ポーラスな部分)あるいは非
金属介在物周辺にトラップされ、集積する。 (2) 熱間圧延では一般的に鋼材中心部から表面迄の
距離が長い場合は、水素が抜ける迄に時間がかかる。 (3) 遅れ破壊が発生する時期とその程度は水素量、
鋼の組織(たとえば、パーライト、ベイナイト、マルテ
ンサイト)によって異なるが、従来の経験からフェライ
ト、パーライトにベイナイトが混在する場合には1−2
時間後に割れが発生する。
The dehydrogenation mechanism by the rapid reheating process is as follows. First, the mechanism by which hydrogen induces delayed fracture of steel materials is summarized as follows. (1) Hydrogen atoms that enter and form a solid solution in steel are trapped and accumulated in the zag portion (porous portion) of the central portion of the steel ingot or around non-metallic inclusions during the casting stage. (2) In hot rolling, it generally takes time for hydrogen to escape when the distance from the center of the steel material to the surface is long. (3) The time and the extent of delayed fracture are the amount of hydrogen,
Depending on the structure of the steel (for example, pearlite, bainite, martensite), it is 1-2 if ferrite and pearlite are mixed with bainite from conventional experience.
Cracks occur after time.

【0011】したがって、圧延後に遅れ破壊が発生する
迄の間に水素を拡散放出しなければならない。この意味
で、仕上げ圧延終了後、冷却、梱包されていた鋼材につ
いて冷却過程で再加熱することによって水素の拡散、放
出をより活発にし(拡散係数は高温ほど大きい)、遅れ
破壊発生までに脱水素を完了させるようにした。再加熱
として誘導加熱を利用すると、短時間で加熱が可能であ
り、鋼材を再結晶温度近傍たとえば500℃程度に加熱
することにより、30分程度で水素の拡散放出を完了す
るこを見出し、遅れ破壊発生前に脱水素が可能であるこ
とがわかった。
Therefore, hydrogen must be diffused and released after rolling until delayed fracture occurs. In this sense, after finishing rolling is finished, the steel materials that have been cooled and packed are reheated in the cooling process to make hydrogen diffusion and release more active (diffusion coefficient is higher at higher temperatures), and dehydrogenation occurs until delayed fracture occurs. Was completed. When induction heating is used for reheating, it is possible to heat in a short time, and it was found that by heating the steel material near the recrystallization temperature, for example, about 500 ° C, hydrogen diffusion and release can be completed in about 30 minutes. It was found that dehydrogenation was possible before the destruction occurred.

【0012】再結晶温度近傍としたのは、再結晶温度を
はるかに超える場合は、結晶粒が粗大となるため降伏点
等の機械的性質が変化するので、それを防止するためで
ある。
The reason why the temperature is close to the recrystallization temperature is to prevent the mechanical properties such as the yield point from changing when the recrystallization temperature is far exceeded, because the crystal grains become coarse.

【0013】本発明の脱水素方法の効果を確認する試験
を行った。試験材はSM50A−Eで、化学成分は重量
%で、0.16C−0.236Si−1.40Mn−
0.015P−0.006S−0.06Cu−0.04
Ni−0.07Cr−0.01Mo−0.026Al−
0.001V−0.0084N−0.0027O−0.
0004Hであった。形状は長さ5m、厚さ25mmの熱
間圧延平鋼とした。図2に示すように、a−jの10点
の試験点をとった。そして、図3に示すように、300
℃まで空冷された時にa、b、cの3点は500℃まで
急速加熱し、残りのd−jの7点は300℃から加熱し
ないでそのまま空冷した。したがって、a、b、cの3
点に本発明方法が施され、d−jの7点は従来法のまま
の空冷とした。
A test was conducted to confirm the effect of the dehydrogenation method of the present invention. The test material is SM50A-E, and the chemical composition is 0.16C-0.236Si-1.40Mn- in% by weight.
0.015P-0.006S-0.06Cu-0.04
Ni-0.07Cr-0.01Mo-0.026Al-
0.001V-0.0084N-0.0027O-0.
It was 0004H. The shape was hot rolled flat steel having a length of 5 m and a thickness of 25 mm. As shown in FIG. 2, ten test points aj were taken. Then, as shown in FIG.
When air-cooled to 0 ° C, the three points a, b, and c were rapidly heated to 500 ° C, and the remaining seven points d-j were air-cooled from 300 ° C without heating. Therefore, 3 of a, b, and c
The method of the present invention was applied to the points, and 7 points of dj were air-cooled as in the conventional method.

【0014】a−j点について、超音波(UT)探傷試
験を行った。結果は図2に示す通りである。すなわち、
UT欠陥エコー高さ(100%B1 +20dB)は、
a、b、c点では無しであるのに対し、d−j点では2
5−90%であった。このことから、本発明方法が適用
されたa−c点は脱水素されているのに対し、d−j点
では脱水素が完全ではなく、水素欠陥が存在し、遅れ破
壊のおそれがあることがわかる。
An ultrasonic (UT) flaw detection test was conducted on points aj. The results are shown in FIG. That is,
UT defect echo height (100% B 1 +20 dB)
None at points a, b, and c, but 2 at points d-j
It was 5-90%. From this, it is understood that dehydrogenation is not complete at points d-j to which the method of the present invention is applied, but dehydrogenation is not complete at points d-j, and hydrogen defects are present, which may cause delayed fracture. I understand.

【0015】本発明実施例における誘導急速再加熱は、
従来の脱水素方法にくらべて、設備導入費(イニシャル
コスト)、運転費(ランニングコスト)とも安価であ
る。また、オンラインでの処理が可能であり、保温用に
高温で鋼材を積み重ねる必要もないから、荷の動きが止
まることもなく、物流の面からも有利である。
The induction rapid reheating in the embodiment of the present invention is
Compared to the conventional dehydrogenation method, the equipment introduction cost (initial cost) and operating cost (running cost) are cheaper. Further, since it is possible to process online and it is not necessary to stack steel materials at a high temperature for heat retention, the movement of cargo does not stop, which is advantageous in terms of physical distribution.

【0016】[0016]

【発明の効果】本発明によれば、熱間圧延後の徐冷段階
にある鋼材を再結晶温度近傍に急速再加熱するので、遅
れ破壊発生前に脱水素でき、しかも従来の脱水素方法に
比べて低コストで実施できる。
EFFECTS OF THE INVENTION According to the present invention, since the steel material in the slow cooling stage after hot rolling is rapidly reheated to near the recrystallization temperature, it is possible to dehydrogenate before the occurrence of delayed fracture, and moreover to the conventional dehydrogenation method. It can be carried out at a lower cost than that.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る熱間圧延鋼材の脱水素
方法の工程図である。
FIG. 1 is a process diagram of a dehydrogenation method for hot-rolled steel material according to an embodiment of the present invention.

【図2】本発明方法の試験材の平面図並びに損傷試験結
果図である。
FIG. 2 is a plan view and a damage test result diagram of a test material according to the method of the present invention.

【図3】図2の試験材の各部a−jの温度履歴図であ
る。
FIG. 3 is a temperature history diagram of each portion aj of the test material of FIG.

【符号の説明】[Explanation of symbols]

2 誘導コイル 4 圧延鋼材 2 induction coil 4 rolled steel

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熱間仕上圧延後徐冷段階にある鋼材を再
結晶温度近傍まで1℃/sec 以上の加熱速度で急速に再
加熱することを特徴とする熱間圧延鋼材の脱水素方法。
1. A method for dehydrogenating a hot rolled steel material, which comprises rapidly reheating a steel material in an annealing step after hot finish rolling to a temperature near a recrystallization temperature at a heating rate of 1 ° C./sec or more.
JP3329828A 1991-11-19 1991-11-19 Method for dehydrogenizing hot rolled steel material Pending JPH05140642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3329828A JPH05140642A (en) 1991-11-19 1991-11-19 Method for dehydrogenizing hot rolled steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3329828A JPH05140642A (en) 1991-11-19 1991-11-19 Method for dehydrogenizing hot rolled steel material

Publications (1)

Publication Number Publication Date
JPH05140642A true JPH05140642A (en) 1993-06-08

Family

ID=18225688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3329828A Pending JPH05140642A (en) 1991-11-19 1991-11-19 Method for dehydrogenizing hot rolled steel material

Country Status (1)

Country Link
JP (1) JPH05140642A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002046479A1 (en) * 2000-12-07 2002-06-13 Aoyama Seisakusho Co., Ltd. Method for baking steel part
JP2020033746A (en) * 2018-08-29 2020-03-05 日本電信電話株式会社 Recovery device
CN116034172A (en) * 2020-07-14 2023-04-28 杰富意钢铁株式会社 Dehydrogenation method for steel material and steel product, and method for producing steel material and steel product

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002046479A1 (en) * 2000-12-07 2002-06-13 Aoyama Seisakusho Co., Ltd. Method for baking steel part
US6855217B2 (en) 2000-12-07 2005-02-15 Aoyama Seisakusho Co., Ltd. Method of baking treatment of steel product parts
JP2020033746A (en) * 2018-08-29 2020-03-05 日本電信電話株式会社 Recovery device
CN116034172A (en) * 2020-07-14 2023-04-28 杰富意钢铁株式会社 Dehydrogenation method for steel material and steel product, and method for producing steel material and steel product

Similar Documents

Publication Publication Date Title
JPH0717960B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
EP0019289B1 (en) Process for producing grain-oriented silicon steel strip
JPH05140642A (en) Method for dehydrogenizing hot rolled steel material
JPH0717953B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
US4291558A (en) Process of rolling iron-silicon strip material
JP3849146B2 (en) Method for producing unidirectional silicon steel sheet
JPS6332851B2 (en)
JP2512650B2 (en) Method for producing Cr-Ni type stainless steel thin plate excellent in material and surface quality
JPH0568525B2 (en)
JPS5852444B2 (en) Method for suppressing steel billet surface cracking during hot rolling
JP2735896B2 (en) High temperature heating method for silicon steel slab.
JP2002256339A (en) Method for manufacturing steel plate
JP2001353563A (en) Direct-feed rolling method of continuously cast slab
JPS63109115A (en) Production of grain oriented silicon steel sheet having good electromagnetic characteristic
JP2548942B2 (en) Method for preventing cracking during rapid solidification of Fe-Ni based alloy
JPS61243124A (en) Production of black plate for tin plate having excellent workability
JPH0312132B2 (en)
JP2618997B2 (en) Manufacturing method of non-aged hot rolled steel sheet
JP2807351B2 (en) Method for producing unidirectional silicon steel sheet having uniform magnetic properties in the sheet width direction
JP2693327B2 (en) Method for producing standard high silicon low carbon grain oriented silicon steel
JP3858546B2 (en) Manufacturing method of high carbon hot rolled steel sheet
JP3472857B2 (en) Method of manufacturing hot rolled ultra-high silicon electromagnetic steel sheet with good ear shape
JP3538855B2 (en) Manufacturing method of grain-oriented silicon steel sheet
JP3474629B2 (en) Method of manufacturing hot rolled ultra-high silicon electromagnetic steel sheet
JPS5852441B2 (en) Method for preventing surface cracking of steel slabs during hot rolling