JPH05138370A - Production of rolled clad material - Google Patents

Production of rolled clad material

Info

Publication number
JPH05138370A
JPH05138370A JP32676091A JP32676091A JPH05138370A JP H05138370 A JPH05138370 A JP H05138370A JP 32676091 A JP32676091 A JP 32676091A JP 32676091 A JP32676091 A JP 32676091A JP H05138370 A JPH05138370 A JP H05138370A
Authority
JP
Japan
Prior art keywords
rolling
joining
liquid phase
steel
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32676091A
Other languages
Japanese (ja)
Inventor
Sadahiro Yamamoto
定弘 山本
Hiroyasu Yokoyama
泰康 横山
Motoaki Suzuki
元昭 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP32676091A priority Critical patent/JPH05138370A/en
Publication of JPH05138370A publication Critical patent/JPH05138370A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To effectively produce an extremely thick steel plate by previously joining slabs by a liquid phase diffusion joining method. CONSTITUTION:The clad material is produced by rolling. The slabs are previously joined by the liquid phase diffusion joining method in the production thereof. An Ni-B alloy is used as an insert material in the case of executing the liquid phase diffusion joining. The liquid phase diffusion joining is executed by using the Ni-B alloy as the insert material and maintaining the vacuum degree at the boundary at <=1X10<-1>Torr, then subjecting the materials to heating and hot rolling. As a result, the good joining property is obtd. at <=3 reduction ratio.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は圧延クラッド材の製造方
法に関するもので、比較的少い圧下比によって良好な接
合性を得しめ、極厚クラッド鋼の如きを適切に得ること
のできる圧延クラッド材の製造方法を提供しようとする
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rolled clad material, which has a good weldability due to a relatively small rolling ratio and is capable of appropriately obtaining an extremely thick clad steel. An attempt is made to provide a method for manufacturing a material.

【0002】[0002]

【従来の技術】クラッド鋼の製造方法としては熱間圧延
法、肉盛り溶接法、爆着法、鋳ぐるみ法があるが、経済
性および生産性から総合的に判断した場合熱間圧延法が
最も優れている。然してこの熱間圧延によりクラッド鋼
を製造する場合、良好な接合性を得るには合せ材が汎用
のγ系ステンレス鋼であるSUS304の場合は4以上の圧下
比、またハステロイ合金で代表される高Ni合金の場合は
5以上の圧下比が必要である。
2. Description of the Related Art Although there are hot rolling method, build-up welding method, explosive welding method, and cast-girth method as a method for producing clad steel, the hot rolling method is comprehensively judged from economical efficiency and productivity. The best. However, in the case of producing a clad steel by this hot rolling, in order to obtain good bondability, in the case of SUS304, which is a general-purpose γ-stainless steel, the rolling ratio is 4 or more, and the high ratio typified by Hastelloy alloy. For Ni alloys, a reduction ratio of 5 or more is required.

【0003】なお、このようなクラッド鋼の製造に関し
て、スラブ組立の段階で母材と合せ材をあらかじめ接合
(以下予備接合と呼ぶ)させておき、その後熱間圧延を
行うことについて従来次の3つのグループの提案がなさ
れている。 (1)ホットプレスを用いるもの(特開昭57-134287 、
57-112985) (2)熱間静水圧プレス(HIP)を用いるもの(特開昭56
-122682) (3)ろう付けするもの(特開昭57-109588 、57-11298
5)
Regarding the production of such a clad steel, the base material and the laminated material are previously joined (hereinafter referred to as pre-joining) at the stage of slab assembly, and then hot rolling is performed. Proposals for three groups have been made. (1) Using a hot press (JP-A-57-134287,
57-112985) (2) Using a hot isostatic press (HIP) (JP-A-56)
-122682) (3) What is brazed (JP-A-57-109588, 57-11298)
Five)

【0004】[0004]

【発明が解決しようとする課題】前記した従来の熱間圧
延法では、板厚が100mm以上の極厚クラッド鋼の製造
においてスラブ厚さに限度があるためこのような圧下比
の確保が難しく、極厚クラッド鋼の製造が困難である。
即ち近時においては、連続鋳造によって鋼が製造される
が、こうした方法によって作製されるスクブの厚みは大
略250mm程度であり、したがって圧下比4を確保する
ためには、製品の最大厚は60mm程度になってしまう。
In the conventional hot rolling method described above, it is difficult to secure such a reduction ratio because there is a limit to the slab thickness in the production of extremely thick clad steel having a plate thickness of 100 mm or more, It is difficult to manufacture extremely thick clad steel.
That is, although steel is manufactured by continuous casting in recent years, the thickness of the sukubu produced by such a method is about 250 mm. Therefore, in order to secure the reduction ratio 4, the maximum thickness of the product is about 60 mm. Become.

【0005】前記のように提案されている(1)のホッ
トプレスを用いる方法の大略は、「接合しようとする界
面にインサート材を挿入し、これをレトルトで覆い、レ
トルト内を減圧(もしくは非酸化性雰囲気)にした後、
加熱しながらプレスする」方法であって、その際にイン
サート材は溶融させず、固相の状態で接合を行なう、い
わゆる固相接合が行なわれる。こうした方法によれば、
たしかに良好な接合が保たれるが、如何せん工程が複雑
である。即ちまずレトルトを使用しなければならない
し、このレトルトは1回の使用でスクラップとなり、安
価なクラッドを提供する場合の大きな障害となる。また
加熱しながら圧力を加えることも大掛かりな設備を必要
とし、上記の目的を達成する上で障害となる。通常スラ
ブの大きさは2000mm×3000mm程度(最大210
0mm×4500mm)のひろい面積を有するものであり、
これをプレスするには膨大な設備が必要であることはい
うまでもない。ちなみにこうしたホットプレスによって
可能な被接合物の大きさは、通常1000mm×1500
mm程度であり、従来鉄鋼メーカーが作っているスラブサ
イズよりもはるかに小さい。
The method of using the hot press of (1) proposed as described above is generally described as follows: "Insert material is inserted at the interface to be joined and covered with a retort, and the inside of the retort is depressurized (or non-reduced). After changing to an oxidizing atmosphere)
This is a method of “pressing while heating”, in which the so-called solid phase bonding is performed, in which the insert material is not melted and bonding is performed in the solid phase. According to these methods,
Although good bonding is maintained, the complicated process is complicated. That is, the retort must be used first, and the retort becomes scrap after one use, which is a major obstacle in providing an inexpensive clad. Also, applying pressure while heating requires a large-scale facility, which is an obstacle to achieving the above-mentioned object. The size of a normal slab is about 2000 mm x 3000 mm (maximum 210
It has a large area of 0 mm x 4500 mm),
It goes without saying that a huge amount of equipment is required to press this. By the way, the size of the object to be joined by such hot pressing is usually 1000 mm x 1500
It is about mm, which is much smaller than the slab size made by conventional steel manufacturers.

【0006】これらの不利は、前記(2)の提案による
HIP 処理を行なうとなると、さらにひどくなる。即ち特
開昭56-122682 の実施例に記載されているのは、縦横各
54mmのスラブであり、(鉄鋼メーカーでクラッド鋼を
製造している者の観点からすれば)実験室規模を出てい
ない。上記2000mm×3000mm程度(最大2100
mm×4500mm)のスラブを作ることは、とうてい不可
能である。よほど高価なものでもない限り、工業的に意
味のないものとなってしまう。
These disadvantages are due to the proposal of (2) above.
When it comes to HIP processing, it gets even worse. That is, the example disclosed in JP-A-56-122682 is a slab having a length and width of 54 mm, which is out of the laboratory scale (from the viewpoint of a person who manufactures clad steel at a steel manufacturer). Absent. About 2000mm x 3000mm (2100 at maximum)
It is almost impossible to make a slab (mm x 4500 mm). Unless it is very expensive, it will be meaningless industrially.

【0007】こうした点からは前記(3)のろう付けは
有利である。即ち基本的に加圧が不要というところが大
きなアドバンテージである。また上記のスラブを組み立
てる際にも、設備は加熱炉だけで足りる。組立方法を工
夫すれば大気圧でも出来る。そうすれば鉄鋼メーカーが
保有している設備を流用でき、新たな設備投資をしなく
てよい。しかしながら、この(3)のろう付けは再加熱
・圧延時の溶融現象である。つまりろう付けは基本的に
ろう材を溶融させ、これを凝固させて接合を行なうこと
になるが、再度加熱した場合には、ろう材の融点で再度
溶融することになる。圧延時の溶融現象はクラッド鋼を
作る上できわめて都合がわるい。圧延過程で融液が飛び
出して装置を壊したりする危険もあるが、なんといって
も接合していないのであるから、予備接合を行ない、最
初のパスから接合に寄与させることができない。本発明
者らの検討結果によると、圧延開始時に接合しているこ
とが重要であり、ろう材が再溶融しない温度範囲で圧延
を行なわなければならない。またろうの融点近傍(固相
側)では接合強度が低くなりわれわれの目的を達成でき
ないことも容易に類推される。特開昭57-112985 の実施
例をみても、接合は1100℃で行ない、圧延は850
〜740℃とかなり低い温度で行なっている。つまりろ
う付けを行なうかぎり、圧延の温度はろうの溶融温度よ
り低く、かつ接合強度を確保するために融点よりも大幅
に低い温度を選定しなければならないことになり、これ
は操業上大きな制約となる。
From this point of view, the brazing of the above (3) is advantageous. That is, it is a great advantage that pressurization is basically unnecessary. Also, when assembling the above slab, only the heating furnace is sufficient as the equipment. Atmospheric pressure can be achieved by devising the assembly method. Then, the equipment owned by the steel manufacturer can be reused, and new capital investment need not be made. However, the brazing of (3) is a melting phenomenon during reheating and rolling. That is, brazing basically melts the brazing filler metal and solidifies the brazing filler metal to perform joining, but when the brazing filler metal is heated again, it is melted again at the melting point of the brazing filler metal. The melting phenomenon during rolling is extremely inconvenient for making clad steel. There is a risk that the melt may jump out during the rolling process and break the equipment, but since it is not joined at all, pre-joining cannot be performed and it is not possible to contribute to joining from the first pass. According to the results of the study by the present inventors, it is important that they are joined at the start of rolling, and rolling must be performed within a temperature range in which the brazing material does not remelt. It is also easily inferred that the bonding strength becomes low near the melting point of the brazing material (on the solid phase side), and our purpose cannot be achieved. Even when the example of JP-A-57-112985 is seen, the joining is performed at 1100 ° C. and the rolling is 850.
It is performed at a temperature as low as ˜740 ° C. In other words, as long as brazing is performed, the rolling temperature must be lower than the melting temperature of the brazing material, and must be significantly lower than the melting point in order to secure the bonding strength, which is a major operational limitation. Become.

【0008】特開昭57-112985 、57-109588 のものは、
その詳細な発明に記載されている内容においては、ろう
付けにほかならないもので液相拡散接合とは言い難い。
即ち拡散接合はインサートに含まれる元素が接合過程で
母材あるいは合せ材に拡散し、その融点を上昇させ「等
温凝固に起こさせること」が大前提となるが、これらの
ものに記載されていないところではそうした現象が生じ
たものとはなし得ないし、実施例に記載されているCu f
oil は金属学的に考えて等温凝固を生じさせないからろ
う付けに止まり、このようにCuをインサート材に使用す
ると、溶融金属割れを発生する恐れがあり、即ち加熱時
に母材粒界に浸透し割れとなる可能性が高い。
Japanese Patent Laid-Open Nos. 57-112985 and 57-109588 are
In the content described in the detailed invention, it is nothing but brazing, and it cannot be said to be liquid phase diffusion bonding.
In other words, diffusion bonding is premised on the fact that the elements contained in the insert diffuse into the base material or the composite material during the bonding process, raising the melting point and "causing isothermal solidification", but these are not described. By the way, it cannot be said that such a phenomenon has occurred, and the Cu f
Since oil does not cause isothermal solidification in metallurgical consideration, it cannot be brazed.If Cu is used as an insert material in this way, molten metal cracking may occur, that is, it may penetrate into the base metal grain boundaries during heating. It is likely to be broken.

【0009】[0009]

【課題を解決するための手段】本発明は上記したような
従来のものにおける技術的課題を解消することについて
検討を重ね、厚物のクラッド鋼を得ることについて研究
しクラッド鋼はスラブの状態では接合していないが、ど
の過程が接合に重要なのかを考察した結果、以下の如く
推定された。 (1)組み立てられたスラブの(母材と合せ材との)界
面は、はじめ接合していない。 (2)これが加熱され、圧延に入るわけであるが、圧延
の初期段階では、母材と合せ材の界面がすべることにな
る。このすべり現象が生じた場合には、合せ材と母材と
が別々に延びていることになる。つまり変形抵抗の小さ
い材料(多くの場合母材)が大きく延び、変形抵抗の大
きな材料(多くの場合合せ材)の延びは小さい。 (3)こうした傾向は圧延板中央では少なく、板の端面
近傍で顕著になる。 (4)圧延過程における接合は「新生面」が重要なカギ
を握る。即ち、合せ材表面と母材表面に形成される「新
生面」が同時に形成され、新生面同士がコンタクトして
はじめてしっかりとした結合がなされる。 (5)しかしながら、上記のすべり現象は、片方(多く
の場合合せ材)の新生面の形成を遅らせる。つまり母材
の新生面はどんどん形成されるが、相手の合せ材の新生
面形成が遅れるため、母材の新生面が出来ても接合を寄
与する割合は減ってくる。 (6)したがって、この圧延初期過程では、金属接合に
寄与する圧下の割合が減少することになる。 (7)こうした傾向は圧延板の端部で顕著であり、端部
ほどはがれやすくなる。端部で界面が接合していない
と、これが切欠となって、ばりばりとはがれることにな
る。 (8)ある程度圧延が進むと局所的な接合が生じこのす
べり現象が抑制される(これらの接合部がピンでとめる
ような作用をする)。そうするとその後の圧延において
全面的な金属接合が生じやすくなる。つまり合せ材と母
材の「新生面」が同じ割合で形成され、金属接合に効果
的に寄与する。
The present invention has been studied to solve the technical problems in the conventional ones described above, and has been studied to obtain a thick clad steel. As a result of considering which process is important for joining although not joined, it was estimated as follows. (1) The interface (between the base material and the laminated material) of the assembled slab is initially not joined. (2) This is heated and starts rolling, but at the initial stage of rolling, the interface between the base material and the laminated material slips. When this slippage phenomenon occurs, the mating material and the base material extend separately. That is, a material having a small deformation resistance (in many cases, a base material) extends largely, and a material having a large deformation resistance (in many cases, a composite material) extends little. (3) Such a tendency is small in the center of the rolled plate, and becomes remarkable in the vicinity of the end face of the plate. (4) The "new surface" is the key to joining in the rolling process. That is, the "new surface" formed on the surface of the mating material and the surface of the base material are formed at the same time, and the new surface is firmly connected only when the new surfaces are in contact with each other. (5) However, the slip phenomenon described above delays the formation of a new surface on one side (often a laminated material). That is, the new surface of the base material is formed more and more, but the formation of the new surface of the mating material of the other party is delayed, so that even if the new surface of the base material is formed, the proportion of contribution to the bonding is reduced. (6) Therefore, in this initial rolling process, the reduction ratio contributing to metal joining is reduced. (7) This tendency is remarkable at the edge of the rolled plate, and the edge tends to peel off. If the interface is not joined at the end, it will become a notch and will peel off. (8) When the rolling progresses to some extent, local joining occurs and this slip phenomenon is suppressed (these joints have a function of stopping with a pin). Then, in the subsequent rolling, the entire metal joining is likely to occur. That is, the "new surface" of the mating material and the base material are formed at the same ratio, which effectively contributes to metal bonding.

【0010】このような検討結果による本発明は以下の
如くである。 (1)圧延によりクラッド材を製造する方法において、
液相拡散接合法によりスラブを予め接合させることを特
徴とする圧延クラッド材の製造方法。
The present invention based on the results of such studies is as follows. (1) In the method for producing a clad material by rolling,
A method for producing a rolled clad material, which comprises joining the slabs in advance by a liquid phase diffusion bonding method.

【0011】(2)液相拡散接合を行う際に、Ni−B系
合金をインサート材とすることを特徴とする前記(1)
項に記載の圧延クラッド材の製造方法。
(2) When performing liquid phase diffusion bonding, a Ni-B type alloy is used as an insert material.
The method for producing a rolled clad material according to item.

【0012】(3)液相拡散接合を行う際に、Ni−B系
合金をインサート材とし、界面の真空度を1×10-1To
rr以下にした後、加熱、熱間圧延を行うことを特徴とす
る前記(1)項に記載の圧延クラッド材の製造方法。
(3) When performing liquid phase diffusion bonding, Ni-B alloy is used as an insert material, and the degree of vacuum at the interface is 1 × 10 -1 To.
The method for producing a rolled clad material as described in the item (1), wherein heating and hot rolling are performed after the temperature is set to rr or less.

【0013】[0013]

【作用】圧延によりクラッド材を製造する方法におい
て、液相拡散接合法によりスラブを予め接合させること
によりスラブ段階で適当な接合が得られ、母材と合せ材
との最初のすべり現象が抑制され、このように最初のす
べりが抑制された条件で圧下されることにより接合に寄
与する圧下の割合が増大したものとなり、的確に接合し
たクラッドを形成する。
In the method of manufacturing the clad material by rolling, the slab is preliminarily joined by the liquid phase diffusion joining method, so that proper joining can be obtained at the slab stage and the first slip phenomenon between the base material and the laminated material is suppressed. By reducing the initial slip in such a condition that the initial slip is suppressed, the ratio of the reduction contributing to the joining is increased, and the clad is properly joined.

【0014】また液相拡散接合とすることにより圧延温
度での接合強度を確保し、又接合時の圧力を不要とし、
特別な設備などを必要としないで有効な接合を得しめ
る。
By adopting liquid phase diffusion bonding, the bonding strength at the rolling temperature is secured and the pressure at the time of bonding is unnecessary,
Effective joining can be obtained without requiring special equipment.

【0015】前記のような接合を行うに当ってインサー
ト材料をNi−B系とすることにより母材および合せ材中
へのBの拡散が急速で比較的短時間の均熱により液相か
らBが拡散し、液相拡散接合を完了せしめる。
When performing the above-mentioned joining, by using an Ni-B type insert material, the diffusion of B into the base material and the laminated material is rapid, and the soaking of B from the liquid phase is performed by soaking for a relatively short time. Diffuse to complete the liquid phase diffusion bonding.

【0016】スラブ界面の真空度を1×10-1Torr以下
とすることによってスラブ加熱時における母材、合せ材
の酸化を防止し、液相拡散接合時の接合力を高め、その
後の圧延による接合を有効に図る。
By setting the degree of vacuum at the slab interface to 1 × 10 -1 Torr or less, the base material and the composite material are prevented from being oxidized when the slab is heated, and the bonding force at the time of liquid phase diffusion bonding is increased, followed by rolling. Aim to join effectively.

【0017】前述したような本発明の技術的関係につい
て更に仔細を説明すると、図1には次の表1に示す成分
の10mmt のSUS304L(鋼1)を合せ材、190mmt の5
0kgf/mm2 級高張力(鋼2)を母材とし、下記する表2
に成分を示す40μmの厚さを有す2種類の中間材を、
合せ材と母材の間に挿入後、オープンタイプでスラブを
組立て1×10-1Torrに真空引きし、合せ材が下になる
ようにして、通常の圧延クラッド製造時の加熱条件であ
る1200℃に3時間均熱後圧下比2で100mmt に圧
延した場合の接合率及び界面のせん断強度(いずれもU
STで評価)を示す(図中にはNi−P系をインサート材
として使用した場合も併せて示しているが、Ni−P系の
説明については次項を参照のこと)。なお比較のため中
間材を挿入しない場合の結果も加えた。中間材としてCu
フォイール及び中間材を挿入しない場合は圧下比2で圧
延後、接合は全く生じていず接合率は0%であり、従っ
てせん断試験は実施できなかった。これに対し中間材と
Ni−B系合金を用いた場合は接合率100%であり、界
面のせん断強度も408MPa と、通常プロセスで圧下比
4以上を確保した場合と同等の良好な接合性が得られ
た。
The technical relationship of the present invention as described above will be described in more detail. In FIG. 1, 10 mm t of SUS304L (steel 1) having the components shown in the following Table 1 is used as a composite material, and 190 mm t of 5 is used.
Table 2 below using 0 kgf / mm 2 class high tensile strength (steel 2) as the base material.
Two kinds of intermediate materials having a thickness of 40 μm showing
After inserting it between the laminated material and the base material, assemble the slab with the open type and evacuate it to 1 × 10 -1 Torr so that the laminated material is on the lower side. Bonding rate and interface shear strength when rolled to 100 mm t at a reduction ratio of 2 after soaking at ℃ for 3 hours (U in both cases)
(Evaluation by ST) is shown (in the figure, the case where a Ni-P system is used as an insert material is also shown, but for the description of the Ni-P system, see the next section). For comparison, the results when no intermediate material was inserted were also added. Cu as intermediate material
When the foil and the intermediate material were not inserted, after rolling at a reduction ratio of 2, the joining did not occur at all and the joining rate was 0%, so that the shear test could not be performed. On the other hand, with intermediate materials
When the Ni-B alloy was used, the bonding rate was 100%, and the shear strength of the interface was 408 MPa, which was as good as the case where the reduction ratio of 4 or more was secured in the normal process.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】また、図2には前記表1に成分を示す厚さ
10mmのSUS304L を合せ材(鋼1)、230mmt の50
kgf/mm2 級高張力鋼を母材(鋼2)とし、次の表3に成
分を示す2種類のNi−B系合金を中間材にし、スラブ組
立て時の中間材の面積率を変化させて2×10-2Torrに
真空引き後、合せ材が下になるように1150℃に3時
間均熱後、圧下比2で120mmに圧延した場合の接合率
及び界面のせん断強度を示す。いずれの中間材において
もスラブ組立て時の面積率が50%以上の場合は圧延後
の接合率は100%であり、界面のせん断強度は350
MPa 以上と良好である。これに対し中間材の面積率が2
0%及び40%の場合は著しいせん断強度の低下が生じ
ている。このようにスラブ接合界面の全面を予備接合す
る必要はない。最初の圧延からすべり現象が生じなけれ
ばよいわけである。
Further, material combined SUS304L 10mm thick showing the components in Table 1 in FIG. 2 (steel 1), 50 of 230 mm t
kgf / mm 2 class high-strength steel was used as the base material (steel 2), and two types of Ni-B alloys having the components shown in Table 3 below were used as intermediate materials, and the area ratio of the intermediate materials during slab assembly was varied. The drawing shows the joining ratio and the shear strength of the interface when the material is soaked at 1150 ° C. for 3 hours and then rolled to 120 mm at a reduction ratio of 2 × 10 −2 Torr. In any of the intermediate materials, when the area ratio during slab assembly is 50% or more, the bonding ratio after rolling is 100%, and the shear strength of the interface is 350%.
It is as good as MPa or more. On the other hand, the area ratio of the intermediate material is 2
In the cases of 0% and 40%, a significant decrease in shear strength occurs. Thus, it is not necessary to pre-bond the entire surface of the slab bonding interface. It is only necessary that the slip phenomenon does not occur from the first rolling.

【0021】[0021]

【表3】 [Table 3]

【0022】Ni−B系インサート材が好ましい理由は図
1において示されている。即ち図1にはNi−P系合金を
インサート材として使用した場合をも併せて示している
が、Ni−P系の場合にはNi−B系と比べると接合性が劣
っている事がわかる。この理由を考察すると、本発明で
は従来の圧延クラッド鋼の製造方法に比べ、生産性をお
とさずに上記の目的を達成することに重点を置いたた
め、通常の均熱時間である3時間以内で、中間材が溶解
後その温度で凝固する必要がある。図1に示したように
中間材としてはNi−B系合金が最適であり、Ni−P系合
金、及び特開昭57-109588 、57-112985 で使用されてい
る純Cuは必ずしも好ましいものでない。これはNi−B系
合金の場合は、母材及び合せ材中へのBの拡散が早いた
め、3時間の均熱時間内に液相からBが拡散し、液相拡
散接合が完了するためである。これに対しNi−P系合金
ではPの拡散が、また純CuではCuの拡散が遅いため、均
熱時間内に予備接合が完了せずNi−B系合金のような作
用を得ることができない。
The reason why the Ni-B type insert material is preferable is shown in FIG. That is, FIG. 1 also shows the case where a Ni-P alloy is used as an insert material. It can be seen that the Ni-P alloy is inferior in joining property to the Ni-B alloy. .. Considering the reason for this, the present invention focuses on achieving the above-mentioned object without lowering productivity as compared with the conventional method for producing rolled clad steel, so that the normal soaking time is within 3 hours. After the intermediate material is melted, it is necessary to solidify at that temperature. As shown in FIG. 1, the Ni-B alloy is the most suitable as the intermediate material, and the Ni-P alloy and the pure Cu used in JP-A-57-109588 and 57-112985 are not necessarily preferable. .. This is because in the case of Ni-B alloys, B diffuses quickly into the base material and the laminated material, so that B diffuses from the liquid phase within the soaking time of 3 hours, and liquid phase diffusion bonding is completed. Is. On the other hand, the diffusion of P is slow in the Ni-P alloy and the diffusion of Cu is slow in the pure Cu, so that the pre-bonding is not completed within the soaking time and the action like that of the Ni-B alloy cannot be obtained. ..

【0023】界面の真空度の技術的仔細について説明す
ると、図3には前記した表3に成分を示す厚さ10mmの
Ni基合金(ハステロイ合金)を合せ材、190mmt の4
0キロ鋼を母材とし、表2に成分を示したNi−B系合金
を中間材として用い、オープンタイプでスラブを組立て
真空度を変えた場合の特性変化を示す。加熱は合せ材が
下になるようにして1200℃に3時間均熱後、圧下比
2で100mmに圧延した。クラッド組立て時の真空度が
1×10-1Torr以上ではいずれの条件においても350
MPa 以上の良好なせん断強度が得られるが、1Torr以下
では接合が全く生じていない。スラブの界面の真空度が
1×10-1Torrを超えると、その後の圧延を行っても接
合しないのは、スラブ加熱時に母材及び合せ材の表面が
酸化し、液相拡散接合時の接合力が弱く、その後の圧延
により界面が剥離したためと認められる。
The technical details of the degree of vacuum at the interface will be described below. In FIG. 3, the components shown in Table 3 above and having a thickness of 10 mm are shown.
Ni-based alloy (Hastelloy alloy) as a composite material, 190 mm t 4
The characteristics change when 0 kg steel is used as a base material and the Ni-B alloys whose components are shown in Table 2 are used as an intermediate material and an open type slab is assembled and the degree of vacuum is changed are shown. As for heating, the laminated material was soaked at 1200 ° C. for 3 hours, and then rolled at a rolling ratio of 2 to 100 mm. When the degree of vacuum during clad assembly is 1 × 10 -1 Torr or higher, 350 is obtained under all conditions.
Good shear strength of MPa or more can be obtained, but no joining occurs at 1 Torr or less. When the degree of vacuum at the interface of the slab exceeds 1 × 10 -1 Torr, it is not joined even if the subsequent rolling is performed. The reason is that the surfaces of the base material and the laminated material are oxidized during heating of the slab and joining during liquid phase diffusion joining It is considered that the force was weak and the interface was peeled off by the subsequent rolling.

【0024】以上説明した様に少くとも、母材と合せ材
の界面にNi−B系合金を面積率で50%以上挿入してス
ラブを組立て、1×10-1Torr以下の真空度にした後、
加熱圧延を行うことにより圧下比3以下で良好な接合性
を有する圧延クラッド鋼の製造が可能であることが確認
される。
As explained above, the slab was assembled by inserting at least 50% by area ratio of the Ni-B based alloy at the interface between the base material and the laminated material, and the slab was made to have a vacuum degree of 1 × 10 -1 Torr or less. rear,
It is confirmed that it is possible to produce a rolled clad steel having good bondability at a reduction ratio of 3 or less by performing hot rolling.

【0025】上記したような本発明によるものは、母材
として軟鋼、非調質高張力鋼(例えば50〜70キロ
級)、調質高張力鋼など、鋼(軟鋼、低合金鋼)の全般
にわたって採用することができ、一方合せ材についても
オーステナイト系ステンレス鋼全般、二相ステンレス
鋼、キュプロニッケル、モネル、チタン、高ニッケル合
金など多岐にわたって採用することができる。
As described above, according to the present invention, mild steel, non-tempered high-strength steel (for example, 50 to 70 kg grade), tempered high-strength steel, and other general steel (mild steel, low alloy steel) are used as the base material. It is also possible to employ a wide range of materials such as austenitic stainless steel in general, duplex stainless steel, cupronickel, monel, titanium and high nickel alloys.

【0026】[0026]

【実施例】本発明によるものの具体的な実施例について
説明すると、以下の如くである。 (実施例1)次の表4には用いた合せ材(鋼5)と母材
(鋼6)の成分を示す。
EXAMPLES Specific examples of the present invention are described below. (Example 1) Table 4 below shows the components of the laminated material (steel 5) and the base material (steel 6) used.

【0027】[0027]

【表4】 [Table 4]

【0028】上記したような表4の合せ材および母材に
対し、次の表5に示すA〜Gの中間材を用い、同じく表
5に示すような組立方式で合せ材と母材の界面に挿入し
てから、3×10-2torrに真空引きし、1150℃に2.
5時間均熱後、圧下比2で150mm大に圧延した結果は
表5の右側に示す如くである。
In addition to the above-mentioned mating material and base material of Table 4, the intermediate materials of A to G shown in Table 5 below were used, and the interface between the mating material and the base material was also prepared by the same assembly method as shown in Table 5. , And then evacuated to 3 × 10 -2 torr, and heated to 1150 ° C for 2.
After soaking for 5 hours, the result of rolling to a size of 150 mm with a reduction ratio of 2 is shown in the right side of Table 5.

【0029】[0029]

【表5】 [Table 5]

【0030】即ち、表5の結果から明らかなように、本
発明法であるNi−B系合金を中間材として用いたA、
B、C材では、熱間圧延後に100%の接合率が得ら
れ、400MPa 以上のせん断強度が得られている。これ
に対しNi−P系合金を用いたD材、及び純Cuを用いたE
材では、加熱時に中間材の凝固が完了しないため、熱間
圧延後に接合が全く生じていない。A、B、C材の比較
から明らかなように、Ni−B系合金であればCr、Co、M
o、Fe、W、Siのいずれの合金を含有していても、熱間
圧延後に良好な接合性が得られる。F材は犠牲材タイプ
においての結果であるが、本発明条件を満たしているた
めオープンタイプと同様に良好な接合性が得られてい
る。A材からF材はいずれも合せ材を下側にして加熱し
た結果であるが、合せ材を内側、母材を外側としたサン
ドイッチタイプにおいても、G材に示すように本発明条
件を満足していれば、圧下比2でも良好な接合性が得ら
れる。本発明は圧下比4以上の確保が難しい極厚クラッ
ド鋼の製造において特に有効であるが、通常の厚さの圧
延クラッド鋼においても同様に効果のあることは、G材
の(70+5mm)であるクラッド鋼の結果からも明らか
である。
That is, as is clear from the results of Table 5, A using the Ni--B type alloy of the present invention as an intermediate material,
For the B and C materials, a bonding rate of 100% was obtained after hot rolling, and a shear strength of 400 MPa or more was obtained. On the other hand, D material using Ni-P alloy and E using pure Cu
In the case of the material, solidification of the intermediate material is not completed at the time of heating, so that no joining occurs after hot rolling. As is clear from the comparison of materials A, B, and C, in the case of Ni-B alloys, Cr, Co, M
Even if the alloy contains any of o, Fe, W, and Si, good bondability can be obtained after hot rolling. The material F is the result of the sacrificial material type, but since the material satisfies the conditions of the present invention, good bondability is obtained like the open type. All of materials A to F are the result of heating with the laminated material on the lower side, but the sandwich type with the laminated material on the inner side and the base material on the outer side also satisfies the conditions of the present invention as shown in G material. If so, good bondability can be obtained even at a reduction ratio of 2. The present invention is particularly effective in the production of extremely thick clad steel for which it is difficult to secure a reduction ratio of 4 or more, but it is also effective for rolled clad steel of ordinary thickness to be G material (70 + 5 mm). It is also clear from the results for clad steel.

【0031】(実施例2)次の表6にはこの実施例にお
いて採用した合せ材(鋼7)と母材(鋼8)の成分を示
す。中間材として81%Ni−15%Cr−4.0%B合金を
用い、母材192mm大、合せ材8mm大の条件でスラブを
組立て、合せ材が下面になるようにして1220℃に3
時間加熱後、圧延を行った。
(Example 2) Table 6 below shows the components of the laminated material (steel 7) and the base material (steel 8) adopted in this example. 81% Ni-15% Cr-4.0% B alloy was used as an intermediate material, and a slab was assembled under the conditions of a base material of 192 mm large and a laminated material of 8 mm large.
After heating for an hour, rolling was performed.

【0032】[0032]

【表6】 [Table 6]

【0033】製造条件および結果については表7に示す
如くであって、この表7のように本発明条件の中間材の
面積率及び真空度を満足しているH、I、J材では熱間
圧延後に350MPa 以上の良好なせん断強度が、いずれ
の場合も得られている。これに対し中間材の面積率の条
件を満足していない例に、真空度の条件を満足していな
いL材では十分な接合が生じていない。
The manufacturing conditions and results are as shown in Table 7. As shown in Table 7, the H, I and J materials satisfying the area ratio and vacuum degree of the intermediate material under the conditions of the present invention are hot. A good shear strength of 350 MPa or more after rolling is obtained in each case. On the other hand, in the example in which the condition of the area ratio of the intermediate material is not satisfied, in the case of the L material which does not satisfy the condition of the vacuum degree, sufficient joining does not occur.

【0034】[0034]

【表7】 [Table 7]

【0035】(実施例3)表8には10mm大の合せ材、
及び190mm大の母材の組成とそれらの母材、合せ材の
界面に、中間材として81%Ni−15%Cr−4.0%B合
金を用いてスラブを組立て、1×10-2torrの真空度に
した後、合せ材を下にして1200℃に3時間加熱後、
圧下比2で100mmに圧延を行った結果が示されてい
る。炭素鋼とγ系スンテレス鋼を組合せたM材、炭素鋼
と2相系ステンレス鋼を組合せたN材、炭素鋼とY系ス
テンレス鋼を組合せたO材、炭素鋼とNi基合金を組合せ
たP、Q材及びY系ステンレス鋼とNi基合金を組合せた
R材のいずれの場合においても、本発明条件を満足して
いるため、いずれのクラッド鋼においても400MPa 以
上の良好なせん断強度が得られている。
(Example 3) Table 8 shows a laminated material having a size of 10 mm,
Assemble a slab using 81% Ni-15% Cr-4.0% B alloy as an intermediate material at the composition of the base material of 190 mm size and the interface between the base material and the composite material, and 1x10 -2 torr After making the vacuum degree of No. 3, after heating the laminated material to 1200 ° C. for 3 hours,
The result of rolling to 100 mm at a reduction ratio of 2 is shown. M material combining carbon steel and γ-type sunteres steel, N material combining carbon steel and duplex stainless steel, O material combining carbon steel and Y-type stainless steel, P combining carbon steel and Ni-based alloy In any case of the Q material, the Q material, and the R material in which the Y-based stainless steel and the Ni-based alloy are combined, the conditions of the present invention are satisfied, so that any clad steel can obtain a good shear strength of 400 MPa or more. ing.

【0036】[0036]

【表8】 [Table 8]

【0037】[0037]

【発明の効果】以上説明したように本発明によるとき
は、母材と合せ材のクラッド圧延加熱時に液相拡散接合
を利用した予備接合を行い、その後熱間圧延を行うこと
により、圧下比3以下で良好な接合性が得られ、従来は
十分な圧下比が確保できなかったため圧延法では製造困
難とならざるを得なかった極厚クラッド鋼の製造を有効
に達成し得るものであるから工業的にその効果の大きい
発明である。
As described above, according to the present invention, pre-bonding using liquid phase diffusion bonding is performed at the time of clad rolling heating of the base material and the laminated material, and then hot rolling is performed, whereby a reduction ratio of 3 is obtained. Good bondability can be obtained below, and it was possible to effectively achieve the production of extremely thick clad steel, which had to be difficult to produce by the rolling method because a sufficient reduction ratio could not be secured in the past. It is an invention that is highly effective.

【図面の簡単な説明】[Brief description of drawings]

【図1】中間材の種類に伴う接合状態の変化を示した図
表である。
FIG. 1 is a chart showing a change in a joining state depending on a type of an intermediate material.

【図2】中間材の面積率に伴う接合状態の変化を要約し
て示した図表である。
FIG. 2 is a table summarizing changes in the bonding state with the area ratio of the intermediate material.

【図3】界面の真空度に伴う接合状態の変化を要約して
示した図表である。
FIG. 3 is a table summarizing changes in the bonding state with the degree of vacuum at the interface.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧延によりクラッド材を製造する方法に
おいて、液相拡散接合法によりスラブを予め接合させる
ことを特徴とする圧延クラッド材の製造方法。
1. A method for producing a clad material by rolling, wherein a slab is preliminarily joined by a liquid phase diffusion joining method.
【請求項2】 液相拡散接合を行う際に、Ni−B系合金
をインサート材とすることを特徴とする請求項1に記載
の圧延クラッド材の製造方法。
2. The method for producing a rolled clad material according to claim 1, wherein a Ni-B alloy is used as an insert material when performing liquid phase diffusion bonding.
【請求項3】 液相拡散接合を行う際に、Ni−B系合金
をインサート材とし、界面の真空度を1×10-1Torr以
下にした後、加熱、熱間圧延を行うことを特徴とする請
求項1に記載の圧延クラッド材の製造方法。
3. When performing liquid phase diffusion bonding, a Ni-B alloy is used as an insert material, the degree of vacuum at the interface is set to 1 × 10 −1 Torr or less, and then heating and hot rolling are performed. The method for producing a rolled clad material according to claim 1.
JP32676091A 1991-11-15 1991-11-15 Production of rolled clad material Pending JPH05138370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32676091A JPH05138370A (en) 1991-11-15 1991-11-15 Production of rolled clad material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32676091A JPH05138370A (en) 1991-11-15 1991-11-15 Production of rolled clad material

Publications (1)

Publication Number Publication Date
JPH05138370A true JPH05138370A (en) 1993-06-01

Family

ID=18191386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32676091A Pending JPH05138370A (en) 1991-11-15 1991-11-15 Production of rolled clad material

Country Status (1)

Country Link
JP (1) JPH05138370A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998002271A1 (en) * 1996-07-12 1998-01-22 Nippon Steel Corporation Alloy foil for liquid-phase diffusion bonding bondable in oxidizing atmosphere

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998002271A1 (en) * 1996-07-12 1998-01-22 Nippon Steel Corporation Alloy foil for liquid-phase diffusion bonding bondable in oxidizing atmosphere
US6264761B1 (en) 1996-07-12 2001-07-24 Yasushi Hasegawa Alloy foil for liquid-phase diffusion bonding bondable in oxidizing atmosphere

Similar Documents

Publication Publication Date Title
EP1257383B1 (en) Method for making a joint between copper and stainless steel
AU2001240719A1 (en) Method for making a joint between copper and stainless steel
US12030275B2 (en) Multi-process alloy clad
US6783726B2 (en) Cooling element and method for manufacturing cooling elements
JP2825249B2 (en) Multi-layer brazing foil
JPH05138370A (en) Production of rolled clad material
JP3132602B2 (en) Manufacturing method of friction welding valve
JPH0332425B2 (en)
JPH01122677A (en) Manufacture of titanium clad steel plate with copper or copper alloy as intermediate joining medium
JP2512145B2 (en) Method of joining cemented carbide and steel and joined body
JP2691456B2 (en) Manufacturing method of composite type damping steel sheet
JPH07110426B2 (en) Method for manufacturing tantalum / copper / stainless steel (carbon steel) clad
JPS5841685A (en) Titanium clad steel
JP3020649B2 (en) Manufacturing method of clad steel
JPH0669630B2 (en) Method for producing titanium clad steel sheet using nickel as an intermediate contact material
JPH05220587A (en) Manufacture of clad steel
JPH079168A (en) Manufacture of cupronickel/stainless steel clad
Sukonnik Clad metal technology in the USSR
JPH06269960A (en) Production of rolled clad steel
JPS60206587A (en) Production of clad steel plate
JPH084946B2 (en) Method for manufacturing aluminum bronze clad steel sheet with excellent bonding strength
JPH11286069A (en) Titanium metal-clad stainless steel and its production
JPH0224624B2 (en)
JPH02251386A (en) Production of titanium clad steel plate formed with copper or copper alloy as intermediate joining medium material
JPS63238983A (en) Manufacture of ti clad steel