JPH01122677A - Manufacture of titanium clad steel plate with copper or copper alloy as intermediate joining medium - Google Patents

Manufacture of titanium clad steel plate with copper or copper alloy as intermediate joining medium

Info

Publication number
JPH01122677A
JPH01122677A JP27782687A JP27782687A JPH01122677A JP H01122677 A JPH01122677 A JP H01122677A JP 27782687 A JP27782687 A JP 27782687A JP 27782687 A JP27782687 A JP 27782687A JP H01122677 A JPH01122677 A JP H01122677A
Authority
JP
Japan
Prior art keywords
copper
titanium
alloy
steel
clad steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27782687A
Other languages
Japanese (ja)
Other versions
JPH0565272B2 (en
Inventor
Akio Yamamoto
章夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP27782687A priority Critical patent/JPH01122677A/en
Publication of JPH01122677A publication Critical patent/JPH01122677A/en
Publication of JPH0565272B2 publication Critical patent/JPH0565272B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To remove the oxide of a mating face under atmosphere and to join without forming the oxide as well by using a copper metal as the intermediate joining medium interposed in the mating face and rolling it by its melting under the specified conditions. CONSTITUTION:The Ti or Ti alloy 1 of a clad plate and the copper or copper alloy 2 contg. >=30% copper used as an intermediate joining medium are superposed in a sandwich shape on the steel 3 of a base metal and the end part is fixed by welding, etc. The alloy of copper and Ti is formed and simultaneously melted with a diffused reaction by heating at the temp. of 850 deg.C min. 1000 deg.C max. in this state and the rolling reduction of >= one pass is applied at the rolling reduction rate of >=10% prior to the solidification of this alloy. The alloy layer of the melted Ti and copper is then joined by bulging it. In this method the copper alloy 2 is taken at >=30% copper contg. rate and >=850 deg.C temp. due to the need for its diffused solution with Ti, but a slippage is caused without joining with the viscosity being reduced at the temp. >=1000 deg.C. Also in case of the rolling reduction rate being <=10% the bulging of the intermediate joining medium becomes insufficient.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、チタンクラッド鋼板の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a titanium clad steel plate.

鋼は、安価で良好な機械的、熱的、電気的特性を有して
いるため、古くから非常に広い用途に使用されてきた。
Steel has long been used in a wide range of applications because it is inexpensive and has good mechanical, thermal, and electrical properties.

しかし、鋼にはそのまま使用すると短時間で錆びたり腐
食したりするという致命的な欠点がある。一方チタンは
、鋼に比べると著しく耐食性が優れているので、腐食や
防錆の問題は解決するが、他の特性、例えば熱伝導性な
どは鋼とはかなり異なった特性を示すために、チタンで
完全に代替することは必ずしも容易ではないのである。
However, steel has the fatal drawback of rusting and corroding in a short period of time if used as is. On the other hand, titanium has significantly better corrosion resistance than steel, so it solves the problem of corrosion and rust prevention, but titanium has other properties, such as thermal conductivity, that are quite different from steel. It is not necessarily easy to completely replace them.

さらに、チタンは鋼に比べると著しく高価であるために
、資源的経済的にも困難といわざるをえないのが実情で
ある。
Furthermore, since titanium is significantly more expensive than steel, the reality is that titanium is difficult in terms of resources and economy.

これらの問題を解決する方法として、表面をチタン、中
心部を鋼としたクラッド鋼が使用されている。クラッド
鋼は、母材に目的とする特性に合致した炭素鋼ないしス
テンレス鋼を利用し、表面に耐食性の優れたチタンを用
いることで、優れた耐食性を有しかつ目的とする特性を
満足する材料が得られるために、熱交換機などの化学装
置では広く利用されている。
As a method to solve these problems, clad steel is used, which has a titanium surface and a steel core. Clad steel is a material that has excellent corrosion resistance and satisfies the desired characteristics by using carbon steel or stainless steel as the base material and using titanium, which has excellent corrosion resistance, on the surface. Because of this, it is widely used in chemical equipment such as heat exchangers.

本発明は、このようなチタンクラッド鋼を技術的に容易
に、そして安価に製造する方法を提供するものである。
The present invention provides a method for producing such titanium clad steel technically easily and inexpensively.

〔従来の技術〕[Conventional technology]

いわゆるクラッド鋼板の製造方法には大きく分けて2攬
類がある。すなわち、溶鋼レベルで複合化を行なういわ
ゆる鋳包み法と固相レベルで接合させる方法である。
There are roughly two types of manufacturing methods for so-called clad steel plates. In other words, there is a so-called cast-in method that performs composite formation at the molten steel level, and a method that joins at the solid phase level.

チタンクラッド鋼の場合、チタンと鋼の界面に脆いFe
−Ti金属間化合物やTiCなとの層が生成すると界面
で剥離する。従って、溶鋼レベルで行なう鋳包み法は適
用できず、固相レベルでの接合が採用されている。中で
も爆着による方法は、中間媒接材を使用せずしかも接合
強度に対して信頼性が高いことから、現在最も広く使用
されている方法である。しかし、爆着法は強力な爆発の
力を利用するために、どこでも実施が可能というわけに
はいかず、通常人里離れた山中などで行なわざるを得な
い。しかも、大量生産には不向きであることなどから非
常に高価な材料である。また、爆着法ではサイズも限定
され特に薄板の製造は困難である。
In the case of titanium clad steel, there is brittle Fe at the interface between titanium and steel.
When a layer of -Ti intermetallic compound or TiC is formed, it peels off at the interface. Therefore, the cast-in method performed at the molten steel level cannot be applied, and joining at the solid phase level is adopted. Among these, the explosive bonding method is currently the most widely used method because it does not use an intermediate bonding material and has high reliability in terms of bonding strength. However, because the explosive attachment method uses the power of a powerful explosion, it cannot be carried out everywhere, and usually has to be carried out in remote areas such as in the mountains. Moreover, it is a very expensive material as it is not suitable for mass production. In addition, the size is limited by the explosion bonding method, making it particularly difficult to manufacture thin plates.

圧接による方法は、生産性が高く板厚が比較的自由にと
れることや従来の製造工程が適用できることなどから爆
着法に比べて有利な方法である。しかし、圧接による方
法では接合界面に金属間化合物等の脆い層が生成する可
能性が非常に高い上に、界面Vcr11化物などが存在
すると接合が不可能になる。特に熱間圧接の場合、拡散
速度や酸化速度がはやいので、これらの危険性は高くな
る。
The pressure welding method is more advantageous than the explosion bonding method because it has high productivity, allows a relatively flexible plate thickness, and can be applied to conventional manufacturing processes. However, in the pressure welding method, there is a very high possibility that a brittle layer such as an intermetallic compound will be formed at the bonding interface, and in addition, if Vcr11 compound or the like exists at the interface, bonding becomes impossible. In particular, in the case of hot welding, the diffusion rate and oxidation rate are rapid, so these risks are high.

界面の脆い中間層の生成を抑制して接合させる方法とし
て、特開昭62−6783号公報には熱延加熱条件の限
定が、また例えば特開昭55−48468号公報、特開
昭57−109588号公報、特開昭57−11298
5号公報や特開昭57−192256号公報には、クラ
ッド界面に純鉄やニッケル、銅などの板ないし箔を中間
媒接材として挾み込む方法が提案されている。
As a method for bonding while suppressing the formation of a brittle intermediate layer at the interface, Japanese Patent Laid-Open No. 62-6783 describes limitations on hot rolling heating conditions; Publication No. 109588, JP 57-11298
No. 5 and Japanese Unexamined Patent Publication No. 57-192256 propose a method in which a plate or foil of pure iron, nickel, copper, or the like is sandwiched as an intermediate bonding material at the cladding interface.

一方接合界面の酸化を防止するには、少なくとも合せ面
を真空にしたり不活性雰囲気にする以外に適切な方法が
ない0例えば特開昭57−109588号公報では環境
をl ’l’orr以下の真空にすることを必須条件と
している。このために、コストの低下をはかることがで
きず、安価であるというクラッド鋼の特徴を生かすこと
が必ずしも容易ではない状況にある。従って、通常チタ
ンクラッド鋼板は厚板として、チタンの耐食性が不可欠
な熱交換機などの化学装置に利用されているに過ぎない
On the other hand, in order to prevent oxidation at the bonding interface, there is no suitable method other than to at least make the bonding surfaces a vacuum or an inert atmosphere. The essential condition is to create a vacuum. For this reason, it is not possible to reduce costs, and it is not always easy to take advantage of the characteristic of clad steel that it is inexpensive. Therefore, titanium clad steel plates are usually used only as thick plates for chemical equipment such as heat exchangers where the corrosion resistance of titanium is essential.

ステンレス鋼などのクラッド鋼板の場合、合せ面を溶接
してから圧延などを行なう方法も提案されているが、チ
タンクラッド鋼板の場合はFe−Tiの金属間化合物が
生成して適用することはできない。
In the case of clad steel plates such as stainless steel, methods such as rolling after welding the mating surfaces have been proposed, but this method cannot be applied to titanium clad steel plates because Fe-Ti intermetallic compounds are generated. .

このほかに、接合界面の酸化を防止する方法として、特
開昭57−112985号公報ではフラックスで界面を
覆うことを提案している。しかし、特殊な設備が必要で
あることからやはりコスト低下には致らない。
In addition, as a method for preventing oxidation of the bonding interface, Japanese Patent Laid-Open No. 112985/1985 proposes covering the interface with flux. However, since special equipment is required, the cost cannot be reduced.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上示した従来方法の共通の欠点は、界面の酸化の防止
を目的として、合せ面を真空ないし不活性ガスで覆うな
どの処理を行なう必要があるために、コストが高くなら
ざるを得ない点である。
A common drawback of the conventional methods listed above is that they require treatments such as covering the mating surfaces with vacuum or inert gas in order to prevent oxidation of the interface, which inevitably increases costs. It is.

本発明は、コストを低下するために大気中で固相接合を
行ないり2ツド化することを指向した。本発明のポイン
トは、大気中での接合において界面の酸化物を除去しか
つ酸化物を生じさせない技術を完成させた点である。
The present invention is directed to performing solid-phase bonding in the atmosphere or forming a double bond in order to reduce costs. The point of the present invention is to have completed a technology that removes oxides at the interface and does not generate oxides during bonding in the atmosphere.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、合せ面に酸化物を生じさせないためには
、その界面から大気を除去することが重要で、そのため
には大気以外の非酸化性物質を充填すれば達成できると
考えた。この考えに基づき、非酸化性物質を種々検討し
た結果、溶融金属などの低融点物質で達成できることを
見出した。すなわち、合せ面は厳密には完全な平滑面で
はないために、例え中間媒接材を挿入したとしてもそれ
が固体であるならば、単に合せただけでは必ず空気が残
留するものである。
The present inventors believed that in order to prevent the formation of oxides on the mating surfaces, it is important to remove the atmosphere from the interface, and that this can be achieved by filling the mating surface with a non-oxidizing substance other than the atmosphere. Based on this idea, we investigated various non-oxidizing substances and found that this could be achieved with low-melting-point substances such as molten metals. That is, strictly speaking, the mating surfaces are not completely smooth surfaces, so even if an intermediate bonding material is inserted, if it is solid, air will always remain if the materials are simply mated.

ところが液体状の物質を充填させるならば、合せ面に非
接触部分ができたとしても、空気を追出すことが可能と
なるのである。合せ面に挾み込む中間媒接材としては、
種々の合金や化合物が考えられるが、本発明では銅また
は銅合金を利用した。すなわち、合せ面に銅または銅合
金を挾んでおくと約850℃で銅とチタンの共晶温度に
達し溶融を開始する。一方、鋼側には銅の一部が粒界に
侵入しはじめ、低温域では脆化することなく強固に接合
することになる。
However, if it is filled with a liquid substance, it is possible to expel air even if there are non-contact areas on the mating surfaces. As an intermediate bonding material that is sandwiched between mating surfaces,
Although various alloys and compounds are possible, copper or a copper alloy was used in the present invention. That is, when copper or copper alloy is sandwiched between mating surfaces, the eutectic temperature of copper and titanium is reached at about 850° C. and melting begins. On the other hand, on the steel side, a portion of the copper begins to penetrate into the grain boundaries, resulting in a strong bond without becoming brittle at low temperatures.

しかし、合せ面がいつまでも溶融状態であるならば接合
が不可能であるし、温度が低下して溶融した銅とチタン
の合金相が凝固したとしても、それでは目的が達せられ
ない。そこで、本発明では、銅とチタンの溶融層が溶融
している温度域で圧下を行ない、余分な溶融合金と同時
にわずかに残留している空気層を端部からはみ出させる
こととした。
However, if the mating surfaces remain in a molten state forever, joining is impossible, and even if the temperature drops and the molten copper-titanium alloy phase solidifies, the purpose cannot be achieved. Therefore, in the present invention, reduction is performed in a temperature range where the molten layer of copper and titanium is melted, and at the same time, the excess molten alloy and the slight remaining air layer are made to protrude from the end.

次に、本発明によるチタンクラッド鋼製造過程の挙動に
ついて第1図を用いて説明する。
Next, the behavior of the titanium clad steel manufacturing process according to the present invention will be explained using FIG.

本発明方法によるチタンクラッド鋼の製造にあたっては
、第1図のようにまず合せ板であるチタンないしチタン
合金lと中間媒接材として使用する銅または銅合金2を
母材である鋼3の上にサンドイッチ状に重ね、端部を部
分的に溶接等で固定する。この状態で銅とチタンの合金
の融点より高い温度まで加熱し拡散反応により合金形成
せしめると同時に溶融させる。次いで、合金が凝固する
以前に少なくとも1バスの圧下を加え、余分の合金や空
気等を端部からはみ出させる。これによって、合せ面に
はその面の凹凸を埋めるに足る最小限の銅または銅合金
が残留し、チタンないしチタン合金と鋼が圧接によって
接合することとなる。また、界面に空気が残っていたた
めに、銅または銅合金が生成する前にチタンや鋼の表面
に生じていた薄い酸化物層は、大部分が溶融した銅とチ
タンの合金と同時に押出される。さらに残留した酸化物
は非常にわずかとなるためにさらに圧延を行なうことに
よって合せ材のチタンによって還元され、酸素はチタン
中に拡散固溶することとなる。
In manufacturing titanium clad steel by the method of the present invention, first, as shown in Fig. 1, titanium or titanium alloy 1, which is a mating plate, and copper or copper alloy 2, which is used as an intermediate welding material, are placed on steel 3, which is a base material. Stack them in a sandwich-like manner and fix the ends partially by welding, etc. In this state, it is heated to a temperature higher than the melting point of the alloy of copper and titanium, forming an alloy through a diffusion reaction and simultaneously melting it. Then, before the alloy solidifies, at least one bath of reduction is applied to force excess alloy, air, etc. out of the ends. As a result, a minimum amount of copper or copper alloy remains on the mating surfaces to fill in the unevenness of the surfaces, and titanium or titanium alloy and steel are joined by pressure welding. Also, because air remained at the interface, the thin oxide layer that had formed on the surface of the titanium or steel before the copper or copper alloy formed was largely extruded at the same time as the molten copper and titanium alloy. . Further, since the remaining oxide becomes very small, it is reduced by the titanium of the laminate by further rolling, and the oxygen diffuses into the titanium and becomes a solid solution.

次に接合の可能性を検討するために、大気中でチタンと
鋼の10■fの棒を銅板を挾んで重ね10V4f/lJ
I の荷重で押しつけた。第2図に接合温度と冷却後の
引張による接合面の破断強度の関係を示した。650℃
以下では接合せず銅板が単に変形したのみであったが、
700℃以上で接合した。しかし850℃以下では接合
面の破断強度が数Kff/lJ以下で容易に破断した。
Next, in order to examine the possibility of bonding, we stacked titanium and steel rods of 10 f/10 V4 f/lJ with a copper plate sandwiched in the atmosphere.
It was pressed with a load of I. Figure 2 shows the relationship between the bonding temperature and the tensile strength of the bonded surface after cooling. 650℃
In the following example, the copper plate was simply deformed without being joined.
Bonding was performed at 700°C or higher. However, at temperatures below 850° C., the fracture strength of the joint surface was several Kff/lJ or less, and the bond easily broke.

850℃を超える温度では界面でチタンと銅の合金の溶
融層が生成し、接合面の破断強度も10Kff/mj以
上に向上した。また、1050℃以上になると合金の溶
融層が厚くなり、チタンと鋼がずれたり接合面で折れ曲
るような形で接合した0 次に、本発明の限定条件を説明する。
At temperatures exceeding 850° C., a molten layer of titanium and copper alloy was formed at the interface, and the fracture strength of the bonded surface was also improved to 10 Kff/mj or more. Further, when the temperature exceeds 1050° C., the molten layer of the alloy becomes thick, and the titanium and steel are bonded in such a way that they shift or bend at the bonding surface.Next, the limiting conditions of the present invention will be explained.

中間媒接材の銅または銅合金は、合わせ材のチタンと拡
散固溶して溶融する必要があるので、銅の含有率が30
%以上とした。
Copper or copper alloy as an intermediate welding material needs to be diffused into a solid solution and melted with titanium as a bonding material, so the copper content should be 30%.
% or more.

圧下によって溶融した余分の中間層を端部よりはみ出さ
せるためには、溶融している必要があるので、第2図か
らチタンと銅の合金の溶融している温度域すなわち85
0℃を超える温度で圧下を加えることを限定した。しか
し、接合の温度が高すぎるとチタンと銅の固相反応が進
行しすぎてチタンの厚さが低下するのみならず、溶融層
の粘度が低下して接合せずに滑りを生ずるために、やは
り第2図から上限温度を1000℃とした。
In order for the extra intermediate layer melted by rolling to protrude from the edge, it needs to be melted, so from Figure 2 we can see that the temperature range in which the titanium and copper alloy melts is 85°C.
Application of pressure at temperatures above 0°C was limited. However, if the bonding temperature is too high, the solid phase reaction between titanium and copper will proceed too much, which will not only reduce the thickness of the titanium, but also reduce the viscosity of the molten layer, causing slippage without bonding. Again, from FIG. 2, the upper limit temperature was set to 1000°C.

この圧下は、1バスでも十分に目的を達せられるし、2
バス以上となっても障害がないが、加えないと接合しな
かったり例え接合してもクラッド鋼としての十分な品質
が得られないので、1バス以上の圧下を加えることと限
定した。
This reduction can be achieved with just one bus, and two
There is no problem even if the reduction is more than 1 bath, but if it is not applied, it will not be joined, or even if it is joined, sufficient quality as clad steel will not be obtained, so it was limited to applying a reduction of 1 bath or more.

また、圧下率は10チ未満では中間媒接材のはみ出しが
不十分なため、10%以上で圧下することを限定した。
Furthermore, if the rolling reduction ratio is less than 10 inches, the protrusion of the intermediate welding material is insufficient, so the rolling reduction is limited to 10% or more.

〔作用〕[Effect]

以上示したとおり、本発明は真空を利用することなくチ
タンクラッド鋼を製造することが可能となった。真空を
必要としないことによって例えば真空ポンプや真空槽な
どの高価な設備が不要となり、真空にする処理がなくな
る上に、大気環境下で作業が行なえるために製造が著し
く簡素化されることになる。
As shown above, the present invention has made it possible to manufacture titanium clad steel without using a vacuum. By not requiring a vacuum, for example, expensive equipment such as a vacuum pump or vacuum chamber is no longer required, and there is no need to create a vacuum, and manufacturing can be significantly simplified as work can be performed in an atmospheric environment. Become.

また、本発明によるチタンクラッド鋼は、従来方法の真
空を利用して製造したチタンクラッド鋼と品質的には差
がない。しかし、界面近傍のチタンおよび鋼中にはCu
含有量の高い層が認められ、Cuは母材の鋼および合せ
材のチタンの両方に固溶し拡散したことが推定される。
Further, the titanium clad steel according to the present invention has no difference in quality from the titanium clad steel manufactured using a conventional vacuum method. However, Cu in titanium and steel near the interface
A layer with a high content was observed, and it is presumed that Cu was dissolved and diffused into both the base material steel and the bonding material titanium.

しかし、界面の接合性をはじめ、クラッド鋼としての品
質の劣化は認められない。
However, no deterioration in quality as a clad steel, including interface bondability, was observed.

〔実施例〕〔Example〕

合せ材としての3.0m厚のJISI種の純チタン板を
、中間媒接材として99.9%以上の純度を持つ0.7
 ms厚の銅板を、母材として19.24のCr、Q、
4q6のCu、0.6%のNbおよびo、oosチのC
を含有する30■厚のステンレス鋼の鋳片をサンドイッ
チ状に重ね、さらにチタンの上から鳩08系剥離材を介
して1.0 m厚の母材とはとんと同じ成分組成の鋼板
で覆い、母材側面の約半分を溶接して固定した。これら
の素材の表面粗さ(Hmt〆)は5μm以下とし機械仕
上げしてから組み立てた。その後、980℃に加熱して
870〜950℃で14%および18チの圧下を1バス
行ない、次いで850℃から730℃の間で全板厚が4
簡になるまで熱間圧延した。
A 3.0m thick JISI type pure titanium plate is used as a laminate material, and a 0.7mm thick JISI type pure titanium plate with a purity of 99.9% or more is used as an intermediate bonding material.
A copper plate with a thickness of ms was used as a base material of 19.24 Cr, Q,
4q6 Cu, 0.6% Nb and o, ooschi C
30cm thick stainless steel slabs containing titanium are layered in a sandwich-like manner, and then covered with a 1.0m thick steel plate with the same composition as the base material with a Hato08 release material on top of the titanium. Approximately half of the sides of the base metal were welded and fixed. The surface roughness (Hmt) of these materials was set to 5 μm or less, and the materials were mechanically finished and then assembled. Thereafter, it was heated to 980°C and one bath of 14% and 18 inch reduction was carried out at 870-950°C, and then the total plate thickness was reduced to 4 mm between 850°C and 730°C.
Hot rolled until smooth.

この結果、1バス目で溶接固定していない部分から溶融
した銅とチタンの合金がはみ出した。
As a result, the molten copper and titanium alloy protruded from the parts that were not fixed by welding in the first bath.

しかし、剥離することなく圧延が完了した。製造したチ
クダンクラッド鋼は、界面の接合性をはじめ、チタンク
ラッド鋼としての品質および合せ材の耐食性母材の機械
的特性にはなんら問題がなかった。
However, rolling was completed without peeling. The manufactured titanium clad steel had no problems in terms of interface bondability, quality as a titanium clad steel, and mechanical properties of the corrosion-resistant base material of the laminated material.

比較として、銅を使用せずに単にステンレス鋼の上にチ
タンを乗せ上記と同様に鋼片を組立圧延を行なったとこ
ろ、1バス目で溶接固定していない部分が剥離し、3バ
ス目で完全に剥がれクラッド鋼の製造ができなかった。
For comparison, when titanium was simply placed on stainless steel without using copper and the steel pieces were assembled and rolled in the same manner as above, the parts that were not welded and fixed peeled off in the first bus, and in the third bus. It completely peeled off, making it impossible to manufacture clad steel.

一部接合していた部分も、冷却後曲げ曲げ戻し加工を行
なったところ簡単に剥離し、接合性は不良であった。
When the partially bonded portion was bent back after cooling, it easily peeled off, and the bondability was poor.

さらに、合せ材としての4.0 m厚のJIS1種の純
チタン板を、中間媒接材として99.9 %以上の純度
を持つ1.0璽厚の銅板を母材として0、 OO2%の
Cを含有する50■厚の炭素鋼の鋳片をサンドイッチ状
に重ね、さらにチタンの上からkOx系剥離材を介して
同じ組合せのチタン、銅および炭素鋼を重ね、端面およ
び側面にZ Om厚の母材と同じ成分組成の鋼板を当て
端面および側面のそれぞれ約半分を溶接して固定した。
Furthermore, a 4.0 m thick JIS Class 1 pure titanium plate was used as a laminate material, and a 1.0 mm thick copper plate with a purity of 99.9% or more was used as an intermediate bonding material with 0. 50cm thick carbon steel slabs containing carbon are layered in a sandwich fashion, and the same combination of titanium, copper and carbon steel is layered on top of the titanium via a kOx release material, and ZOm thick slabs are layered on the end and side surfaces. A steel plate with the same composition as the base material was applied and fixed by welding approximately half of each of the end and side surfaces.

これらの素材の表面粗さ(Hhxdr)は5μm以下と
し機械仕上げしてから組み立てた。その後、920℃に
加熱して880〜920℃で13チの圧下を1バス行な
った。この際、端面および側面の溶接固定していない部
分から溶融した銅とチタンの合金がはみ出した。その後
冷却し、U、Os系剥離材の部分で上下に剥離し、それ
ぞれを850℃から730℃の間で全板厚が3fiにな
るまで熱間圧延した。製造したチタンクラッド鋼は、界
面の接合性をはじめ、チタンクラッド鋼としての品質お
よび合せ材の耐食性母材の機械的特性にはなんら問題が
なかった。
The surface roughness (Hhxdr) of these materials was set to 5 μm or less, and the materials were mechanically finished and then assembled. Thereafter, it was heated to 920°C and subjected to one bath of 13 inches of pressure reduction at 880-920°C. At this time, molten copper and titanium alloy protruded from the end and side surfaces that were not fixed by welding. Thereafter, it was cooled, peeled vertically at the U and Os-based release material, and hot-rolled between 850°C and 730°C until the total plate thickness became 3fi. The manufactured titanium clad steel had no problems in terms of interface bondability, quality as a titanium clad steel, and mechanical properties of the corrosion-resistant base material of the laminated material.

〔発明の効果〕〔Effect of the invention〕

本発明により、真空を物理的に作り出すことなくチタン
クラッド鋼を製造することが可能となった。この結果、
チタンクラッド鋼の製造が技術的に容易になり、しかも
コスト的には安価になるので、チタンの優れた耐食性を
低コストで享受することができ、資源的経済的な利益は
太きいものである。
The present invention has made it possible to produce titanium clad steel without physically creating a vacuum. As a result,
The production of titanium clad steel is technologically easier and less expensive, so the excellent corrosion resistance of titanium can be enjoyed at a lower cost, and the resource and economic benefits are significant. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法によるチタンクラッド鋼製造のた
めの圧延前素材の組み立てを説明した図、第2図は、接
合温度と冷却後の引張による接合面の破断強度の関係を
示した図である。 1・・・合せ材のチタンないしチタン合金2・・・中間
媒接材の銅又は銅合金 3・・・母材である炭素鋼又はステンレス鋼。 新 部 興 治1・−で「 1:合わ材のチタンないしチタン合金 2=中間媒接材の銅又は銅合金
Fig. 1 is a diagram illustrating the assembly of pre-rolled materials for manufacturing titanium clad steel by the method of the present invention, and Fig. 2 is a diagram illustrating the relationship between the welding temperature and the fracture strength of the joint surface due to tension after cooling. It is. 1... Titanium or titanium alloy as a bonding material 2... Copper or copper alloy as an intermediate welding material 3... Carbon steel or stainless steel as a base material. In Koji Shinbe 1.-, “1: Titanium or titanium alloy as composite material 2 = Copper or copper alloy as intermediate welding material

Claims (1)

【特許請求の範囲】[Claims] 母材が鋼、合せ材がチタンないしチタン合金であるクラ
ッド鋼板の製造において、母材と合せ材の間に銅または
銅を30%以上含有する銅合金を中間媒接材として挾み
、850℃超1000℃以下の温度で、10%以上の圧
下率で少なくとも1バス圧延し、溶融したチタンと銅の
合金層をはみ出させて接合することを特徴とするチタン
クラッド鋼板の製造方法。
In the production of clad steel sheets where the base material is steel and the cladding material is titanium or titanium alloy, copper or a copper alloy containing 30% or more of copper is sandwiched between the base material and the cladding material as an intermediate welding material, and the temperature is 850℃. A method for producing a titanium clad steel sheet, which comprises rolling the steel sheet at least once at a temperature of 1,000° C. or lower with a rolling reduction of 10% or more, and joining the steel sheet with a molten titanium and copper alloy layer protruding.
JP27782687A 1987-11-02 1987-11-02 Manufacture of titanium clad steel plate with copper or copper alloy as intermediate joining medium Granted JPH01122677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27782687A JPH01122677A (en) 1987-11-02 1987-11-02 Manufacture of titanium clad steel plate with copper or copper alloy as intermediate joining medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27782687A JPH01122677A (en) 1987-11-02 1987-11-02 Manufacture of titanium clad steel plate with copper or copper alloy as intermediate joining medium

Publications (2)

Publication Number Publication Date
JPH01122677A true JPH01122677A (en) 1989-05-15
JPH0565272B2 JPH0565272B2 (en) 1993-09-17

Family

ID=17588802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27782687A Granted JPH01122677A (en) 1987-11-02 1987-11-02 Manufacture of titanium clad steel plate with copper or copper alloy as intermediate joining medium

Country Status (1)

Country Link
JP (1) JPH01122677A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03277540A (en) * 1990-03-28 1991-12-09 Nippon Steel Corp Titanium clad steel sheet good in workability and production thereof
JPH04123883A (en) * 1990-09-12 1992-04-23 Nippon Steel Corp Method for hot rolling titanium clad steel sheet
JPH04182082A (en) * 1990-11-14 1992-06-29 Nippon Steel Corp Manufacture of titanium clad steel plate having nickel as intermediate joint medium
JP2005014052A (en) * 2003-06-26 2005-01-20 Japan Atom Energy Res Inst Nonfused joining method of different kind of material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7850059B2 (en) 2004-12-24 2010-12-14 Nissan Motor Co., Ltd. Dissimilar metal joining method
JP5495093B2 (en) 2008-01-17 2014-05-21 日産自動車株式会社 Joining method and structure of dissimilar metals
JP5326862B2 (en) 2008-09-08 2013-10-30 日産自動車株式会社 Dissimilar metal joining method of magnesium alloy and steel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03277540A (en) * 1990-03-28 1991-12-09 Nippon Steel Corp Titanium clad steel sheet good in workability and production thereof
JPH04123883A (en) * 1990-09-12 1992-04-23 Nippon Steel Corp Method for hot rolling titanium clad steel sheet
JPH04182082A (en) * 1990-11-14 1992-06-29 Nippon Steel Corp Manufacture of titanium clad steel plate having nickel as intermediate joint medium
JP2005014052A (en) * 2003-06-26 2005-01-20 Japan Atom Energy Res Inst Nonfused joining method of different kind of material
JP4534008B2 (en) * 2003-06-26 2010-09-01 独立行政法人 日本原子力研究開発機構 Non-melting joining method for dissimilar materials

Also Published As

Publication number Publication date
JPH0565272B2 (en) 1993-09-17

Similar Documents

Publication Publication Date Title
KR100734794B1 (en) Method for making a joint between copper and stainless steel
JP5284542B1 (en) Method for producing aluminum alloy clad material
JPH01122677A (en) Manufacture of titanium clad steel plate with copper or copper alloy as intermediate joining medium
JP2013078795A (en) Joining method and joined component
US6783726B2 (en) Cooling element and method for manufacturing cooling elements
JP3047752B2 (en) Manufacturing method of titanium clad steel sheet
JPH04182082A (en) Manufacture of titanium clad steel plate having nickel as intermediate joint medium
JPH0332425B2 (en)
JP2546589B2 (en) Method for producing titanium clad steel sheet by continuous hot rolling
JPH0569638B2 (en)
JPH05177363A (en) Production of copper clad steel products
JPH07110426B2 (en) Method for manufacturing tantalum / copper / stainless steel (carbon steel) clad
JP2631460B2 (en) Method for producing copper alloy clad material
JPS60261682A (en) Titanium clad steel material and its production
JPH0757425B2 (en) Hot rolling method for titanium clad steel sheet
JPH02205277A (en) Production of titanium clad thin steel sheet by using copper or copper alloy as intermediate joining material
JPH0452181B2 (en)
JPS617062A (en) Production of composite metallic plate
JPS63144881A (en) Manufacture of clad steel plate with molten layer as intermediate joint medium
JPH06155049A (en) Method for hot rolling titanium clad steel sheet taking copper as intermediate joint medium
JPH09277432A (en) Titanium clad steel sheet
JPH0424154B2 (en)
JPS6293090A (en) Production of titanium clad steel
JPS5841128B2 (en) Fukugokinzokukannoseizohouhou
JPH01150490A (en) Al bronze-clad steel sheet and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070917

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 15