JPH05136007A - Solid electrolytic capacitor and its manufacture - Google Patents

Solid electrolytic capacitor and its manufacture

Info

Publication number
JPH05136007A
JPH05136007A JP31971791A JP31971791A JPH05136007A JP H05136007 A JPH05136007 A JP H05136007A JP 31971791 A JP31971791 A JP 31971791A JP 31971791 A JP31971791 A JP 31971791A JP H05136007 A JPH05136007 A JP H05136007A
Authority
JP
Japan
Prior art keywords
conductive polymer
electrolytic capacitor
solid electrolytic
molecular weight
average molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31971791A
Other languages
Japanese (ja)
Inventor
Hitoshi Ishikawa
石川  仁志
Atsushi Kobayashi
淳 小林
Shinhi Jiyo
新非 徐
Shigeyoshi Suzuki
成嘉 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP31971791A priority Critical patent/JPH05136007A/en
Publication of JPH05136007A publication Critical patent/JPH05136007A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PURPOSE:To make the performance and stability of solid electrolytic capacitors higher by using meltable conductive polymer in the case of their manufacture. CONSTITUTION:A solid electrolyte layer 3 having high conductivity and high stability is formed on a dielectric oxide film 2 using, as a solid electrolyte, meltable polymer whose number average molecular weight is controlled to be 50,000 or less by fractionation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は導電性高分子を電極の一
部とする固体電解コンデンサに関し、特に分子量を制御
した導電性高分子を電極の一部とする高容量で周波数特
性および耐熱性に優れた固体電解コンデンサとその製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolytic capacitor having a conductive polymer as a part of an electrode, and particularly to a high capacity, frequency characteristic and heat resistance having a conductive polymer having a controlled molecular weight as a part of the electrode. The present invention relates to an excellent solid electrolytic capacitor and a manufacturing method thereof.

【0002】[0002]

【従来の技術】エレクトロニクスの進歩に伴いデバイス
の小型化、軽量化が求められており、コンデンサに関し
ても小型化、チップ化が要求され、高周波数領域での低
インピ―ダンス化、大容量化など性能の向上に対する期
待が高まっている。従来、固体電解コンデンサには、タ
ンタルやアルミニウム等の皮膜形成金属の酸化皮膜を誘
電体とし、二酸化マンガンや7,7´,8,8´−テト
ラシアノキノジメタン(TCNQ)錯塩等を電極の一部
とするものが開発されているが、二酸化マンガンを電極
の一部とするものはその導電率が小さいので高周波数域
でのインピ―ダンスが大きく、TCNQ錯体を電極の一
部とするものではTCNQ錯塩が融解するために、ハン
ダ浴中では絶縁化し、高温で使用できなかった。一方、
ポリピロ―ル等の芳香族系の導電性高分子が開発され、
二酸化マンガンより高導電性で耐熱性にも優れているこ
とが知られている。例えば、特公昭60−37114号
公報にはド―プした複素五員環化合物重合体を固体電解
質とする固体電解コンデンサが開示されている。また、
特開昭60−244017号公報には電解酸化によって
複素環式化合物のポリマ―を形成する固体電解コンデン
サの製造方法が開示されている。しかしながら絶縁体で
ある誘電体表面での電解重合は原理的に実施不可能であ
る。固体電解質としての導電性高分子の形成方法とし
て、特開昭63−80517号公報では、置換基を導入
することにより可溶性を持たせた複素五員環化合物を繰
り返し単位とする導電性高分子溶液を塗布乾燥させて誘
電体皮膜上に導電性高分子層を形成後、気相ド―ピング
することにより固体電解質層を形成させる方法が開示さ
れている。しかしながら、誘電体酸化皮膜は、通常、拡
面化した金属面に導電性高分子溶液を塗布するだけでは
内部まで充分に浸透し難いため、減圧下で含浸させるな
どの工夫が必要である。
2. Description of the Related Art With the progress of electronics, miniaturization and weight saving of devices are required, and miniaturization and chipping of capacitors are also required, and low impedance in a high frequency region, large capacity, etc. Expectations for improved performance are increasing. Conventionally, in solid electrolytic capacitors, an oxide film of a film-forming metal such as tantalum or aluminum is used as a dielectric, and manganese dioxide or 7,7 ′, 8,8′-tetracyanoquinodimethane (TCNQ) complex salt is used as an electrode. Some have been developed, but those with manganese dioxide as part of the electrode have a low conductivity, so the impedance in the high frequency range is large, and those with the TCNQ complex as part of the electrode. However, since the TCNQ complex salt melted, it was insulated in the solder bath and could not be used at high temperature. on the other hand,
Aromatic conductive polymers such as polypyrrole were developed,
It is known that it has higher conductivity and higher heat resistance than manganese dioxide. For example, Japanese Examined Patent Publication No. 60-37114 discloses a solid electrolytic capacitor using a doped five-membered heterocyclic compound polymer as a solid electrolyte. Also,
Japanese Unexamined Patent Publication No. 60-244017 discloses a method for producing a solid electrolytic capacitor in which a polymer of a heterocyclic compound is formed by electrolytic oxidation. However, in principle, electrolytic polymerization on the surface of the dielectric, which is an insulator, cannot be performed. As a method of forming a conductive polymer as a solid electrolyte, Japanese Patent Laid-Open No. 63-80517 discloses a conductive polymer solution containing a repeating five-membered heterocyclic compound, which is made soluble by introducing a substituent. It is disclosed that a solid polymer layer is formed by applying and drying to form a conductive polymer layer on the dielectric film and then vapor-doping. However, since it is difficult for the dielectric oxide film to penetrate sufficiently to the inside only by applying the conductive polymer solution to the expanded metal surface, it is necessary to devise it by impregnating it under reduced pressure.

【0003】[0003]

【発明が解決しようとする課題】以上述べてきたよう
に、導電性高分子を電極の一部とする固体電解コンデン
サは、導電性高分子が高導電性で耐熱性にも優れている
ため、良好な特性を示すことが期待されているが、開発
が不十分で、そのため良好な特性のものは得られていな
かった。本発明の目的は、導電性高分子を電極の一部と
する高容量で周波数特性および耐熱性に優れた固体電解
コンデンサを開発することにある。
As described above, in the solid electrolytic capacitor having the conductive polymer as a part of the electrode, the conductive polymer has high conductivity and excellent heat resistance. Although it is expected that good characteristics will be exhibited, development has been insufficient, and therefore good characteristics have not been obtained. An object of the present invention is to develop a solid electrolytic capacitor which has a conductive polymer as a part of an electrode and has a high capacity and excellent frequency characteristics and heat resistance.

【0004】[0004]

【課題を解決するための手段】すなわち、本発明は、皮
膜形成金属の表面に形成した酸化皮膜層を誘電体とし、
導電性高分子を電極の一部とする固体電解コンデンサに
おいて、導電性高分子が、数平均分子量50,000以
下に制御したものであることを特徴とする固体電解コン
デンサである。またその製造方法は、皮膜形成金属の表
面に形成した酸化皮膜層からなる誘電体表面に、数平均
分子量50,000以下の可溶性導電性高分子およびド
―パントの溶液を導入し、溶媒を除去して固体電解質層
を形成させることを特徴とする。
That is, according to the present invention, an oxide film layer formed on the surface of a film-forming metal is used as a dielectric,
A solid electrolytic capacitor having a conductive polymer as a part of an electrode, wherein the conductive polymer is controlled to have a number average molecular weight of 50,000 or less. Further, the manufacturing method is to introduce a solution of a soluble conductive polymer having a number average molecular weight of 50,000 or less and a dopant into a dielectric surface composed of an oxide film layer formed on the surface of a film-forming metal and removing the solvent. To form a solid electrolyte layer.

【0005】本発明の固体電解コンデンサは、皮膜形成
金属からなる陽極、その誘電体酸化皮膜層、導電性ペ―
スト層から構成される。本発明の皮膜形成金属は、アル
ミニウム、タンタル、チタン、ニオブ、ジルコニウム、
マグネシウム、亜鉛、ビスマス、ケイ素、ハフニウム等
の弁作用を有する金属である。本発明の固体電解コンデ
ンサの電極の一部である数平均分子量を50,000以
下に制御した導電性高分子の種類は特に限定されない
が、分子量制御の容易さから溶媒に可溶なものが好まし
く、中でも、次式(1):
The solid electrolytic capacitor of the present invention comprises an anode made of a film-forming metal, its dielectric oxide film layer, and a conductive sheet.
It consists of a strike layer. The film-forming metal of the present invention includes aluminum, tantalum, titanium, niobium, zirconium,
It is a metal having a valve action such as magnesium, zinc, bismuth, silicon and hafnium. The type of the conductive polymer in which the number average molecular weight which is a part of the electrode of the solid electrolytic capacitor of the present invention is controlled to 50,000 or less is not particularly limited, but a solvent-soluble one is preferable from the viewpoint of easy control of the molecular weight. In particular, the following formula (1):

【化2】 [式(I)中、R1およびR2は水素原子、アルキル基、
アルコキシル基またはアリ―ル基(R1、R2が環状構造
をなしてもよい。)、Xは−O−、−S−、またはNR
3(R3は水素原子、アルキル基、アリ―ル基またはアル
キルアリ―ル基)を示す。]で表されるモノマ―の繰り
返し単位を少なくとも1種類以上含む重合体あるいは共
重合体が特に好ましい。
[Chemical 2] [In the formula (I), R 1 and R 2 are a hydrogen atom, an alkyl group,
Alkoxyl group or aryl group (R 1 and R 2 may form a cyclic structure), X is —O—, —S—, or NR.
3 (R 3 is a hydrogen atom, an alkyl group, an aryl group or an alkylaryl group). ] A polymer or copolymer containing at least one repeating unit of the monomer represented by

【0006】本発明に用いられる導電性高分子の合成法
は特に限定されず、導電性高分子の合成法として従来公
知の化学酸化重合、電気化学重合等で合成される。本発
明では、このようにして得られた導電性高分子をそのま
まあるいは必要に応じて分子量をあわせた上で固体電解
コンデンサの電極の一部として使用する。分子量制御の
方法としては、限外ろ過、再沈等が挙げられるが、この
限りではない。また、本発明の数平均分子量50,00
0以下に制御した導電性高分子は、ゲルパ―ミエイショ
ンクロマトグラフィ(以下、GPCと称する。)で測定
した数平均分子量がポリスチレン換算で50,000以
下であることを意味しており、5%までの微量の数平均
分子量50,000以上の成分を含んでも実質的な効果
は変わらない。本発明では導電性高分子の数平均分子量
を50,000以下に制御したため、固体電解コンデン
サの拡面化した誘電体表面に均一かつ密着して導電性高
分子が形成され、導電性高分子を電極の一部として形成
できる。その結果、高容量の固体電解コンデンサとな
る。
The method of synthesizing the electroconductive polymer used in the present invention is not particularly limited, and it is possible to synthesize the electroconductive polymer by a conventionally known chemical oxidative polymerization, electrochemical polymerization or the like. In the present invention, the conductive polymer thus obtained is used as it is or after adjusting the molecular weight if necessary, as a part of the electrode of the solid electrolytic capacitor. Examples of the method for controlling the molecular weight include, but are not limited to, ultrafiltration and reprecipitation. Further, the number average molecular weight of the present invention is 50,000.
A conductive polymer controlled to be 0 or less means that the number average molecular weight measured by gel permeation chromatography (hereinafter referred to as GPC) is 50,000 or less in terms of polystyrene, and up to 5%. Even if a small amount of a component having a number average molecular weight of 50,000 or more is contained, the substantial effect does not change. In the present invention, since the number average molecular weight of the conductive polymer is controlled to 50,000 or less, the conductive polymer is uniformly and closely adhered to the expanded dielectric surface of the solid electrolytic capacitor to form the conductive polymer. It can be formed as part of the electrode. As a result, a high capacity solid electrolytic capacitor is obtained.

【0007】本発明の導電性高分子は、電子吸引性また
は電子供与性であるド―パントでド―ピングして使用さ
れるが、本発明はド―パントの種類は特に限定されず、
導電性高分子のド―パントとして従来公知のヨウ素,臭
素,ヨウ化臭素等のハロゲン、三塩化鉄,五フッ化ヒ
素,五フッ化アンチモン,四フッ化ケイ素,五塩化リ
ン,五フッ化リン,塩化アルミニウム,塩化モリブデン
等のルイス酸、硫酸,硝酸等のプロトン酸、ベンゼンス
ルホン酸ナトリウム,p−トルエンスルホン酸ナトリウ
ム等のベンゼンスルホン酸塩およびその誘導体等が使用
できる。
The electroconductive polymer of the present invention is used by being doped with an electron-withdrawing or electron-donating dopant, but the present invention is not particularly limited by the type of dopant.
Known halogens such as iodine, bromine and bromine iodide, iron trichloride, arsenic pentafluoride, antimony pentafluoride, silicon tetrafluoride, phosphorus pentachloride, phosphorus pentafluoride, which are conventionally known as dopants for conductive polymers. Lewis acids such as aluminum chloride and molybdenum chloride, protic acids such as sulfuric acid and nitric acid, benzene sulfonates such as sodium benzenesulfonate and sodium p-toluenesulfonate, and their derivatives can be used.

【0008】本発明の方法における固体電解質層の形成
方法としては、特に限定されず、皮膜形成金属の酸化皮
膜層からなる誘電体表面に可溶性導電性高分子溶液を塗
布後、ド―パントと接触させて固体電解質を形成させる
方法や、可溶性導電性高分子溶液とド―パント溶液との
混合溶液中にペレットをディップコ―トさせる方法等が
挙げられるが、特に数平均分子量50,000以下の可
溶性導電性高分子およびド―パントの溶液を導入し、溶
媒を除去する方法が好適である。この場合、可溶性導電
性高分子およびド―パントの濃度、割合は特に限定され
ず、それらの溶液の導入方法も限定されない。溶媒は、
導電性高分子およびド―パントの種類に応じて、それら
を溶解あるいは分散できるものであり、例えば、クロロ
ホルム,ジクロロメタン等の塩素系溶媒、テトラヒドロ
フラン等のエ―テル系溶媒、ヘキサン,ベンゼン,トル
エン等の炭化水素系溶媒等が挙げられる。本発明の固体
電解コンデンサは、電極の一部として導電性高分子を形
成した後、導電性ペ―ストを塗布し、電極を取り出し、
さらに必要に応じてモ―ルドを行う。導電性ペ―ストと
しては、通常の銀ペ―ストやカ―ボンペ―ストを単独あ
るいは組み合わせて使用できる。
The method of forming the solid electrolyte layer in the method of the present invention is not particularly limited, and after the soluble conductive polymer solution is applied to the surface of the dielectric formed of the oxide film layer of the film-forming metal, it is contacted with the dopant. And a method of forming a solid electrolyte, or a method of dip-coating a pellet in a mixed solution of a soluble conductive polymer solution and a dopant solution, and particularly a number-average molecular weight of 50,000 or less A method of introducing a solution of a conductive polymer and a dopant and removing the solvent is preferable. In this case, the concentrations and proportions of the soluble conductive polymer and the dopant are not particularly limited, and the method of introducing these solutions is also not limited. The solvent is
It can dissolve or disperse conductive polymers and dopants depending on the type, for example, chlorine-based solvents such as chloroform and dichloromethane, ether-based solvents such as tetrahydrofuran, hexane, benzene, toluene, etc. The hydrocarbon-based solvent and the like. The solid electrolytic capacitor of the present invention, after forming a conductive polymer as a part of the electrode, apply a conductive paste, take out the electrode,
If necessary, carry out molding. As the conductive paste, ordinary silver paste and carbon paste can be used alone or in combination.

【0009】[0009]

【作用】本発明において、化成処理により誘電体酸化皮
膜を形成した弁作用を有する金属箔上に、数平均分子量
50,000以下に制御した可溶性導電性高分子層を固
体電解質として用いることにより固体電解コンデンサの
高性能化、高安定性化が可能となる。
In the present invention, a soluble conductive polymer layer whose number average molecular weight is controlled to 50,000 or less is used as a solid electrolyte on a metal foil having a valve action, which has a dielectric oxide film formed by chemical conversion treatment. High performance and high stability of electrolytic capacitors are possible.

【0010】[0010]

【実施例】以下、実施例に従って説明するが、本発明
は、その要旨を越えない限り、以下の実施例に限定され
るものではない。 実施例1 クロロホルム200ml中に、減圧下100℃で1時間
乾燥させた三塩化鉄(FeCl3)33gを入れ、攪拌
しながら、これに3−オクチルチオフェン10gをゆっ
くり滴下し、室温で2時間攪拌した。反応溶液をメタノ
―ル2000ml中に加えるとメタノ―ルに不溶の沈澱
物が得られた。これを吸引ろ過して粗生成ポリマ―を得
た。これをソックスレ―抽出器でメタノ―ルおよびアセ
トンを用いて過剰のFeCl3を除去し、次いでクロロ
ホルムで抽出した後、溶媒を留去して溶媒可溶なポリ
(3−オクチルチオフェン)[以下、P3OTと称す
る。]を8g得た。P3OT試料のGPC測定より求め
た分子量は、ポリスチレン換算(以下同じ)で数平均分
子量(Mn)は13,000、重量平均分子量(Mw)
は40,000であった。上記のP3OT試料1.0g
をクロロホルム50mlに溶解させ、激しく攪拌させな
がらメタノ―ル10mlをゆっくり滴下させた。1時間
程激しく攪拌させた後、高分子量の沈澱物をろ別、ろ液
を溶媒留去することによって分別させた2種類のP3O
Tを得た。沈殿物のP3OTをP3OT−5とする。ろ
液については上記と同様の操作により、メタノ―ルの添
加量を15ml,20ml,25mlに変えて分別を行
った。その結果、5種類のP3OT(P3OT−1、P
3OT−2、P3OT−3、P3OT−4、P3OT−
5)を得た。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist. Example 1 33 g of iron trichloride (FeCl 3 ) dried at 100 ° C. under reduced pressure for 1 hour was put in 200 ml of chloroform, 10 g of 3-octylthiophene was slowly added dropwise thereto with stirring, and the mixture was stirred at room temperature for 2 hours. did. When the reaction solution was added to 2000 ml of methanol, a precipitate insoluble in methanol was obtained. This was suction filtered to obtain a crude polymer. Excess FeCl 3 was removed from this using Soxhlet extractor with methanol and acetone, followed by extraction with chloroform, and then the solvent was distilled off to remove solvent-soluble poly (3-octylthiophene) [hereinafter, It is called P3OT. ] Was obtained. The molecular weight of the P3OT sample determined by GPC measurement is polystyrene equivalent (the same applies hereinafter), the number average molecular weight (Mn) is 13,000, and the weight average molecular weight (Mw).
Was 40,000. 1.0 g of the above P3OT sample
Was dissolved in 50 ml of chloroform, and 10 ml of methanol was slowly added dropwise with vigorous stirring. After vigorously stirring for about 1 hour, two types of P3O separated by filtering off the high molecular weight precipitate and distilling off the filtrate
I got T. Let P3OT of the precipitate be P3OT-5. The filtrate was fractionated by the same operation as described above, changing the amount of methanol added to 15 ml, 20 ml, and 25 ml. As a result, five types of P3OT (P3OT-1, P3OT
3OT-2, P3OT-3, P3OT-4, P3OT-
5) was obtained.

【0011】次に、上記で得られた導電性高分子を用い
て、図1に示すような固体電解コンデンサを作製した。
同図に基づいてその製造方法を以下に示す。エッチング
処理をして拡面した(32μオングストロ―ム/c
2)膜厚70μm、面積1cm×1.2cm(溶接し
ろ0.2cm:有効面積1cm2)の陽極1となるアル
ミニウム箔を60℃,10%アジピン酸アンモニウム水
溶液中,40Vで化成して酸化皮膜2を形成し、次にリ
―ド端子を溶接し、アルミニウムペレットを作製した。
P3OT−1 0.035g(0.18mmol)の
1.5mlクロロホルム溶液中に、上記ペレットを数回
ディップ、乾燥させて薄膜層を形成させた。さらにこの
陽極箔をFeCl3のニトロメタン溶液中に30分間含
浸させて、ド―ピングを行い、固体電解質層3を形成さ
せ、この固体電解質層3の表面にグラファイト層4およ
び銀ペ―スト層5を形成した後、陰極6を取り出し、モ
―ルドすることによりコンデンサを作製した。P3OT
−2、P3OT−3についても同様にしてコンデンサを
作製した。これらのコンデンサの諸特性を測定した。
Next, a solid electrolytic capacitor as shown in FIG. 1 was produced using the conductive polymer obtained above.
The manufacturing method will be described below with reference to FIG. The surface was expanded by etching (32μAngstrom / c
m 2 ) An aluminum foil to be the anode 1 having a film thickness of 70 μm and an area of 1 cm × 1.2 cm (weld margin 0.2 cm: effective area 1 cm 2 ) was formed by oxidation at 40 V in a 10% ammonium adipate aqueous solution at 60 ° C. The film 2 was formed, and then the lead terminals were welded to produce aluminum pellets.
The pellet was dipped and dried in a 1.5 ml chloroform solution of 0.035 g (0.18 mmol) of P3OT-1 several times to form a thin film layer. Further, this anode foil is impregnated with a nitromethane solution of FeCl 3 for 30 minutes and is doped to form a solid electrolyte layer 3, and a graphite layer 4 and a silver paste layer 5 are formed on the surface of the solid electrolyte layer 3. After forming, the cathode 6 was taken out and molded to prepare a capacitor. P3OT
-2 and P3OT-3 were similarly prepared as capacitors. Various characteristics of these capacitors were measured.

【0012】実施例2 実施例1の3−オクチルチオフェンに代えて、3−ヘキ
シルチオフェンを使用する以外は実施例1の方法と同様
の操作を行い、メタノ―ル10ml,15mlで分別し
て3種類の溶媒可溶なポリ(3−ヘキシルチオフェン)
(P3HT−1、P3HT−2、P3HT−3)を得
た。コンデンサ特性も、P3OTと同様に測定した。
Example 2 The same operation as in Example 1 was carried out except that 3-hexylthiophene was used in place of 3-octylthiophene in Example 1, and 10 ml and 15 ml of methanol were used for separation to obtain 3 types. Solvent-soluble poly (3-hexylthiophene)
(P3HT-1, P3HT-2, P3HT-3) was obtained. The capacitor characteristics were also measured in the same manner as P3OT.

【0013】実施例3 P3OT 0.02gの1mlクロロホルム溶液と、F
eCl3 0.074gの1mlクロロホルム溶液との混
合溶液を調製し、これに実施例1のアルミニウムペレッ
トを数回ディップ、乾燥させて固体電解質層を形成させ
た。導電ペ―ストを塗り、モ―ルドしてコンデンサを作
製した。コンデンサ特性は実施例1と同様に良好であっ
た。
Example 3 0.02 g of P3OT in 1 ml of chloroform and F
A mixed solution of 0.074 g of eCl 3 and 1 ml of a chloroform solution was prepared, and the aluminum pellets of Example 1 were dipped and dried several times to form a solid electrolyte layer. A conductive paste was applied and molded to prepare a capacitor. The capacitor characteristics were good as in Example 1.

【0014】比較例1 実施例1のP3OT−1に代えて、数平均分子量52,
000のP3OT−4、90,000のP3OT−5、
および80,000のP3HT−3を使用する以外は実
施例1と同様の操作を行いコンデンサを作製し、諸特性
を測定した。実施例1,2および比較例1の結果を表1
に示すが、数平均分子量50,000以下で85%以上
の高被覆率が得られた。
Comparative Example 1 Instead of P3OT-1 of Example 1, a number average molecular weight of 52,
000 P3OT-4, 90,000 P3OT-5,
The same operation as in Example 1 was performed except that P3HT-3 of 80,000 and 80,000 was used to prepare a capacitor, and various characteristics were measured. Table 1 shows the results of Examples 1 and 2 and Comparative Example 1.
As shown in Table 1, a high coverage of 85% or more was obtained at a number average molecular weight of 50,000 or less.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【発明の効果】以上説明したように、本発明によれば、
数平均分子量50,000以下に制御した導電性高分子
を電極の一部とすることによって、高容量で周波数特性
に優れた固体電解コンデンサの製造が可能となる。
As described above, according to the present invention,
By using a conductive polymer controlled to have a number average molecular weight of 50,000 or less as a part of the electrode, it is possible to manufacture a solid electrolytic capacitor having high capacity and excellent frequency characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による固体電解コンデンサの一実施例の
断面図である。
FIG. 1 is a sectional view of an embodiment of a solid electrolytic capacitor according to the present invention.

【符号の説明】[Explanation of symbols]

1 陽極 2 誘電体酸化皮
膜 3 固体電解質層 4 グラファイト
層 5 銀ペ―スト層 6 陰極
1 Anode 2 Dielectric oxide film 3 Solid electrolyte layer 4 Graphite layer 5 Silver paste layer 6 Cathode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 成嘉 東京都港区芝5丁目7番1号 日本電気株 式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Shigeyoshi Suzuki 5-7-1 Shiba, Minato-ku, Tokyo NEC Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 皮膜形成金属の表面に形成した酸化皮膜
層を誘電体とし、導電性高分子を電極の一部とする固体
電解コンデンサにおいて、導電性高分子が、数平均分子
量50,000以下に制御したものであることを特徴と
する固体電解コンデンサ。
1. A solid electrolytic capacitor having an oxide film layer formed on the surface of a film-forming metal as a dielectric and a conductive polymer as a part of an electrode, wherein the conductive polymer has a number average molecular weight of 50,000 or less. A solid electrolytic capacitor characterized by being controlled to.
【請求項2】 導電性高分子が下記の一般式: 【化1】 [式中、R1およびR2は水素原子、アルキル基、アルコ
キシル基またはアリ―ル基(R1、R2が環状構造をなし
てもよい。)、Xは−O−、−S−、またはNR3(R3
は水素原子、アルキル基、アリ―ル基またはアルキルア
リ―ル基)を示す。]で表される繰り返し単位を少なく
とも1種類以上含む重合体であることを特徴とする請求
項1記載の固体電解コンデンサ。
2. The conductive polymer has the following general formula: [In the formula, R 1 and R 2 are a hydrogen atom, an alkyl group, an alkoxyl group or an aryl group (R 1 and R 2 may form a cyclic structure), X is —O—, —S—, Or NR 3 (R 3
Represents a hydrogen atom, an alkyl group, an aryl group or an alkylaryl group). ] The solid electrolytic capacitor according to claim 1, which is a polymer containing at least one type of repeating unit represented by the following formula.
【請求項3】 皮膜形成金属の表面に形成した酸化皮膜
層からなる誘電体表面に、数平均分子量50,000以
下の可溶性導電性高分子およびド―パントの溶液を導入
し、溶媒を除去して固体電解質層を形成させることを特
徴とする固体電解コンデンサの製造方法。
3. A solution of a soluble conductive polymer having a number average molecular weight of 50,000 or less and a dopant is introduced to the surface of a dielectric formed of an oxide film layer formed on the surface of a film-forming metal, and the solvent is removed. A method for manufacturing a solid electrolytic capacitor, which comprises forming a solid electrolyte layer by means of the method.
JP31971791A 1991-11-08 1991-11-08 Solid electrolytic capacitor and its manufacture Pending JPH05136007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31971791A JPH05136007A (en) 1991-11-08 1991-11-08 Solid electrolytic capacitor and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31971791A JPH05136007A (en) 1991-11-08 1991-11-08 Solid electrolytic capacitor and its manufacture

Publications (1)

Publication Number Publication Date
JPH05136007A true JPH05136007A (en) 1993-06-01

Family

ID=18113393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31971791A Pending JPH05136007A (en) 1991-11-08 1991-11-08 Solid electrolytic capacitor and its manufacture

Country Status (1)

Country Link
JP (1) JPH05136007A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5567209A (en) * 1993-11-04 1996-10-22 Nec Corporation Method of manufacturing solid electrolytic capacitor
WO2015029344A1 (en) * 2013-08-30 2015-03-05 パナソニックIpマネジメント株式会社 Electrolytic capacitor and method for manufacturing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5567209A (en) * 1993-11-04 1996-10-22 Nec Corporation Method of manufacturing solid electrolytic capacitor
WO2015029344A1 (en) * 2013-08-30 2015-03-05 パナソニックIpマネジメント株式会社 Electrolytic capacitor and method for manufacturing same
CN105531778A (en) * 2013-08-30 2016-04-27 松下知识产权经营株式会社 Electrolytic capacitor and method for manufacturing same
JPWO2015029344A1 (en) * 2013-08-30 2017-03-02 パナソニックIpマネジメント株式会社 Electrolytic capacitor and manufacturing method thereof
US9922771B2 (en) 2013-08-30 2018-03-20 Panasonic Intellectual Property Management Co., Ltd. Electrolytic capacitor and method for manufacturing same
CN105531778B (en) * 2013-08-30 2019-01-08 松下知识产权经营株式会社 electrolytic capacitor and its manufacturing method

Similar Documents

Publication Publication Date Title
JP2011202008A (en) Conductive polymer and manufacturing method thereof, conductive polymer dispersion, solid electrolyte capacitor, and manufacturing method thereof
JPH07142292A (en) Tantalum solid electrolytic capacitor and its manufacture
JP2725553B2 (en) Method for manufacturing solid electrolytic capacitor
JP2605596B2 (en) Conductive polymer film and method for producing the same, conductive polymer compound solution, and solid electrolytic capacitor and method for producing the same
JPH0650710B2 (en) Method for manufacturing solid electrolytic capacitor
JPH1060234A (en) Electroconductive polymer and its production and solid electrolytic capacitor using the same
JPH05136007A (en) Solid electrolytic capacitor and its manufacture
JPH0682592B2 (en) Method for manufacturing solid electrolytic capacitor
JP4164591B2 (en) Method for producing heat-resistant polyethylene dioxythiophene
JPH0650711B2 (en) Method for manufacturing solid electrolytic capacitor
JP2945100B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0346214A (en) Manufacture of solid electrolytic capacitor
JPH0677093A (en) Solid-state electrolytic capacitor and manufacture thereof
JPH06112094A (en) Manufacture of solid-state electrolytic capacitor
JP4621383B2 (en) Solid electrolytic capacitor and manufacturing method thereof
KR970005086B1 (en) Tantalium electrolytic condenser producing method
JPH0645195A (en) Manufacture of solid-state electrolytic capacitor
JP2922521B2 (en) Solid electrolytic capacitors
JP3180358B2 (en) Method for manufacturing solid electrolytic capacitor
JP2612007B2 (en) Method for manufacturing solid electrolytic capacitor
JP2991408B2 (en) Method for producing polyaniline and method for producing solid electrolytic capacitor
JP2904453B2 (en) Method for manufacturing solid electrolytic capacitor
JP2898443B2 (en) Method for manufacturing solid electrolytic capacitor
JPH05136006A (en) Manufacture of solid electrolytic capacitor
JP2632944B2 (en) Solid electrolytic capacitors