JPH05135797A - Hydride secondary battery and manufacture thereof - Google Patents

Hydride secondary battery and manufacture thereof

Info

Publication number
JPH05135797A
JPH05135797A JP4121229A JP12122992A JPH05135797A JP H05135797 A JPH05135797 A JP H05135797A JP 4121229 A JP4121229 A JP 4121229A JP 12122992 A JP12122992 A JP 12122992A JP H05135797 A JPH05135797 A JP H05135797A
Authority
JP
Japan
Prior art keywords
battery
negative electrode
hydride
discharge
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4121229A
Other languages
Japanese (ja)
Other versions
JP3342506B2 (en
Inventor
Hiroshi Fukunaga
浩 福永
Hirokazu Kido
宏和 貴堂
Tatsu Nagai
龍 長井
Akira Kawakami
章 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP12122992A priority Critical patent/JP3342506B2/en
Publication of JPH05135797A publication Critical patent/JPH05135797A/en
Application granted granted Critical
Publication of JP3342506B2 publication Critical patent/JP3342506B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/26Selection of materials as electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To suppress the internal pressure rise of a hydride secondary battery, improve charge/discharge cycle characteristics, simplify the activation treatment, reduce a self-discharge, and improve the discharge characteristic at a large- current discharge and the discharge characteristic at a low-temperature discharge. CONSTITUTION:A soluble hydride such as sodium borohydride is incorporated in an electrolyte, or a negative electrode is dipped in an alkaline aqueous solution dissolved with the soluble hydride such as the sodium borohydride before a battery is assembled, and the negative electrode is treated with a reducing agent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素化物二次電池およ
びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydride secondary battery and a method for manufacturing the same.

【0002】[0002]

【従来の技術】水素吸蔵合金は多量の水素を吸蔵、放出
する能力を有していて、これを負極に用いた水素化物二
次電池は、アルカリ水溶液中においても電気化学的に多
量の水素の吸蔵、放出を行うことができる。
2. Description of the Related Art A hydrogen storage alloy has the ability to store and release a large amount of hydrogen, and a hydride secondary battery using this as a negative electrode electrochemically stores a large amount of hydrogen even in an alkaline aqueous solution. Can occlude and release.

【0003】この水素吸蔵合金を負極に用い、ニッケル
水酸化物を正極に用いた水素化物二次電池では、次に示
すような反応式で電池反応が進行する。反応式におい
て、充電反応は左から右方向への矢印で示し、放電反応
は右から左方向への矢印で示す。つまり、〔式1〕と
〔式3〕が充電反応で、〔式2〕と〔式4〕が放電反応
である。
In a hydride secondary battery in which this hydrogen storage alloy is used in the negative electrode and nickel hydroxide is used in the positive electrode, the battery reaction proceeds according to the following reaction formula. In the reaction formula, the charging reaction is indicated by an arrow from left to right, and the discharging reaction is indicated by an arrow from right to left. That is, [Equation 1] and [Equation 3] are charge reactions, and [Equation 2] and [Equation 4] are discharge reactions.

【0004】〔正極〕 〔式1〕 Ni(OH)2 +OH- → NiOOH+
2 O+e- 〔式2〕 Ni(OH)2 +OH- ← NiOOH+
2 O+e-
[Positive Electrode] [Formula 1] Ni (OH) 2 + OH → NiOOH +
H 2 O + e [Formula 2] Ni (OH) 2 + OH ← NiOOH +
H 2 O + e -

【0005】〔負極〕 〔式3〕 M+H2 O+e- → M(H)+OH- 〔式4〕 M+H2 O+e- ← M(H)+OH- [Anode] [Formula 3] M + H 2 O + e → M (H) + OH [Formula 4] M + H 2 O + e ← M (H) + OH

【0006】〔式3〕および〔式4〕中のMは水素吸蔵
合金を示している。充電反応において、負極の水素吸蔵
合金Mは、〔式3〕に示すように、アルカリ水溶液中の
水を電気分解して、水素を吸蔵し、M(H)で示す状態
になり、水酸基(OH- )を生じ、〔式1〕に示すよう
に、その水酸基が正極のNi(OH)2 と反応して、N
iOOHになり、水を生じる。
M in [Equation 3] and [Equation 4] represents a hydrogen storage alloy. In the charging reaction, the hydrogen storage alloy M of the negative electrode electrolyzes the water in the alkaline aqueous solution to store hydrogen into the state shown by M (H) as shown in [Equation 3], and the hydroxyl group (OH - ) Is generated, and the hydroxyl group reacts with Ni (OH) 2 of the positive electrode as shown in [Equation 1] to give N.
Becomes iOOH, producing water.

【0007】放電反応においては、この逆反応が生じ
る。つまり、充電は水素吸蔵合金の水素の吸蔵であり、
放電は水素吸蔵合金の水素の放出となる。
This reverse reaction occurs in the discharge reaction. In other words, charging is the storage of hydrogen in a hydrogen storage alloy,
The discharge results in the release of hydrogen from the hydrogen storage alloy.

【0008】そして、この水素化物二次電池は、工業的
にはほとんど筒形密閉電池として製造され、負極の容量
が正極の容量より大きくなるように設計されている。
This hydride secondary battery is industrially manufactured as a cylindrical sealed battery, and is designed so that the capacity of the negative electrode is larger than that of the positive electrode.

【0009】これは、放電時の分極を減少させ、放電電
圧の平坦性を向上させ、過充電時に正極から発生する酸
素を負極表面上で還元させて、水に戻し、電池内圧を高
めないようにするためである。
This reduces the polarization during discharge, improves the flatness of the discharge voltage, reduces the oxygen generated from the positive electrode during overcharge on the surface of the negative electrode, and returns it to water so that the internal pressure of the battery is not increased. This is because

【0010】この際の正極、負極の反応は、〔式5〕〜
〔式7〕のようになる。 〔正極〕 〔式5〕 4OH- → 2H2 O+O2 +4e-
At this time, the reaction between the positive electrode and the negative electrode is [Formula 5]-
It becomes like [Formula 7]. [Positive electrode] [Formula 5] 4OH → 2H 2 O + O 2 + 4e

【0011】〔負極〕 〔式6〕 4MH+O2 → 4M+2H2 O+Q 〔式7〕 4M+4H2 O+4e- → 4MH+4O
-
[Anode] [Formula 6] 4MH + O 2 → 4M + 2H 2 O + Q [Formula 7] 4M + 4H 2 O + 4e → 4MH + 4O
H -

【0012】[0012]

【発明が解決しようとする課題】しかし、〔式6〕が発
熱(Qで示す)を伴う反応であるため、負極表面の温度
が上昇し、初期の充放電サイクルでは、平衡水素圧力の
関係から水素が負極から離脱して、電池内圧を上昇させ
ることになる。
However, since [Equation 6] is a reaction accompanied by heat generation (shown by Q), the temperature of the negative electrode surface rises, and in the initial charge / discharge cycle, from the relation of the equilibrium hydrogen pressure, Hydrogen dissociates from the negative electrode, increasing the internal pressure of the battery.

【0013】さらに充放電サイクルを繰り返すことによ
り、負極表面は徐々に酸化され、また負極の水素吸蔵合
金が微粉末化して、分極が増加し、前記のような酸素を
水に還元する能力が低下するので、過充電時の電池内部
は酸素により圧力上昇をきたす。
By further repeating the charge / discharge cycle, the surface of the negative electrode is gradually oxidized, and the hydrogen storage alloy of the negative electrode is pulverized to increase the polarization and the ability to reduce oxygen as described above to water is reduced. Therefore, the pressure inside the battery increases due to oxygen during overcharge.

【0014】そして、終期の充放電サイクルでは、負極
の劣化がさらに進み、容量が負極規制になり、過充電時
に大量の水素が発生して、電池内部は大量の水素と酸素
で圧力がさらに上昇し、電解液の漏出や内部抵抗の増加
を引き起こす。
In the final charge / discharge cycle, the negative electrode further deteriorates, the capacity is regulated to the negative electrode, a large amount of hydrogen is generated during overcharge, and the pressure in the battery is further increased by a large amount of hydrogen and oxygen. However, this causes leakage of electrolyte and increase in internal resistance.

【0015】その結果、電池の安全性が低下し、また充
放電容量が低下して、電池寿命を短くさせる原因にな
る。
As a result, the safety of the battery is lowered, and the charge / discharge capacity is lowered, which causes the battery life to be shortened.

【0016】そこで、これを解消するため、負極に白金
などの貴金属触媒を添加し、酸素ガスのイオン化を促進
させる方法や酸素ガスの吸収層を設けるなどの方法が行
われている。しかし、白金などの触媒は高価でコストを
上げることになり、吸収層を電池内部または負極に設置
すると、活物質の充填量を減じ、体積効率を減少させる
ことになる。
Therefore, in order to solve this problem, a method of adding a noble metal catalyst such as platinum to the negative electrode to promote ionization of oxygen gas or a method of providing an oxygen gas absorption layer has been used. However, catalysts such as platinum are expensive and costly, and when the absorption layer is installed inside the battery or in the negative electrode, the filling amount of the active material is reduced and the volume efficiency is reduced.

【0017】また、負極の水素吸蔵合金は、合金材料を
アーク(高周波)溶解炉で溶解し、インゴット状に形成
した後、水素の吸蔵、放出により微粉末化させ、負極の
作製に使用されている。
Further, the hydrogen storage alloy of the negative electrode is used in the production of the negative electrode after melting the alloy material in an arc (high frequency) melting furnace to form an ingot, and then finely pulverizing it by absorbing and releasing hydrogen. There is.

【0018】そして、負極をぺースト式で作製する場合
には、上記の水素吸蔵合金粉末を結着剤としてのポリテ
トラフルオロエチレンの分散液と混合し、それを集電体
に塗布、乾燥することによって、負極が作製される。
When the negative electrode is produced by a paste method, the above hydrogen storage alloy powder is mixed with a dispersion liquid of polytetrafluoroethylene as a binder, which is applied to a current collector and dried. Thus, the negative electrode is manufactured.

【0019】この負極作製は、通常、空気中で行われる
ので、水素吸蔵合金粉末の表面には、薄い酸化物層が形
成される。
Since this negative electrode is usually produced in air, a thin oxide layer is formed on the surface of the hydrogen storage alloy powder.

【0020】そこで、この酸化物層が形成された負極と
正極とを組み合わせ、電解液中で放電すると、上記酸化
物層のために所定の放電容量に達するまでに、数サイク
ルの充放電が必要になる。
Therefore, when the negative electrode having the oxide layer and the positive electrode are combined and discharged in an electrolytic solution, several cycles of charge and discharge are required until the discharge capacity reaches a predetermined value due to the oxide layer. become.

【0021】つまり、充放電を数回繰り返して、上記酸
化物層を除去しないと、所定の放電容量が得られない。
That is, unless the oxide layer is removed by repeating charge and discharge several times, a predetermined discharge capacity cannot be obtained.

【0022】そのため、電池組立後、高温(40〜70
℃)で長時間エージングしたり、水素吸蔵合金粉末をア
ルカリ水溶液で処理してから負極を作製するなどの、い
わゆる活性化処理が行われている(例えば、特開昭63
−146353号公報)。
Therefore, after the battery is assembled, a high temperature (40 to 70
A so-called activation treatment is carried out such as aging for a long time at (° C.) or treating the hydrogen-absorbing alloy powder with an alkaline aqueous solution before producing the negative electrode (for example, JP-A-63).
No. 146353).

【0023】また、活性化処理に代えて、電池製造工程
をすべて不活性ガス雰囲気中または水素雰囲気中で行う
ことも行われている。
Further, instead of the activation treatment, it is also practiced to carry out all the battery manufacturing steps in an inert gas atmosphere or a hydrogen atmosphere.

【0024】しかし、高温で長時間エージングする場合
は、セパレータを損傷させることになり、水素吸蔵合金
粉末をアルカリ水溶液で処理する場合は、その後の負極
作製での取扱いを困難にすることになる。
However, when aging at a high temperature for a long time, the separator is damaged, and when the hydrogen storage alloy powder is treated with an alkaline aqueous solution, it becomes difficult to handle it in the subsequent production of the negative electrode.

【0025】また、電池の製造を特定雰囲気中で行うた
めには、その設備に多大の費用が必要になる。
In addition, in order to manufacture a battery in a specific atmosphere, a large amount of equipment is required.

【0026】さらに、水素化物二次電池では、正極のニ
ッケル電極の自己分解による酸素発生や、あるいは電池
内部に残留する酸素により、自己放電が促進され、その
速度がニッケル−カドミウム電池の場合より速いため、
水素化物二次電池はニッケル−カドミウム電池よりも自
己放電による電池の容量低下が大きいという問題もあ
る。また、水素化物二次電池では、負極の活性化が充分
に行われていないと、大電流や低温で放電した場合の放
電電圧の低下、放電容量の減少という問題も生じる。
Furthermore, in the hydride secondary battery, self-discharge is promoted by the oxygen generation due to the self-decomposition of the nickel electrode of the positive electrode or the oxygen remaining inside the battery, and the speed thereof is faster than that in the nickel-cadmium battery. For,
The hydride secondary battery also has a problem that the capacity of the battery due to self-discharge is larger than that of the nickel-cadmium battery. Further, in the hydride secondary battery, if the negative electrode is not sufficiently activated, there arises a problem that the discharge voltage is lowered and the discharge capacity is reduced when discharged at a large current or a low temperature.

【0027】本発明は、上記のような水素化物二次電池
における種々の問題点を解決し、電池内圧の上昇が少な
く、かつ活性化処理が簡略化でき、しかも自己放電が少
なく、大電流放電特性、低温放電特性に優れた水素化物
二次電池を提供することを目的とする。
The present invention solves various problems in the hydride secondary battery as described above, the increase in the internal pressure of the battery is small, the activation treatment can be simplified, the self-discharge is small, and the high-current discharge is small. An object is to provide a hydride secondary battery having excellent characteristics and low-temperature discharge characteristics.

【0028】[0028]

【課題を解決するための手段】本発明は、ニッケル酸化
物またはニッケル水酸化物を含む正極と、水素吸蔵合金
を含む負極と、アルカリ水溶液からなる電解液を有する
水素化物二次電池において、負極を可溶性水素化物など
の還元剤で処理すること、具体的には、電解液中に水素
化ホウ素ナトリウムなどの可溶性水素化物を含有させて
おくか、あるいは、負極を水素化ホウ素ナトリウムなど
の可溶性水素化物を溶解させたアルカリ水溶液中に浸漬
することにより、電池内圧の上昇を抑制し、活性化処理
を簡略化し、自己放電を少なくし、大電流放電特性、低
温放電特性を向上させる技術を提供するものである。
The present invention provides a hydride secondary battery having a positive electrode containing nickel oxide or nickel hydroxide, a negative electrode containing a hydrogen storage alloy, and an electrolytic solution containing an alkaline aqueous solution. Is treated with a reducing agent such as soluble hydride, specifically, the soluble hydride such as sodium borohydride is contained in the electrolytic solution, or the negative electrode is treated with soluble hydrogen such as sodium borohydride. Provided is a technique for suppressing an increase in battery internal pressure, simplifying activation treatment, reducing self-discharge, and improving large-current discharge characteristics and low-temperature discharge characteristics by immersing in an alkaline aqueous solution in which a compound is dissolved. It is a thing.

【0029】負極を還元剤で処理するにあたり、還元剤
としては、可溶性水素化物を用いることが好ましく、特
にそのアルカリ水溶液で処理することが最適である。処
理の形態としては、電解液中に水素化ホウ素ナトリウム
などの可溶性水素化物を含有させてもよいが、負極を水
素化ホウ素ナトリウムなどの可溶性水素化物を溶解させ
たアルカリ水溶液中に浸漬することによってもよい。そ
こで、まず、可溶性水素化物として水素化ホウ素ナトリ
ウム(NaBH4 )を用いて、それを電解液中に含有さ
せた場合を例にあげて説明すると、水素化ホウ素ナトリ
ウムはアルカリ水溶液中で安定で、〔式8〕、〔式9〕
に示すように水素を放出する。
In treating the negative electrode with the reducing agent, it is preferable to use a soluble hydride as the reducing agent, and it is most preferable to treat it with an alkaline aqueous solution thereof. The form of treatment may include a soluble hydride such as sodium borohydride in the electrolytic solution, but by immersing the negative electrode in an alkaline aqueous solution in which a soluble hydride such as sodium borohydride is dissolved. Good. Therefore, first, using sodium borohydride (NaBH 4 ) as a soluble hydride and including it in the electrolytic solution, for example, sodium borohydride is stable in an alkaline aqueous solution. [Formula 8], [Formula 9]
Hydrogen is released as shown in.

【0030】 〔式8〕 NaBH4 → Na+ +BH4 - 〔式9〕 BH4 - +2H2 O → BO2 - +4H2 [Formula 8] NaBH 4 → Na + + BH 4 [Formula 9] BH 4 + 2H 2 O → BO 2 + 4H 2

【0031】また、次の〔式10〕に示す反応が平衡電
位−1.23V(vs.Hg/HgO)で生じる。 〔式10〕 BH4 - +8OH- → BO2 - +6H
2 O+8e-
The reaction represented by the following [Formula 10] occurs at an equilibrium potential of −1.23 V (vs. Hg / HgO). [Formula 10] BH 4 + 8OH → BO 2 + 6H
2 O + 8e -

【0032】上記〔式9〕で発生した水素は負極に吸蔵
され、また、負極表面で〔式10〕で示す反応が生じる
ことにより、〔式3〕の充電反応が誘起され、負極が充
電された状態になる。
The hydrogen generated in the above [formula 9] is occluded in the negative electrode, and the reaction shown in the [formula 10] occurs on the surface of the negative electrode, so that the charging reaction of the [formula 3] is induced and the negative electrode is charged. Will be in a state of

【0033】このようにして充電反応が進行するので、
負極表面の酸化物層が除去され、その結果、電池組立後
の高温で長時間のエージング処理が不要になり、活性化
処理が簡略化される。
Since the charging reaction proceeds in this way,
The oxide layer on the surface of the negative electrode is removed, and as a result, the aging process at high temperature for a long time after the battery is assembled is not required, and the activation process is simplified.

【0034】例えば、電池組立後、25〜80℃で0.
1〜4時間保存することによって、活性化処理が行い得
るようになり、従来、活性化処理に12時間を超える長
時間を必要としていたのに比べて、活性化処理に要する
時間が短縮される。
For example, after assembling the battery, the temperature at 25-80 ° C.
By storing for 1 to 4 hours, the activation treatment can be performed, and the time required for the activation treatment is shortened compared to the conventional case where the activation treatment required a long time exceeding 12 hours. ..

【0035】そして、充放電サイクルにおいて、負極の
劣化に伴い電池内部に水素が発生すると、この水素は電
解液中に溶解し、BO2 - と反応して、再びBH4 -
戻る。
Then, in the charge / discharge cycle, when hydrogen is generated inside the battery due to deterioration of the negative electrode, the hydrogen is dissolved in the electrolytic solution, reacts with BO 2 −, and returns to BH 4 again.

【0036】つまり、〔式9〕の逆反応が生じ、その結
果、水素化ホウ素ナトリウムを添加した分だけ、過充電
時の電池内圧の上昇が抑制され、その結果、電池の内圧
上昇による過電圧上昇や漏液の発生などが抑制され、ま
た、負極からの水素が正極に到達して自己放電を引き起
こすのが抑制されるようになる。以上の抑制作用は、負
極を水素化ホウ素ナトリウムなどの可溶性水素化物を溶
解させたアルカリ水溶液中に浸漬する場合でも同様に生
じる。
That is, the reverse reaction of [Equation 9] occurs, and as a result, the increase of the internal pressure of the battery at the time of overcharge is suppressed by the addition of sodium borohydride, and as a result, the increase of the internal voltage of the battery causes the increase of the overvoltage. And the occurrence of liquid leakage are suppressed, and hydrogen from the negative electrode is suppressed from reaching the positive electrode and causing self-discharge. The above-described suppression effect is similarly produced even when the negative electrode is immersed in an alkaline aqueous solution in which a soluble hydride such as sodium borohydride is dissolved.

【0037】本発明において、可溶性水素化物として
は、例えば、上記の水素化ホウ素ナトリウム(NaBH
4 )や、水素化ホウ素カリウム(KBH4 )、水素化ア
ルミニウムリチウム(LiAlH4 )など、各種の化合
物が用いられる。これらの可溶性水素化物は、強い還元
剤であり、わずかな添加量で上記〔式8〕〜〔式10〕
に示す反応が短時間で生じる。
In the present invention, examples of the soluble hydride include sodium borohydride (NaBH) described above.
4 ), potassium borohydride (KBH 4 ), lithium aluminum hydride (LiAlH 4 ), and various other compounds are used. These soluble hydrides are strong reducing agents and can be added in a small amount in the above [Formula 8] to [Formula 10].
The reaction shown in 1 occurs in a short time.

【0038】電解液はアルカリ水溶液で構成されるが、
このアルカリ水溶液としては、例えば水酸化ナトリウ
ム、水酸化カリウム、水酸化リチウムなどのアルカリ金
属の水酸化物の水溶液が用いられる。
The electrolytic solution is composed of an alkaline aqueous solution,
As this alkaline aqueous solution, for example, an aqueous solution of an alkali metal hydroxide such as sodium hydroxide, potassium hydroxide or lithium hydroxide is used.

【0039】電解液中に含有させる場合の可溶性水素化
物の量としては、電解液中における可溶性水素化物の濃
度が0.001〜5重量%の範囲になるようにするのが
好ましい。同様に、負極を浸漬処理するためのアルカリ
水溶液を別に準備する場合も可溶性水素化物の濃度は
0.001〜5重量%の範囲が好ましい。
The amount of the soluble hydride contained in the electrolytic solution is preferably such that the concentration of the soluble hydride in the electrolytic solution is in the range of 0.001 to 5% by weight. Similarly, when preparing an alkaline aqueous solution for dipping the negative electrode separately, the concentration of the soluble hydride is preferably in the range of 0.001 to 5% by weight.

【0040】電解液中またはアルカリ水溶液中の可溶性
水素化物の濃度が0.001重量%より少ない場合は、
前記〔式8〕〜〔式10〕で示す反応が充分に起こらな
いため、効果が充分に得られず、また5重量%を超える
と〔式8〕〜〔式10〕で示す反応が急速に生じるた
め、負極の水素吸蔵合金が基体から剥離するおそれがあ
る。電解液中またはアルカリ水溶液中での可溶性水素化
物の特に好ましい濃度は0.2〜3重量%の範囲であ
る。
When the concentration of the soluble hydride in the electrolytic solution or the alkaline aqueous solution is less than 0.001% by weight,
Since the reaction represented by the above [Formula 8] to [Formula 10] does not sufficiently occur, the effect is not sufficiently obtained, and when it exceeds 5% by weight, the reaction represented by [Formula 8] to [Formula 10] rapidly proceeds. Therefore, the hydrogen storage alloy of the negative electrode may be peeled off from the substrate. A particularly preferable concentration of the soluble hydride in the electrolytic solution or the alkaline aqueous solution is in the range of 0.2 to 3% by weight.

【0041】電解液またはアルカリ水溶液に可溶性水素
化物を含有させるにあたっては、可溶性水素化物を調製
済の電解液または負極浸漬処理用のアルカリ水溶液に添
加してもよいし、また、電解液またはアルカリ水溶液の
調製時に可溶性水素化物を添加し、可溶性水素化物を含
有した状態の電解液またはアルカリ水溶液として調製し
てもよい。さらに、電池組立後に結果的に電解液が可溶
性水素化物を所定量含有するように、電池系内の何れか
の部材に保持させるようにしてもよい。また、電解液に
可溶性水素化物を含有させることとは別に、負極を電池
に組み込む前に、水素化ホウ素ナトリウムなどの可溶性
水素化物を含有させたアルカリ水溶液に浸漬し、負極の
予備充電をあらかじめ行うようにしても同様の効果が得
られる。
When the soluble hydride is contained in the electrolytic solution or the alkaline aqueous solution, the soluble hydride may be added to the prepared electrolytic solution or the alkaline aqueous solution for the negative electrode immersion treatment, or the electrolytic solution or the alkaline aqueous solution may be added. Soluble hydride may be added at the time of preparation to prepare an electrolytic solution or alkaline aqueous solution containing soluble hydride. Further, after the battery is assembled, the electrolyte may be held by any member in the battery system so that the electrolyte contains a predetermined amount of soluble hydride. Separately from the inclusion of the soluble hydride in the electrolytic solution, the negative electrode is preliminarily charged in advance by incorporating it in an alkaline aqueous solution containing a soluble hydride such as sodium borohydride before incorporating the negative electrode into the battery. Even if it does so, the same effect can be obtained.

【0042】本発明において、負極に用いる水素吸蔵合
金としては、例えば、実施例で用いるようなTi17Zr
1623Ni37Cr7 などをはじめ、La0.9 Zr0.1
4. 5 Al0.5 、TiNi系、TiNiZr系、(Ti
2-X ZrX 4-X Ni)1-Z Cr2 (x=0〜1.5、
y=0.6〜3.5、z≧0.2)系、MmNi5 系な
どの水素吸蔵合金が挙げられる。水素吸蔵合金とは、可
逆的に水素を吸蔵、放出できる合金をいい、通常、水素
を完全に脱蔵(放出)した状態で合成される。そして、
この水素吸蔵合金を用いた負極では、充電は水素の吸蔵
であり、放電は水素の放出である。
In the present invention, the hydrogen storage alloy used for the negative electrode is, for example, Ti 17 Zr as used in the examples.
16 V 23 Ni 37 Cr 7 etc., La 0.9 Zr 0.1 N
i 4. 5 Al 0.5, TiNi system, TiNiZr system, (Ti
2-X Zr X V 4-X Ni) 1-Z Cr 2 (x = 0 to 1.5,
Examples include hydrogen storage alloys such as y = 0.6 to 3.5, z ≧ 0.2) and MmNi 5 series. The hydrogen storage alloy is an alloy capable of reversibly storing and releasing hydrogen, and is usually synthesized in a state of completely desorbing (releasing) hydrogen. And
In the negative electrode using this hydrogen storage alloy, charging is storage of hydrogen and discharging is release of hydrogen.

【0043】負極は、焼結式、ぺースト式のいずれで作
製してもよい。なお、焼結式による負極の作製方法と
は、例えば金網、パンチングメタル、エキスパンドメタ
ルなどの多孔性金属を基体とし、これに上記の水素吸蔵
合金の粉末を圧着して、焼結し、シート状に成形するこ
とによって負極を作製する方法であり、ぺースト式によ
る負極の作製方法とは、上記水素吸蔵合金の粉末を結着
剤などと共にぺースト状にし、そのぺーストを上記多孔
性金属からなる基体に添着し、乾燥後、プレスなどで圧
着することによって負極を作製する方法である。
The negative electrode may be produced by either a sintering type or a paste type. The method of producing a negative electrode by a sintering method is, for example, a porous metal such as a wire mesh, a punching metal or an expanded metal is used as a substrate, and the powder of the above hydrogen storage alloy is pressure-bonded to the substrate and sintered to obtain a sheet form. It is a method of producing a negative electrode by molding into a negative electrode, and the method of producing a negative electrode by a paste method is to make the powder of the hydrogen storage alloy into a paste with a binder and the like, and to make the paste from the porous metal. It is a method for producing a negative electrode by applying it to a base body, drying it, and pressing it with a press or the like.

【0044】また、正極に用いるニッケル酸化物やニッ
ケル水酸化物としては、例えば、一酸化ニッケル(Ni
O)、二酸化ニッケル(NiO2 )、水酸化ニッケル
〔Ni(OH)2 〕などが挙げられる。ただし、これら
は、正極が放電状態にあるときであり、正極が充電状態
では、上記ニッケル酸化物やニッケル水酸化物は別の化
合物として存在する。
The nickel oxide or nickel hydroxide used for the positive electrode may be, for example, nickel monoxide (Ni).
O), nickel dioxide (NiO 2 ), nickel hydroxide [Ni (OH) 2 ], and the like. However, these are when the positive electrode is in a discharged state, and when the positive electrode is in a charged state, the above nickel oxide and nickel hydroxide exist as other compounds.

【0045】正極は、例えば、ニッケル焼結体を基体と
し、これにニッケル酸化物またはニッケル水酸化物を充
填する焼結式や、金網、パンチングメタル、エキスパン
ドメタル、金属発泡体などの多孔性金属を基体とし、こ
れにニッケル酸化物またはニッケル水酸化物を添着する
ぺースト式などでシート状の成形体として作製される
が、本発明の実施にあたっては、例えば、焼結式やぺー
スト式などで作製した公知のニッケル電極を使用するこ
とができる。
The positive electrode is, for example, a sintered type in which a nickel sintered body is used as a base material and nickel oxide or nickel hydroxide is filled therein, or a porous metal such as a wire mesh, punching metal, expanded metal, or metal foam. Is used as a base material, and nickel oxide or nickel hydroxide is attached to the base material to form a sheet-shaped molded body. In the practice of the present invention, for example, a sintering type or a paste type is used. The known nickel electrode prepared in 1. can be used.

【0046】[0046]

【実施例】つぎに、実施例を挙げて本発明をより具体的
に説明する。
EXAMPLES Next, the present invention will be described more specifically with reference to examples.

【0047】実施例1 市販品のTi(チタン)、Zr(ジルコニウム)、V
(バナジウム)、Ni(ニッケル)およびCr(クロ
ム)をTi17Zr1623Ni37Cr7 の組成になるよう
に秤量し、高周波溶解炉によって加熱溶解して、上記組
成の多相系合金を得た。
Example 1 Commercially available Ti (titanium), Zr (zirconium), V
(Vanadium), Ni (nickel) and Cr (chromium) are weighed so as to have a composition of Ti 17 Zr 16 V 23 Ni 37 Cr 7 and heated and melted in a high frequency melting furnace to obtain a multiphase alloy having the above composition. Obtained.

【0048】この合金を耐圧容器内に入れ、該容器内を
10-4torrまで真空吸引し、Ar(アルゴン)で3
回パージを行った後、水素圧力14kg/cm2 で24
時間保持し、水素を排気後、400℃で加熱して水素を
完全に脱蔵することにより、粒径20〜100μmの水
素吸蔵合金粉末を得た。
This alloy was placed in a pressure-resistant container, the interior of the container was vacuum-sucked to 10 -4 torr, and 3 (Ar) was used.
After purging twice, the hydrogen pressure is 24 kg / cm 2
After holding for a period of time and exhausting hydrogen, the hydrogen storage alloy powder having a particle diameter of 20 to 100 μm was obtained by heating at 400 ° C. to completely desorb hydrogen.

【0049】この水素吸蔵合金粉末16gにポリテトラ
フルオロエチレンの分散液をその固形分量が全重量の4
重量%になるように添加して混練した。
A dispersion of polytetrafluoroethylene was added to 16 g of the hydrogen-absorbing alloy powder to obtain a solid content of 4 g of the total weight.
It was added and kneaded so that it would be in a weight percentage.

【0050】この混練物をローラーにより、280mm
×38mm×0.4mmのシート状にし、それをニッケ
ル集電体(線径0.178mmで、14メッシュのニッ
ケル製網からなり、その一端にニッケル製のリード体が
取り付けられている)に圧着して負極を作製した。
This kneaded material is rolled by a roller to 280 mm.
Sheets of × 38 mm × 0.4 mm are crimped onto a nickel current collector (having a wire diameter of 0.178 mm and made of a 14-mesh nickel net with a nickel lead body attached to one end). Then, a negative electrode was produced.

【0051】正極には焼結式で作製した公知のニッケル
電極(240mm×38mm)を用いた。電池の公称容
量を3500mAhにするため、負極は理論容量が52
00mAhになるように作製し、正極は理論容量が40
00mAhになるように作製したものを用いた。
A known nickel electrode (240 mm × 38 mm) produced by a sintering method was used for the positive electrode. In order to set the nominal capacity of the battery to 3500 mAh, the negative electrode has a theoretical capacity of 52
The theoretical capacity of the positive electrode is 40 mA.
What was produced so that it might be set to 00 mAh was used.

【0052】上記負極と正極とをセパレータを介して渦
巻状に巻回して図1に示すような渦巻状の電極体を作製
し、その渦巻状の電極体を単2サイズの電池ケースと同
体積の耐圧容器内に入れ、封口して、図2に示すような
内圧測定が可能な電池を作製した。
The negative electrode and the positive electrode are spirally wound via a separator to form a spiral electrode body as shown in FIG. 1, and the spiral electrode body has the same volume as that of a size C battery case. Then, the battery was put into the pressure resistant container and sealed, and a battery capable of measuring the internal pressure as shown in FIG. 2 was produced.

【0053】図1に示す渦巻状の電極体について説明す
ると、1は正極であり、この正極1は焼結式で作製した
ニッケル電極からなる。2は負極であり、この負極2は
Ti17Zr1623Ni37Cr7 の組成を持つ水素吸蔵合
金を含む成形体からなる。ただし、これらの正極1や負
極2には集電体としての作用を兼ねて基体が使用されて
いるが、図1にそれらを図示すると繁雑化するため、図
1にはそれらを図示していない。
The spiral electrode body shown in FIG. 1 will be described. 1 is a positive electrode, and the positive electrode 1 is a nickel electrode produced by a sintering method. Reference numeral 2 is a negative electrode, and this negative electrode 2 is composed of a molded body containing a hydrogen storage alloy having a composition of Ti 17 Zr 16 V 23 Ni 37 Cr 7 . However, although the base body is used for the positive electrode 1 and the negative electrode 2 so as to also function as a current collector, it is not shown in FIG. 1 because they are complicated when shown in FIG. ..

【0054】3はセパレータであり、このセパレータ3
はポリアミド不織布からなり、前記正極1と負極2はこ
のセパレータ3を介して渦巻状に巻回され、図示のよう
な渦巻状の電極体にされている。
3 is a separator, and this separator 3
Is made of polyamide non-woven fabric, and the positive electrode 1 and the negative electrode 2 are spirally wound via the separator 3 to form a spiral electrode body as shown in the drawing.

【0055】図2に示す電池について説明すると、上記
渦巻状の電極体4は耐圧容器5内に収納され、負極リー
ド体6は耐圧容器5の内壁にスポット溶接され、正極リ
ード体7は電極体4上部のアクリル板部分8より取り出
している。電解液は注入口9より耐圧容器5内に注入
し、注入口9は電解液の注入後、封止され、図2にはそ
の状態が示されている。電池の内部圧力はゲージ(ブル
ドンゲージ)10によって読み取ることができるように
なっている。
Explaining the battery shown in FIG. 2, the spiral electrode body 4 is housed in a pressure vessel 5, the negative electrode lead body 6 is spot-welded to the inner wall of the pressure vessel 5, and the positive electrode lead body 7 is an electrode body. 4 Taken out from the acrylic plate portion 8 on the upper side. The electrolytic solution is injected into the pressure-resistant container 5 through the injection port 9, and the injection port 9 is sealed after the injection of the electrolytic solution, which is shown in FIG. The internal pressure of the battery can be read by a gauge (Bourdon gauge) 10.

【0056】使用された電解液は、30重量%水酸化カ
リウム水溶液に水素化ホウ素ナトリウムを0.2重量%
含有させたものであり、その注入量は6.5mlであ
る。上記電池を電解液の注入後、60℃で2時間保存し
た。
The electrolytic solution used is 0.2% by weight of sodium borohydride in 30% by weight potassium hydroxide aqueous solution.
It was contained, and the injection amount was 6.5 ml. After injecting the electrolytic solution, the battery was stored at 60 ° C. for 2 hours.

【0057】保存後、上記電池を350mAで15時間
充電し、700mAで0.9Vまで放電した。これを1
サイクルとし、6サイクルまで充放電した場合の各サイ
クル毎の放電容量を調べた。
After storage, the battery was charged at 350 mA for 15 hours and discharged at 700 mA to 0.9V. This one
The cycle was taken as a cycle, and the discharge capacity for each cycle when charging / discharging up to 6 cycles was examined.

【0058】実施例2 30重量%水酸化ナトリウム水溶液に水素化ホウ素ナト
リウムを0.2重量%溶解させた溶液を500ml準備
し、この溶液を25℃に保持し、その中に実施例1にお
ける負極を2時間浸漬した。その後、負極を不活性雰囲
気中に取り出し、洗浄、乾燥を経て、実施例1と同様に
して電池を作製した。ただし、使用した電解液は30重
量%水酸化カリウム水溶液であり、その注入量は6.5
mlであるが、この電解液には実施例1におけるような
水素化ホウ素ナトリウムを含有させていない。この電池
についても、電解液の注入後、60℃で2時間保存した
のち、実施例1と同様に充放電して、各サイクル毎の放
電容量を調べた。
Example 2 500 ml of a solution prepared by dissolving 0.2% by weight of sodium borohydride in a 30% by weight aqueous solution of sodium hydroxide was prepared, and this solution was kept at 25 ° C., in which the negative electrode in Example 1 was placed. Was immersed for 2 hours. Then, the negative electrode was taken out in an inert atmosphere, washed and dried, and a battery was manufactured in the same manner as in Example 1. However, the electrolyte used was a 30 wt% potassium hydroxide aqueous solution, and the injection amount was 6.5.
However, the electrolytic solution does not contain sodium borohydride as in Example 1. Also for this battery, after injecting the electrolytic solution, it was stored at 60 ° C. for 2 hours and then charged and discharged in the same manner as in Example 1 to examine the discharge capacity for each cycle.

【0059】比較例1 電解液として水素化ホウ素ナトリウムを含有させていな
い30重量%水酸化カリウム水溶液を用いたほかは、実
施例1と同様にして電池を作製した。この電池について
も、電解液の注入後、60℃で2時間保存したのち、実
施例1〜2と同様に充放電して、各サイクル毎の放電容
量を調べた。
Comparative Example 1 A battery was prepared in the same manner as in Example 1 except that a 30 wt% potassium hydroxide aqueous solution containing no sodium borohydride was used as the electrolytic solution. Also for this battery, after the electrolyte was injected, it was stored at 60 ° C. for 2 hours, then charged and discharged in the same manner as in Examples 1 and 2, and the discharge capacity for each cycle was examined.

【0060】上記実施例1〜2の電池および比較例1の
電池の定格容量(これらの電池の場合は3.5Ahであ
る)に到達するまでの充放電サイクル数と放電容量との
関係を図3に示す。
The relationship between the number of charge / discharge cycles and the discharge capacity until reaching the rated capacity (3.5 Ah in the case of these batteries) of the batteries of Examples 1 and 2 and Comparative Example 1 is shown in FIG. 3 shows.

【0061】図3に示すように、比較例1の電池では、
定格容量の3.5Ahに到達するのに充放電を5回繰り
返すことを必要としたが、実施例1〜2の電池では、充
放電を2回行うだけで定格容量に到達した。なお、図3
では、実施例2の電池の充放電サイクル数と放電容量と
の関係を示す曲線の測定点を表す□印を一部所定位置よ
り少し左側にずらして図示している。
As shown in FIG. 3, in the battery of Comparative Example 1,
Although it was necessary to repeat charging and discharging 5 times to reach the rated capacity of 3.5 Ah, the batteries of Examples 1 and 2 reached the rated capacity only by performing charging and discharging twice. Note that FIG.
In the figure, the □ mark representing the measurement point of the curve showing the relationship between the number of charge / discharge cycles and the discharge capacity of the battery of Example 2 is shown by shifting a part to the left from the predetermined position.

【0062】この結果は、電解液に水素化ホウ素ナトリ
ウムを0.2重量%含有させるか、または、負極を水素
化ホウ素ナトリウムを0.2重量%溶解させたアルカリ
水溶液に浸漬するだけで、定格容量に到達するまでの充
放電回数を減少させることができ、活性化処理を簡略化
できることを示している。
This result is obtained by adding 0.2% by weight of sodium borohydride to the electrolytic solution or immersing the negative electrode in an alkaline aqueous solution containing 0.2% by weight of sodium borohydride. This shows that the number of times of charge / discharge until reaching the capacity can be reduced and the activation process can be simplified.

【0063】上記実施例1〜2の電池と比較例1の電池
について350mAで充電した時の充電時間と電池電圧
との関係を図4に示す。また、上記充電時における実施
例1〜2の電池と比較例1の電池の充電時間と電池内圧
との関係を図5に示す。
FIG. 4 shows the relationship between the charging time and the battery voltage when the batteries of Examples 1 and 2 and the battery of Comparative Example 1 were charged at 350 mA. 5 shows the relationship between the charging time and the battery internal pressure of the batteries of Examples 1 and 2 and the battery of Comparative Example 1 at the time of charging.

【0064】図4においては、ほぼ重なって図示されて
いる曲線に実施例1、実施例2および比較例1の表示が
付されているが、これは実施例1〜2の電池、比較例1
の電池とも、電池電圧に関しては同じような挙動を示し
たためである。
In FIG. 4, the curves of the first and second embodiments and the first comparative example are attached to the curves which are substantially overlapped with each other, which are the batteries of the first and second embodiments and the first comparative example.
This is because both batteries exhibited similar behavior with respect to battery voltage.

【0065】すなわち、電池電圧は、図4に示すよう
に、実施例1〜2の電池、比較例1の電池とも、充電時
間が10時間に達するまでは、同じように少しずつ上昇
し、充電時間が10時間を超えると、同じようにそれ以
上は上昇しない。
That is, as shown in FIG. 4, the battery voltage gradually increases in the same manner for both the batteries of Examples 1 and 2 and the battery of Comparative Example 1 until the charging time reaches 10 hours. If the time exceeds 10 hours, it does not rise any more.

【0066】これは、これらの電池では、10時間充電
すると、充電100%に達し、それ以上の充電は過充電
であることを示している。
This indicates that these batteries reach 100% charge when they are charged for 10 hours and are overcharged when they are charged further.

【0067】しかし、電池内圧は、図5に示すように、
充電時間が9時間を過ぎる頃から異なる挙動を示し、比
較例1の電池では充電時間9時間を過ぎた頃から電池内
圧が上昇し、充電時間の増加に伴って実施例1〜2の電
池との差が大きくなる。
However, the internal pressure of the battery is as shown in FIG.
The battery of Comparative Example 1 behaves differently from the time when the charging time exceeds 9 hours, and the battery internal pressure increases from the time when the charging time exceeds 9 hours. The difference between

【0068】これに対し、実施例1〜2の電池は充電時
間が10時間を過ぎてから電池内圧が上昇するが、その
増加の程度は少なく、比較例1の電池に比べると電池内
圧の上昇が少ない。特に負極を処理した実施例2の電池
は、電池内圧が低減されている。
On the other hand, in the batteries of Examples 1 and 2, the battery internal pressure rises after the charging time exceeds 10 hours, but the increase is small, and the battery internal pressure rises as compared with the battery of Comparative Example 1. Less is. Particularly, in the battery of Example 2 in which the negative electrode was treated, the battery internal pressure was reduced.

【0069】この結果は、実施例1〜2の電池にあって
は、電解液中もしくは浸漬処理された負極中に存在する
水素化ホウ素ナトリウムが水素吸蔵合金に作用して合金
中に水素を含有させる、すなわち、負極は結果的に予備
充電されることによって合金の活性化が促進され、充電
時に生ずる非平衡の水素発生が抑制されたことを示して
いる。したがって、水素化ホウ素ナトリウムが負極を構
成する水素吸蔵合金に直接作用するように負極をあらか
じめ水素化ホウ素ナトリウムを溶解させたアルカリ水溶
液に浸漬した実施例2の電池ではさらに電池内圧を低く
押さえることができる。
The results show that in the batteries of Examples 1 and 2, sodium borohydride existing in the electrolytic solution or in the negative electrode subjected to the immersion treatment acts on the hydrogen storage alloy to contain hydrogen in the alloy. That is, the negative electrode is consequently precharged to promote the activation of the alloy and suppress the non-equilibrium hydrogen generation that occurs during charging. Therefore, in the battery of Example 2 in which the negative electrode was immersed in an alkaline aqueous solution in which sodium borohydride was previously dissolved so that the sodium borohydride directly acts on the hydrogen storage alloy constituting the negative electrode, the internal pressure of the battery could be further suppressed. it can.

【0070】つぎに、前記実施例1の電池および比較例
1の電池について、350mAで15時間充電し、70
0mAで0.9Vまで放電する充放電を繰り返した時の
充放電サイクル数と放電容量との関係を図6に示す。
Next, the battery of Example 1 and the battery of Comparative Example 1 were charged at 350 mA for 15 hours to obtain 70
FIG. 6 shows the relationship between the number of charge / discharge cycles and the discharge capacity when charging / discharging was repeated at 0 mA to 0.9 V.

【0071】図6に示すように、比較例1の電池は40
0サイクル付近で放電容量が急激に低下していわゆる失
落し、使用できなくなったが、実施例1の電池は充放電
を700サイクル以上繰り返しても放電容量の低下がほ
とんどなく、初期の容量の90%以上を保持していた。
As shown in FIG. 6, the battery of Comparative Example 1 has 40
The discharge capacity dropped sharply around 0 cycle and was so-called lost, and the battery could not be used. However, the battery of Example 1 showed almost no decrease in discharge capacity even after 700 cycles of charging / discharging. Held more than%.

【0072】上記充放電時において、実施例1の電池お
よび比較例1の電池の50サイクル時、200サイクル
時および450サイクル時の電池内圧を測定した結果を
表1に示す。
Table 1 shows the results of measuring the battery internal pressures of the battery of Example 1 and the battery of Comparative Example 1 at the 50th cycle, the 200th cycle and the 450th cycle during the charging and discharging.

【0073】[0073]

【表1】 [Table 1]

【0074】表1に示すように、比較例1の電池は45
0サイクル後に電池内圧が21kg/cm2 に上昇した
が、実施例1の電池では450サイクル後でも電池内圧
がわずか5kg/cm2 にしか上昇しなかった。
As shown in Table 1, the battery of Comparative Example 1 has 45
After 0 cycles, the battery internal pressure increased to 21 kg / cm 2 , but in the battery of Example 1, the battery internal pressure increased to only 5 kg / cm 2 even after 450 cycles.

【0075】また、上記実施例1の電池および比較例1
の電池を20℃で30日間貯蔵し、各貯蔵日毎に放電容
量を測定して、初期の放電容量に対する容量保持率を次
式により求めた。
The battery of Example 1 and Comparative Example 1
The battery was stored at 20 ° C. for 30 days, the discharge capacity was measured on each storage day, and the capacity retention ratio with respect to the initial discharge capacity was determined by the following formula.

【0076】容量保持率(%)=(A/B)×100 A:貯蔵後の放電容量(mAh) B:貯蔵前の放電容量(mAh)Capacity retention rate (%) = (A / B) × 100 A: Discharge capacity after storage (mAh) B: Discharge capacity before storage (mAh)

【0077】貯蔵日数と容量保持率との関係を図7に示
す。図7に示すように、貯蔵開始当初は実施例1の電池
も比較例1の電池もほぼ同様の容量保持率であったが、
貯蔵期間の増加に伴って両者の間に差が生じ、実施例1
の電池の容量保持率の方が比較例1の電池の容量保持率
より大きくなった。
The relationship between the number of days of storage and the capacity retention rate is shown in FIG. As shown in FIG. 7, at the beginning of storage, both the battery of Example 1 and the battery of Comparative Example 1 had almost the same capacity retention rate.
As the storage period increases, a difference occurs between the two, and Example 1
The capacity retention of the battery of No. 1 was larger than that of the battery of Comparative Example 1.

【0078】この結果は、電解液中に水素化ホウ素ナト
リウムを含有させることにより、貯蔵中における自己放
電が抑制されたことを示している。
The results show that the self-discharge during storage was suppressed by containing sodium borohydride in the electrolytic solution.

【0079】実施例3 電解液中の水素化ホウ素ナトリウムの濃度を0.1重量
%、0.2重量%、0.5重量%、1重量%、2重量
%、3重量%、4重量%および5重量%に変え、それ以
外は実施例1と同様に電池組立を行い、電池組立後、そ
れぞれ25℃、45℃、60℃および80℃で2時間保
存した。
Example 3 The concentrations of sodium borohydride in the electrolytic solution were 0.1% by weight, 0.2% by weight, 0.5% by weight, 1% by weight, 2% by weight, 3% by weight and 4% by weight. And 5% by weight, except that the battery was assembled in the same manner as in Example 1, and after the battery was assembled, it was stored at 25 ° C., 45 ° C., 60 ° C. and 80 ° C. for 2 hours, respectively.

【0080】そして、上記電池について、実施例1と同
様に充放電し、定格容量(3.5Ah)に到達するまで
の充放電サイクル数を調べた。
Then, the battery was charged and discharged in the same manner as in Example 1, and the number of charge and discharge cycles until reaching the rated capacity (3.5 Ah) was examined.

【0081】各温度での、定格容量に到達するまでの充
放電サイクル数と電解液中の水素化ホウ素ナトリウムの
濃度との関係を図8に示す。
FIG. 8 shows the relationship between the number of charge / discharge cycles until reaching the rated capacity and the concentration of sodium borohydride in the electrolytic solution at each temperature.

【0082】図8に示すように、電解液中に水素化ホウ
素ナトリウムを含有させることにより、温度にもよる
が、その濃度が0.2重量%と低い場合でも、定格容量
に到達するまでの充放電サイクル数を少なくすることが
できる。
As shown in FIG. 8, by including sodium borohydride in the electrolytic solution, although depending on the temperature, even when the concentration thereof is as low as 0.2% by weight, it is necessary to reach the rated capacity. The number of charge / discharge cycles can be reduced.

【0083】そして、水素化ホウ素ナトリウムの濃度が
2重量%以上になると、処理温度が25℃と常温であっ
ても、2回の充放電で定格容量に到達することができ
る。
When the concentration of sodium borohydride is 2% by weight or more, the rated capacity can be reached by charging and discharging twice even if the treatment temperature is 25 ° C. and room temperature.

【0084】つぎに、実施例1〜2の電池および比較例
1の電池について、25℃における大電流(3C相当)
放電での放電特性を調べた。その結果を図9に示す。図
9に示すように、水素化ホウ素ナトリウムを電解液に添
加した実施例1の電池および水素化ホウ素ナトリウムを
溶解させたアルカリ水溶液に負極を浸漬した実施例2の
電池は、両者とも比較例1の電池に比べて大電流放電に
おける放電電圧、放電容量ともに改善されていることが
わかる。なかでも、水素化ホウ素ナトリウムを電解液に
添加した実施例1の電池は、特に優れた放電電圧、放電
容量を示す。
Next, for the batteries of Examples 1 and 2 and the battery of Comparative Example 1, a large current (corresponding to 3 C) at 25 ° C.
The discharge characteristics in discharge were investigated. The result is shown in FIG. As shown in FIG. 9, the battery of Example 1 in which sodium borohydride was added to the electrolytic solution and the battery of Example 2 in which the negative electrode was immersed in an alkaline aqueous solution in which sodium borohydride was dissolved were both Comparative Example 1 It can be seen that both the discharge voltage and the discharge capacity in large current discharge are improved as compared with the battery of No. Among them, the battery of Example 1 in which sodium borohydride was added to the electrolytic solution exhibited particularly excellent discharge voltage and discharge capacity.

【0085】さらに、実施例1〜2および比較例1の電
池について、0℃で0.5C相当の放電電流で放電した
ときの放電特性を図10に示す。図10に示すように、
水素化ホウ素ナトリウムを電解液に添加した実施例1の
電池および水素化ホウ素ナトリウムを溶解させたアルカ
リ水溶液に負極を浸漬した実施例2の電池は、両者とも
比較例1の電池に比べて低温放電における放電電圧、放
電容量ともに改善されていることがわかる。なかでも、
水素化ホウ素ナトリウムを電解液に添加した実施例1の
電池は特に優れた放電電圧、放電容量を示す。
Further, FIG. 10 shows the discharge characteristics of the batteries of Examples 1 and 2 and Comparative Example 1 when discharged at 0 ° C. with a discharge current equivalent to 0.5 C. As shown in FIG.
The battery of Example 1 in which sodium borohydride was added to the electrolytic solution and the battery of Example 2 in which the negative electrode was immersed in an alkaline aqueous solution in which sodium borohydride was dissolved were both discharged at a lower temperature than the battery of Comparative Example 1. It can be seen that both the discharge voltage and the discharge capacity are improved. Above all,
The battery of Example 1 in which sodium borohydride was added to the electrolytic solution exhibits particularly excellent discharge voltage and discharge capacity.

【0086】実施例4 電解液として、30重量%水酸化カリウム水溶液に水酸
化リチウムを17g/lの割合で添加し、水素化アルミ
ニウムリチウムを0.2重量%含有させたものを用いた
ほかは、実施例1と同様にして電池を組み立て、電池組
立後、実施例1と同様に60℃で2時間保存した。
Example 4 As the electrolytic solution, except that lithium hydroxide was added to a 30 wt% potassium hydroxide aqueous solution at a rate of 17 g / l and lithium aluminum hydride was contained at 0.2 wt% was used. A battery was assembled in the same manner as in Example 1, and after the battery was assembled, it was stored at 60 ° C. for 2 hours as in Example 1.

【0087】この電池について、定格容量に到達するま
でに要する充放電サイクル数、充電時間と電池内圧との
関係、充放電サイクルに伴う電池内圧の変化などを調べ
たところ、実施例1と同様の結果を示した。
With respect to this battery, the number of charge / discharge cycles required to reach the rated capacity, the relationship between the charging time and the battery internal pressure, the change in the battery internal pressure due to the charge / discharge cycle, and the like were examined. The results are shown.

【0088】[0088]

【発明の効果】以上説明したように、本発明では、電解
液中に可溶性水素化物を含有させるかまたは負極を可溶
性水素化物を溶解させたアルカリ水溶液中に浸漬するこ
とによって、負極を還元剤で処理することにより、電池
内圧の上昇を抑制し、充放電サイクル特性を向上させ、
活性化処理を簡略化し、自己放電を少なくすることがで
き、かつ大電流放電における放電特性や低温放電におけ
る放電特性を向上させることができた。
As described above, according to the present invention, the negative electrode is treated with a reducing agent by containing the soluble hydride in the electrolytic solution or immersing the negative electrode in an alkaline aqueous solution in which the soluble hydride is dissolved. By processing, suppress the rise in battery internal pressure, improve the charge-discharge cycle characteristics,
It was possible to simplify the activation process, reduce self-discharge, and improve the discharge characteristics in large current discharge and discharge characteristics in low temperature discharge.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の水素化物二次電池における渦巻状の電
極体の概略平面図である。
FIG. 1 is a schematic plan view of a spiral electrode body in a hydride secondary battery of the present invention.

【図2】電池内圧の測定が可能な電池の概略斜視図であ
る。
FIG. 2 is a schematic perspective view of a battery capable of measuring a battery internal pressure.

【図3】実施例1〜2の電池および比較例1の電池の定
格容量に到達するまでの間における充放電サイクル数と
放電容量との関係を示す図である。
FIG. 3 is a diagram showing the relationship between the number of charge / discharge cycles and the discharge capacity until the rated capacities of the batteries of Examples 1 and 2 and the battery of Comparative Example 1 are reached.

【図4】実施例1〜2の電池および比較例1の電池の充
電時間と電池電圧との関係を示す図である。
FIG. 4 is a diagram showing the relationship between the charging time and the battery voltage of the batteries of Examples 1 and 2 and the battery of Comparative Example 1.

【図5】実施例1〜2の電池および比較例1の電池の充
電時間と電池内圧との関係を示す図である。
5 is a diagram showing the relationship between the charging time and the battery internal pressure of the batteries of Examples 1 and 2 and the battery of Comparative Example 1. FIG.

【図6】実施例1の電池と比較例1の電池の充放電サイ
クル数の増加に伴う放電容量の変化を示す図である。
FIG. 6 is a diagram showing a change in discharge capacity with an increase in the number of charge / discharge cycles of the battery of Example 1 and the battery of Comparative Example 1.

【図7】実施例1の電池と比較例1の電池の貯蔵日数の
増加に伴う容量保持率の変化を示す図である。
FIG. 7 is a diagram showing changes in the capacity retention rate of the battery of Example 1 and the battery of Comparative Example 1 as the number of days of storage increased.

【図8】実施例3において定格容量に到達するまでの電
解液中の水素化ホウ素ナトリウムの濃度と充放電サイク
ル数との関係を示す図である。
8 is a diagram showing the relationship between the concentration of sodium borohydride in the electrolytic solution and the number of charge / discharge cycles until reaching the rated capacity in Example 3. FIG.

【図9】実施例1〜2の電池および比較例1の電池の大
電流放電での放電特性を示す図である。
FIG. 9 is a diagram showing discharge characteristics of the batteries of Examples 1 and 2 and the battery of Comparative Example 1 at large current discharge.

【図10】実施例1〜2の電池および比較例1の電池の
低温放電での放電特性を示す図である。
FIG. 10 is a diagram showing discharge characteristics at low temperature discharge of the batteries of Examples 1 and 2 and the battery of Comparative Example 1.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 1 positive electrode 2 negative electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川上 章 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akira Kawakami 1-88, Tora, Ibaraki, Osaka Prefecture Hitachi Maxell Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 ニッケル酸化物またはニッケル水酸化物
を含む正極と、水素吸蔵合金を含む負極と、アルカリ水
溶液からなる電解液を有する水素化物二次電池におい
て、負極が還元剤で処理されていることを特徴とする水
素化物二次電池。
1. In a hydride secondary battery having a positive electrode containing nickel oxide or nickel hydroxide, a negative electrode containing a hydrogen storage alloy, and an electrolytic solution containing an alkaline aqueous solution, the negative electrode is treated with a reducing agent. A hydride secondary battery characterized by the above.
【請求項2】 還元剤が可溶性水素化物であることを特
徴とする請求項1記載の水素化物二次電池。
2. The hydride secondary battery according to claim 1, wherein the reducing agent is a soluble hydride.
【請求項3】 還元剤が可溶性水素化物のアルカリ水溶
液であることを特徴とする請求項1記載の水素化物二次
電池。
3. The hydride secondary battery according to claim 1, wherein the reducing agent is an alkaline aqueous solution of a soluble hydride.
【請求項4】 ニッケル酸化物またはニッケル水酸化物
を含む正極と、水素吸蔵合金を含む負極と、アルカリ水
溶液からなる電解液を有する水素化物二次電池におい
て、電解液が水素化ホウ素ナトリウムなどの可溶性水素
化物を含有していることを特徴とする水素化物二次電
池。
4. A hydride secondary battery having a positive electrode containing nickel oxide or nickel hydroxide, a negative electrode containing a hydrogen storage alloy, and an electrolytic solution comprising an alkaline aqueous solution, wherein the electrolytic solution is sodium borohydride or the like. A hydride secondary battery containing a soluble hydride.
【請求項5】 可溶性水素化物が水素化ホウ素ナトリウ
ムであって、その電解液中の濃度が0.001〜5重量
%であることを特徴とする請求項4記載の水素化物二次
電池。
5. The hydride secondary battery according to claim 4, wherein the soluble hydride is sodium borohydride and its concentration in the electrolytic solution is 0.001 to 5% by weight.
【請求項6】 電池組立後、25〜80℃で0.1〜4
時間保存することを特徴とする請求項4または5記載の
水素化物二次電池の製造方法。
6. After assembly of the battery, 0.1 to 4 at 25 to 80 ° C.
The method for manufacturing a hydride secondary battery according to claim 4, wherein the method is storage for a time.
【請求項7】 ニッケル酸化物またはニッケル水酸化物
を含む正極と、水素吸蔵合金を含む負極と、アルカリ水
溶液からなる電解液を有する水素化物二次電池の製造に
あたり、負極を水素化ホウ素ナトリウムなどの可溶性水
素化物を溶解させたアルカリ水溶液中に浸漬することを
特徴とする水素化物二次電池の製造方法。
7. In manufacturing a hydride secondary battery having a positive electrode containing nickel oxide or nickel hydroxide, a negative electrode containing a hydrogen storage alloy, and an electrolytic solution containing an alkaline aqueous solution, the negative electrode is sodium borohydride or the like. A method for producing a hydride secondary battery, which comprises immersing the soluble hydride in 1. in an aqueous alkaline solution.
【請求項8】 可溶性水素化物が水素化ホウ素ナトリウ
ムであって、アルカリ水溶液中における水素化ホウ素ナ
トリウムの濃度が0.001〜5重量%であることを特
徴とする請求項7記載の水素化物二次電池の製造方法。
8. The hydride according to claim 7, wherein the soluble hydride is sodium borohydride and the concentration of sodium borohydride in the alkaline aqueous solution is 0.001 to 5% by weight. Next battery manufacturing method.
【請求項9】 可溶性水素化物を溶解させたアルカリ水
溶液の温度が25〜80℃であることを特徴とする請求
項7または8記載の水素化物二次電池の製造方法。
9. The method for producing a hydride secondary battery according to claim 7, wherein the temperature of the alkaline aqueous solution in which the soluble hydride is dissolved is 25 to 80 ° C.
JP12122992A 1991-04-19 1992-04-15 Hydride secondary battery and method for producing the same Expired - Fee Related JP3342506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12122992A JP3342506B2 (en) 1991-04-19 1992-04-15 Hydride secondary battery and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11688691 1991-04-19
JP3-116886 1991-04-19
JP12122992A JP3342506B2 (en) 1991-04-19 1992-04-15 Hydride secondary battery and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002042426A Division JP3342699B2 (en) 1991-04-19 2002-02-20 Hydride battery and method for charging negative electrode thereof

Publications (2)

Publication Number Publication Date
JPH05135797A true JPH05135797A (en) 1993-06-01
JP3342506B2 JP3342506B2 (en) 2002-11-11

Family

ID=26455115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12122992A Expired - Fee Related JP3342506B2 (en) 1991-04-19 1992-04-15 Hydride secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP3342506B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6077622A (en) * 1997-09-25 2000-06-20 Toyota Jidosha Kabushiki Kaisha Recycling method of nickel-hydrogen secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6077622A (en) * 1997-09-25 2000-06-20 Toyota Jidosha Kabushiki Kaisha Recycling method of nickel-hydrogen secondary battery

Also Published As

Publication number Publication date
JP3342506B2 (en) 2002-11-11

Similar Documents

Publication Publication Date Title
EP0522297B1 (en) Hydrogen storage electrode
EP0251385B1 (en) Electrochemical cell
JPH0677451B2 (en) Manufacturing method of hydrogen storage electrode
JP3393944B2 (en) Hydride rechargeable battery
JP3433033B2 (en) Hydrogen storage alloy electrode and method of manufacturing hydrogen storage alloy electrode
JP3255369B2 (en) Hydride rechargeable battery
JP3200822B2 (en) Nickel-metal hydride storage battery
JPH05135797A (en) Hydride secondary battery and manufacture thereof
JP2537128B2 (en) Method for producing hydrogen storage alloy powder for negative electrode of nickel-hydrogen secondary battery and method for producing negative electrode for nickel-hydrogen secondary battery
JP2548271B2 (en) Alkaline secondary battery manufacturing method
JP3342699B2 (en) Hydride battery and method for charging negative electrode thereof
JP3176387B2 (en) Method for producing hydride secondary battery
JP6951047B2 (en) Alkaline secondary battery
JP2968360B2 (en) Method for producing hydride secondary battery
JPH04322073A (en) Hydride secondary battery
KR100207618B1 (en) Negative electrode manufacturing method and secondary battery having it
JP3404758B2 (en) Nickel-metal hydride storage battery and method of manufacturing the same
JPH06145849A (en) Hydrogen storage alloy electrode
JP2642144B2 (en) Method for producing hydrogen storage electrode
JPH097591A (en) Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy
JP3362400B2 (en) Nickel-metal hydride storage battery
JPS6332856A (en) Closed nickel-hydrogen storage battery
JPH06283170A (en) Nickel-hydrogen battery
JP2974802B2 (en) Hydride rechargeable battery
JP2857148B2 (en) Construction method of sealed nickel-hydrogen storage battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020812

LAPS Cancellation because of no payment of annual fees