JPH0513284A - Manufacture of solid electrolytic capacitor - Google Patents
Manufacture of solid electrolytic capacitorInfo
- Publication number
- JPH0513284A JPH0513284A JP19347991A JP19347991A JPH0513284A JP H0513284 A JPH0513284 A JP H0513284A JP 19347991 A JP19347991 A JP 19347991A JP 19347991 A JP19347991 A JP 19347991A JP H0513284 A JPH0513284 A JP H0513284A
- Authority
- JP
- Japan
- Prior art keywords
- carbon layer
- solid electrolytic
- electrolytic capacitor
- solid electrolyte
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は固体電解コンデンサの製
造方法に関し、さらに詳しく言えば、インピーダンス特
性の良好な固体電解コンデンサの製造方法に関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid electrolytic capacitor, and more particularly to a method for manufacturing a solid electrolytic capacitor having good impedance characteristics.
【0002】[0002]
【従来の技術】まず、タンタルなどの弁作用金属粉末を
焼結して焼結ペレットを得る。同焼結ペレットには予め
陽極リードが植設されている。2. Description of the Related Art First, a valve action metal powder such as tantalum is sintered to obtain a sintered pellet. Anode leads are previously implanted in the sintered pellets.
【0003】誘電体としての酸化皮膜を形成した後、焼
結ペレットの周囲に固体電解質を形成する。固体電解質
としての二酸化マンガン(MnO2)を例にとって説明
すると、焼結ペレットを硝酸マンガン水溶液中に浸漬し
て硝酸マンガンを含浸させ、次いで熱分解を行なう。硝
酸マンガン水溶液の濃度を順次高めて数回これを繰り返
す。After forming an oxide film as a dielectric, a solid electrolyte is formed around the sintered pellet. Taking manganese dioxide (MnO 2 ) as a solid electrolyte as an example, the sintered pellets are immersed in an aqueous manganese nitrate solution to impregnate manganese nitrate, and then pyrolyzed. The concentration of the manganese nitrate aqueous solution is gradually increased and this is repeated several times.
【0004】しかる後、ペレットをカーボン液中に浸漬
し、約150℃にて焼き付けを行なって固体電解質上に
カーボン層を形成する。そして、同カーボン層上に銀層
を形成する。Then, the pellets are immersed in a carbon liquid and baked at about 150 ° C. to form a carbon layer on the solid electrolyte. Then, a silver layer is formed on the carbon layer.
【0005】[0005]
【発明が解決しようとする課題】従来では上記のように
して固体電解コンデンサを製造しているが、二酸化マン
ガンとカーボン層との密着が十分でないため、その界面
抵抗が高く、これが原因でインピーダンス不良率が高い
という問題があった。Conventionally, a solid electrolytic capacitor is manufactured as described above, but since the adhesion between manganese dioxide and the carbon layer is not sufficient, the interface resistance is high, which causes impedance failure. There was a problem that the rate was high.
【0006】[0006]
【課題を解決するための手段】本発明は上記従来の事情
に鑑みなされたもので、その構成上の特徴は、弁作用金
属粉末の焼結ペレットに二酸化マンガンからなる固体電
解質を形成するとともに、同固体電解質の周囲にカーボ
ン層および銀層を順次形成する固体電解コンデンサの製
造方法において、固体電解質の周囲にカーボン層を形成
した後、同カーボン層に硝酸水溶液を含浸させて熱処理
を行なうことにある。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional circumstances, and its structural feature is that a solid electrolyte made of manganese dioxide is formed on a sintered pellet of valve action metal powder, and In a method for manufacturing a solid electrolytic capacitor in which a carbon layer and a silver layer are sequentially formed around the solid electrolyte, a carbon layer is formed around the solid electrolyte, and then the carbon layer is impregnated with an aqueous nitric acid solution to perform heat treatment. is there.
【0007】この場合、硝酸水溶液の濃度は1〜10容
量%で、好ましくは3〜7容量%である。ここで、1容
量%以下の場合には密着が不十分となる。In this case, the concentration of the nitric acid aqueous solution is 1 to 10% by volume, preferably 3 to 7% by volume. Here, when the content is 1% by volume or less, the adhesion becomes insufficient.
【0008】また、熱処理の温度は150〜300℃で
あり、好適には200〜250℃である。150℃以下
とすると焼き付けが不十分となり、300℃以上の場合
にはカーボン層が剥離し効果が生じない。The temperature of the heat treatment is 150 to 300 ° C, preferably 200 to 250 ° C. When the temperature is 150 ° C. or lower, baking becomes insufficient, and when the temperature is 300 ° C. or higher, the carbon layer is peeled off and no effect is produced.
【0009】熱処理時間は10〜15分間が最も効果的
である。なお、硝酸水溶液中には不純物を含んでいても
よい。The heat treatment time is most effective for 10 to 15 minutes. The nitric acid aqueous solution may contain impurities.
【0010】[0010]
【作用】上記のように、カーボン層の形成後、同カーボ
ン層に硝酸水溶液を含浸させ、熱処理を行なうことによ
り、固体電解質(二酸化マンガン)とカーボン層とが密
着してその界面が安定し、インピーダンス|Z|の値が
低くなる。As described above, after the formation of the carbon layer, the carbon layer is impregnated with an aqueous solution of nitric acid and subjected to heat treatment, whereby the solid electrolyte (manganese dioxide) and the carbon layer are brought into close contact with each other to stabilize the interface, The value of the impedance | Z | becomes low.
【0011】[0011]
《実施例1》タンタル粉末の焼結ペレットに誘電体皮膜
を形成した後、従来と同様にして固体電解質としての二
酸化マンガンを形成し、同二酸化マンガン上にカーボン
層を形成した。Example 1 After forming a dielectric film on a sintered pellet of tantalum powder, manganese dioxide as a solid electrolyte was formed in the same manner as in the prior art, and a carbon layer was formed on the manganese dioxide.
【0012】しかる後、硝酸1容量%水溶液中に1分間
浸漬し、引き上げて300℃の熱風循環炉中において1
0分間熱処理(乾燥)させた。After that, it was immersed in a 1% by volume aqueous solution of nitric acid for 1 minute, pulled up, and placed in a hot air circulation oven at 300 ° C. for 1 minute.
It was heat-treated (dried) for 0 minutes.
【0013】そして、銀層を形成した後、従来の組立工
程にしたがって、定格4V10μFのタンタル固体電解
コンデンサを500個試作し、100kHzでのインピ
ーダンス|Z|(Ω)を測定したところ、その平均値は
0.5Ωであった。
〈比較例1〉カーボン層形成後、直接その上に銀層を形
成した従来法による定格4V10μFのタンタル固体電
解コンデンサを500個用意し、100kHzでのイン
ピーダンス|Z|(Ω)を測定したところ、その平均値
は0.9Ωであった。
《実施例2》タンタル粉末の焼結ペレットに誘電体皮膜
を形成した後、従来と同様にして固体電解質としての二
酸化マンガンを形成し、同二酸化マンガン上にカーボン
層を形成した。After forming the silver layer, 500 tantalum solid electrolytic capacitors having a rating of 4V and 10 μF were prototyped according to the conventional assembly process, and the impedance | Z | (Ω) at 100 kHz was measured. Was 0.5Ω. <Comparative Example 1> After forming a carbon layer, 500 pieces of tantalum solid electrolytic capacitors having a rating of 4V and 10 μF were prepared by directly forming a silver layer on the carbon layer, and the impedance | Z | (Ω) at 100 kHz was measured. The average value was 0.9Ω. Example 2 After forming a dielectric film on a sintered pellet of tantalum powder, manganese dioxide as a solid electrolyte was formed in the same manner as in the prior art, and a carbon layer was formed on the manganese dioxide.
【0014】しかる後、硝酸1容量%水溶液中に1分間
浸漬し、引き上げて300℃の熱風循環炉中において1
0分間熱処理(乾燥)させた。After that, it was immersed in a 1% by volume aqueous solution of nitric acid for 1 minute, pulled up, and placed in a hot air circulation oven at 300 ° C. for 1 minute.
It was heat-treated (dried) for 0 minutes.
【0015】そして、銀層を形成した後、従来の組立工
程にしたがって、定格4V2.2μFのタンタル固体電
解コンデンサを500個試作し、100kHzでのイン
ピーダンス|Z|(Ω)を測定したところ、その平均値
は0.3Ωであった。
〈比較例2〉カーボン層形成後、直接その上に銀層を形
成した従来法による定格4V2.2μFのタンタル固体
電解コンデンサを500個用意し、100kHzでのイ
ンピーダンス|Z|(Ω)を測定したところ、その平均
値は0.5Ωであった。
《実施例3》タンタル粉末の焼結ペレットに誘電体皮膜
を形成した後、従来と同様にして固体電解質としての二
酸化マンガンを形成し、同二酸化マンガン上にカーボン
層を形成した。After forming the silver layer, 500 tantalum solid electrolytic capacitors having a rating of 4V and 2.2 μF were prototyped according to the conventional assembly process, and the impedance | Z | (Ω) at 100 kHz was measured. The average value was 0.3Ω. <Comparative Example 2> After forming a carbon layer, 500 pieces of tantalum solid electrolytic capacitors having a rating of 4V and 2.2 μF were prepared by directly forming a silver layer on the carbon layer, and the impedance | Z | (Ω) at 100 kHz was measured. However, the average value was 0.5Ω. Example 3 After forming a dielectric film on a sintered pellet of tantalum powder, manganese dioxide as a solid electrolyte was formed in the same manner as in the past, and a carbon layer was formed on the manganese dioxide.
【0016】しかる後、硝酸1容量%水溶液中に1分間
浸漬し、引き上げて300℃の熱風循環炉中において1
0分間熱処理(乾燥)させた。After that, it was immersed in a 1% by volume aqueous solution of nitric acid for 1 minute, pulled up, and placed in a hot air circulation oven at 300 ° C. for 1 minute.
It was heat-treated (dried) for 0 minutes.
【0017】そして、銀層を形成した後、従来の組立工
程にしたがって、定格10V4.7μFのタンタル固体
電解コンデンサを600個試作し、100kHzでのイ
ンピーダンス|Z|(Ω)を測定したところ、その平均
値は0.8Ωであった。
〈比較例3〉カーボン層形成後、直接その上に銀層を形
成した従来法による定格10V4.7μFのタンタル固
体電解コンデンサを500個用意し、100kHzでの
インピーダンス|Z|(Ω)を測定したところ、その平
均値は1.0Ωであった。
《実施例4》タンタル粉末の焼結ペレットに誘電体皮膜
を形成した後、従来と同様にして固体電解質としての二
酸化マンガンを形成し、同二酸化マンガン上にカーボン
層を形成した。Then, after forming the silver layer, 600 tantalum solid electrolytic capacitors having a rating of 10V and 4.7 μF were prototyped according to the conventional assembly process, and the impedance | Z | (Ω) at 100 kHz was measured. The average value was 0.8Ω. <Comparative Example 3> After forming a carbon layer, 500 pieces of tantalum solid electrolytic capacitors having a rating of 10V and 4.7 μF according to a conventional method, in which a silver layer was directly formed on the carbon layer, were prepared, and impedance | Z | (Ω) at 100 kHz was measured. However, the average value was 1.0Ω. Example 4 After forming a dielectric film on a sintered pellet of tantalum powder, manganese dioxide as a solid electrolyte was formed in the same manner as in the past, and a carbon layer was formed on the manganese dioxide.
【0018】しかる後、硝酸1容量%水溶液中に1分間
浸漬し、引き上げて300℃の熱風循環炉中において1
0分間熱処理(乾燥)させた。Thereafter, it was immersed in a 1% by volume aqueous solution of nitric acid for 1 minute, pulled up, and placed in a hot air circulation oven at 300 ° C. for 1 minute.
It was heat-treated (dried) for 0 minutes.
【0019】そして、銀層を形成した後、従来の組立工
程にしたがって、定格16V6.8μFのタンタル固体
電解コンデンサを1000個試作し、100kHzでの
インピーダンス|Z|(Ω)を測定したところ、その平
均値は0.6Ωであった。
〈比較例4〉カーボン層形成後、直接その上に銀層を形
成した従来法による定格16V6.8μFのタンタル固
体電解コンデンサを1000個用意し、100kHzで
のインピーダンス|Z|(Ω)を測定したところ、その
平均値は0.95Ωであった。After forming the silver layer, 1000 tantalum solid electrolytic capacitors having a rating of 16V and 6.8 μF were prototyped according to the conventional assembly process, and the impedance | Z | (Ω) at 100 kHz was measured. The average value was 0.6Ω. <Comparative Example 4> After forming a carbon layer, 1000 pieces of tantalum solid electrolytic capacitors having a rating of 16V and 6.8 μF were prepared by directly forming a silver layer on the carbon layer, and the impedance | Z | (Ω) at 100 kHz was measured. However, the average value was 0.95Ω.
【0020】参考までに、表1に上記実施例と比較例の
インピーダンス|Z|(Ω;平均値)を比較して示す。For reference, Table 1 shows the impedances | Z | (Ω; average value) of the examples and comparative examples in comparison.
【0021】[0021]
【表1】
この表から分かるように、本発明によればインピーダン
ス|Z|が比較例よりもおおよそ35%程度低減でき
る。[Table 1] As can be seen from this table, according to the present invention, the impedance | Z | can be reduced by about 35% as compared with the comparative example.
【0022】[0022]
【発明の効果】以上説明したように、本発明によれば、
固体電解質の周囲にカーボン層を形成した後、同カーボ
ン層に硝酸水溶液を含浸させて熱処理を行なうようにし
たことにより、固体電解質とカーボン層との密着性が改
善され、インピーダンス|Z|の低減が図れる。As described above, according to the present invention,
By forming a carbon layer around the solid electrolyte and then impregnating the same carbon layer with a nitric acid aqueous solution to perform heat treatment, the adhesion between the solid electrolyte and the carbon layer is improved, and the impedance | Z | is reduced. Can be achieved.
Claims (3)
ンガンからなる固体電解質を形成するとともに、同固体
電解質の周囲にカーボン層および銀層を順次形成する固
体電解コンデンサの製造方法において、固体電解質の周
囲にカーボン層を形成した後、同カーボン層に硝酸水溶
液を含浸させて熱処理を行なうことを特徴とする固体電
解コンデンサの製造方法。1. A method for producing a solid electrolytic capacitor, comprising: forming a solid electrolyte made of manganese dioxide on a sintered pellet of valve metal powder; and sequentially forming a carbon layer and a silver layer around the solid electrolyte. A method for producing a solid electrolytic capacitor, which comprises forming a carbon layer around a substrate, impregnating the carbon layer with an aqueous nitric acid solution, and performing heat treatment.
請求項1に記載の固体電解コンデンサの製造方法。2. The method for producing a solid electrolytic capacitor according to claim 1, wherein the concentration of the nitric acid aqueous solution is 1 to 10% by volume.
かつ、その処理時間は5〜20分間である請求項1に記
載の固体電解コンデンサの製造方法。3. The temperature of the heat treatment is 150 to 300 ° C.,
The method for producing a solid electrolytic capacitor according to claim 1, wherein the treatment time is 5 to 20 minutes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19347991A JPH0513284A (en) | 1991-07-08 | 1991-07-08 | Manufacture of solid electrolytic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19347991A JPH0513284A (en) | 1991-07-08 | 1991-07-08 | Manufacture of solid electrolytic capacitor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0513284A true JPH0513284A (en) | 1993-01-22 |
Family
ID=16308712
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19347991A Withdrawn JPH0513284A (en) | 1991-07-08 | 1991-07-08 | Manufacture of solid electrolytic capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0513284A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6631074B2 (en) | 2000-05-12 | 2003-10-07 | Maxwell Technologies, Inc. | Electrochemical double layer capacitor having carbon powder electrodes |
US6813139B2 (en) | 2001-11-02 | 2004-11-02 | Maxwell Technologies, Inc. | Electrochemical double layer capacitor having carbon powder electrodes |
-
1991
- 1991-07-08 JP JP19347991A patent/JPH0513284A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6631074B2 (en) | 2000-05-12 | 2003-10-07 | Maxwell Technologies, Inc. | Electrochemical double layer capacitor having carbon powder electrodes |
US6813139B2 (en) | 2001-11-02 | 2004-11-02 | Maxwell Technologies, Inc. | Electrochemical double layer capacitor having carbon powder electrodes |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0513284A (en) | Manufacture of solid electrolytic capacitor | |
JP3899503B2 (en) | Nickel powder with excellent oxidation resistance and method for producing the same | |
JPH11135377A (en) | Solid electrolytic capacitor and its manufacture | |
JP2833383B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JP2513369B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JP2000068160A (en) | Ta SOLID ELECTROLYTIC CAPACITOR AND ITS MANUFACTURE | |
JPH07153650A (en) | Manufacture of solid electrolytic capacitor | |
JP2874423B2 (en) | Manufacturing method of tantalum solid electrolytic capacitor | |
JP3199101B2 (en) | Method for manufacturing tantalum solid electrolytic capacitor element | |
JP2004018966A (en) | Method for forming titanium oxide coating film and titanium electrolytic capacitor | |
JP3391364B2 (en) | Manufacturing method of tantalum solid electrolytic capacitor | |
JPH02267915A (en) | Manufacture of solid-state electrolytic capacitor | |
JPS6145852B2 (en) | ||
JP3074742B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JP2738186B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JP2964090B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JPH07220982A (en) | Manufacture of solid electrolytic capacitor | |
JP3290477B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP2008205190A (en) | Solid electrolytic capacitor and its manufacturing method | |
JPH05275293A (en) | Manufacture of solid electrolytic capacitor | |
JPH11274009A (en) | Solid electrolytic capacitor and manufacture thereof | |
JP2773499B2 (en) | Solid electrolytic capacitor and method of manufacturing the same | |
JP3082424B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JPS62185307A (en) | Solid electrolytic capacitor | |
JPH05144684A (en) | Manufacture of solid electrolytic capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19981008 |