JPH05132319A - Production of dielectric material powder - Google Patents

Production of dielectric material powder

Info

Publication number
JPH05132319A
JPH05132319A JP3318457A JP31845791A JPH05132319A JP H05132319 A JPH05132319 A JP H05132319A JP 3318457 A JP3318457 A JP 3318457A JP 31845791 A JP31845791 A JP 31845791A JP H05132319 A JPH05132319 A JP H05132319A
Authority
JP
Japan
Prior art keywords
powder
raw material
dielectric
rare earth
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3318457A
Other languages
Japanese (ja)
Inventor
Toichi Takagi
東一 高城
Kazuhiro Aizawa
一裕 相沢
Kouhei Ametani
公兵 飴谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP3318457A priority Critical patent/JPH05132319A/en
Publication of JPH05132319A publication Critical patent/JPH05132319A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce powder of dielectric material having excellent dielectric characteristics and raw material powder of dielectric material useful especially in a microwave range. CONSTITUTION:In producing powder of dielectric material consisting essentially of barium, titanium and a rare earth element, the production consists of (a) a process of manufacturing a raw material mixture comprising barium and a rare earth element as main components among constituent components, (b) a process of calcining the mixture produced in the process (a), (c) a process of blending the calcined mixture obtained by the process (b) with a raw material comprising the residual titanium component as a main component so as to give the objective composition, (d) a process of calcining the blend obtained by the process (c) in series to give powder of dielectric material. Since titanium is added in the process (c), selective reaction of barium and rare earth is prevented to produce powder of dielectric powder having uniformity and excellent characteristics free from defects.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は誘電特性の優れた誘電体
粉末の製造方法、特にマイクロ波領域で使用される誘電
体の原料粉末の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a dielectric powder having excellent dielectric properties, and more particularly to a method for producing a raw material powder for a dielectric used in the microwave region.

【0002】[0002]

【従来技術】通信情報量の増加と共にマイクロ波を用い
た通信システム、即ち衛星通信及び衛星放送等が急速に
発達しており、通信、放送装置の共振素子に比誘電率が
大きく、品質係数Qが大きく(誘電損失が小さい)、共
振周波数の温度係数τf がOに近い誘電体材料が開発さ
れ実用されている。これらのうち、MgTiO3、(CaLa)TiO3
-MgTiO3 、MgTi2O5-TiO2、MgO-Nd2O3 、(La2O3)-TiO2
(CaSrBa)(ZrTi)O3、Ba(Mg1/3Ta2/3)O3、Ba(Zn1/3Nb2/3)
O3-Ba(Zn1/3Ta2/3)O3 、Ba(Zn1/3Nb2/3)O3-Sr(Zn1/3Nb
2/3)O3 、Ba(NiTa)O3-Ba(ZrZnTa)O3 、Ba(ZnTa)O3-BaZr
O3 、(SrCa)(LiNbTi)O3、(ZrSn)TiO4、BaTi4O9 、Ba2Ti
9O20 、BaO ・4TiO2・0.1WO3 系等の誘電体は、品質係数
Qが大きいものの比誘電率が小さい(比誘電率εr =25
〜40程度)ために、例えば0.1 〜4GHz帯で使用される共
振器としたときに、共振器を十分に小型化することがで
きない。そのためこの用途にはバリウム、チタン及び稀
土類元素からなる酸化物、例えばBaO-TiO2-Nd2O3系{Be
r. Dt. Keram. Ges. 55 (1978) No. 7 ; 特開昭60-354
06号公報等}などの誘電体が用いられている。
2. Description of the Related Art A communication system using microwaves, that is, satellite communication and satellite broadcasting is rapidly developing with the increase of communication information amount, and the relative dielectric constant of the resonant element of the communication and broadcasting apparatus is large and the quality factor Q is large. Has been developed and put to practical use, with a large value (small dielectric loss) and a temperature coefficient τf of resonance frequency close to O. Of these, MgTiO 3 , (CaLa) TiO 3
-MgTiO 3 , MgTi 2 O 5 -TiO 2 , MgO-Nd 2 O 3 , (La 2 O 3 ) -TiO 2 ,
(CaSrBa) (ZrTi) O 3 , Ba (Mg 1/3 Ta 2/3 ) O 3 , Ba (Zn 1/3 Nb 2/3 )
O 3 -Ba (Zn 1/3 Ta 2/3 ) O 3 , Ba (Zn 1/3 Nb 2/3 ) O 3 -Sr (Zn 1/3 Nb
2/3 ) O 3 , Ba (NiTa) O 3 -Ba (ZrZnTa) O 3 , Ba (ZnTa) O 3 -BaZr
O 3 , (SrCa) (LiNbTi) O 3 , (ZrSn) TiO 4 , BaTi4O 9 , Ba 2 Ti
Dielectrics such as 9 O 20 and BaO 4 TiO 2 0.1 WO 3 have a high quality factor Q but a low relative permittivity (relative permittivity εr = 25
Therefore, when the resonator is used in, for example, the 0.1 to 4 GHz band, the resonator cannot be downsized sufficiently. Therefore, for this application, oxides of barium, titanium and rare earth elements such as BaO-TiO 2 -Nd 2 O 3 system {Be
r. Dt. Keram. Ges. 55 (1978) No. 7; JP 60-354
A dielectric such as '06 publication} is used.

【0003】従来、誘電体粉末の製造方法としては構成
成分の各種金属を含有する酸化物、炭酸塩などの化合物
粉末を目的組成となるように秤量し、一括混合したのち
空気中で仮焼し、さらに粉砕仮焼による固相反応を何度
か繰り返して製造する方法が一般的である。
Conventionally, as a method for producing a dielectric powder, compound powders such as oxides and carbonates containing various metals as constituents are weighed to obtain a desired composition, mixed together, and then calcined in air. In general, a method of repeating the solid-phase reaction by pulverization and calcination several times to manufacture is common.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
従来法では原料粉末を一括に混合するため、仮焼時の固
相反応において原料粉末間に選択的反応が起きやすい。
具体的にはチタン成分がそれぞれバリウム成分や稀土類
元素成分と選択的に反応しやすく、チタンとバリウムと
の複合酸化物、例えばBa4Ti13O30、BaTi4O9 、BaTi2O5
などやチタンと稀土類元素との複合酸化物、例えばR2Ti
2O7 (R:稀土類元素)などの中間生成物が生成しやす
い。したがって得られる誘電体粉末を用いて製造した焼
結体の品質係数Qが低下する原因になるという問題点が
あった。これは組成の原子レベルでの均一性が向上しに
くく、不純物相の生成や格子欠陥が多数存在するためと
考えられる。
However, in the above conventional method, since the raw material powders are mixed at once, a selective reaction between the raw material powders is likely to occur in the solid-phase reaction during calcination.
Specifically, the titanium component easily reacts selectively with the barium component and the rare earth element component, respectively, and a composite oxide of titanium and barium, for example, Ba 4 Ti 13 O 30 , BaTi 4 O 9 , BaTi 2 O 5
Etc. and complex oxides of titanium and rare earth elements, such as R 2 Ti
Intermediate products such as 2 O 7 (R: rare earth element) are easily generated. Therefore, there is a problem that the quality factor Q of the sintered body produced using the obtained dielectric powder is lowered. This is probably because it is difficult to improve the homogeneity of the composition at the atomic level, and many impurity phases are generated and lattice defects are present.

【0005】このため従来法では組成の均一性を向上さ
せるために仮焼と粉砕を繰り返す方法や仮焼温度を上昇
させる方法などが採用されるが工程が複雑で実際的でな
いばかりでなく、しかも高温仮焼による粉末の強固な凝
集を粉砕しなければならず粉砕時に不純物が混入すると
いう問題がある。本発明は上記問題点を解決するために
なされたものであり、組成均一性に優れ、焼結体の誘電
特性、特に品質係数Qの優れた誘電体粉末の製造方法を
提供するものである。
Therefore, in the conventional method, a method of repeating calcination and pulverization or a method of increasing the calcination temperature is adopted in order to improve the homogeneity of the composition, but not only is the process complicated and impractical, but also The strong agglomeration of the powder due to high temperature calcination must be crushed, and there is a problem that impurities are mixed in during crushing. The present invention has been made in order to solve the above problems, and provides a method for producing a dielectric powder having excellent composition uniformity and excellent dielectric properties of a sintered body, particularly a quality factor Q.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明はバリ
ウム、チタン及び稀土類元素を主成分とする誘電体粉末
を製造するにあたり、(a) 構成成分のうちバリウムと稀
土類元素を主成分とする原料混合物を製造する工程、
(b) 前記(a) 工程で得られた混合物を仮焼する工程、
(c) 前記(b) 工程で得られた仮焼物に目的の組成となる
ように残りのチタン成分を主成分とする原料を配合する
工程、(d) 前記(c) 工程で得られた配合物を仮焼する工
程、の各工程を結合してなることを特徴とする誘電体粉
末の製造方法である。
That is, according to the present invention, in producing a dielectric powder containing barium, titanium, and a rare earth element as main components, (a) containing barium and a rare earth element as main components Manufacturing a raw material mixture to
(b) calcining the mixture obtained in the step (a),
(c) a step of blending the raw material containing the remaining titanium component as a main component so that the calcined product obtained in the step (b) has a desired composition, (d) the blend obtained in the step (c) A method for producing a dielectric powder, characterized in that the steps of calcining an object are combined.

【0007】以下、本発明についてさらに詳細に説明す
る。本発明にいう稀土類元素とは一般の定義通りLa、C
e、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Y
b、Lu及びY 、Scの17種類の元素であり、特に要求され
る誘電体の特性によるがLa、Ce、Pr、Nd、Pm、Sm、Eu、
Gd、Tb及びDyなどが有用である。本発明はバリウム、チ
タン及び上記稀土類元素のうち少なくとも1種を主成分
とする誘電体粉末の製造方法であるがこの主成分以外の
添加成分としては特に限定されない。例えば、Pb、Sr、
Ca、Zr、Hf、Bi、Mn、Al、Mg、Si、Ge、Te、Ni、Tl及び
Cr等が挙げられる。また、これらの添加成分の添加工程
は以下に説明する(a) 工程、(b) 又は(c) 工程のうちの
一つ以上の工程で行なうか、あるいは(c) 工程を経て得
られた本発明の誘電体粉末に対して添加しても良い。添
加成分は酸化物、炭酸塩などの添加成分の単独化合物や
いくつかの添加成分からなる複合化合物を粉末や溶液の
形態で添加すればよい。
The present invention will be described in more detail below. The rare earth elements referred to in the present invention are as defined in general, La, C
e, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Y
b, Lu and Y are 17 kinds of elements of Sc, and La, Ce, Pr, Nd, Pm, Sm, Eu, depending on the characteristics of the required dielectric material.
Gd, Tb and Dy are useful. The present invention is a method for producing a dielectric powder containing barium, titanium and at least one of the rare earth elements as a main component, but the additive component other than this main component is not particularly limited. For example, Pb, Sr,
Ca, Zr, Hf, Bi, Mn, Al, Mg, Si, Ge, Te, Ni, Tl and
Cr and the like can be mentioned. Further, the addition process of these additive components is carried out in one or more of the steps (a), (b) or (c) described below, or is obtained by the step (c). It may be added to the dielectric powder of the invention. As the additive component, a single compound of the additive component such as an oxide or carbonate, or a complex compound of several additive components may be added in the form of powder or solution.

【0008】以下各工程順に説明する。 (a) 工程について。 本発明の(a) 工程では構成成分のうちバリウムと稀土類
元素を主成分とする原料混合物を製造する。バリウム原
料としては炭酸塩、酸化物、水酸化物、塩化物、硝酸
塩、硫酸塩及びシュウ酸塩、ギ酸塩、酢酸塩等の有機酸
塩などが挙げられるが、次の(b) 工程の仮焼で不純物を
残留しないものが好ましい。稀土類元素の原料としては
酸化物が好ましく、そのほか炭酸塩などの塩が好まし
い。また、目的とする組成によっては軽稀土酸化物混合
物など何種類かの稀土類元素を含む原料を用いても良
い。また、金属を原料としてもよい。
Hereinafter, each step will be described in order. (a) About process. In step (a) of the present invention, a raw material mixture containing barium and a rare earth element as main components among the constituent components is manufactured. Examples of barium raw materials include carbonates, oxides, hydroxides, chlorides, nitrates, sulfates, and organic acid salts such as oxalates, formates, and acetates. It is preferable that the baking does not leave impurities. As the raw material for the rare earth element, oxides are preferable, and salts such as carbonates are preferable. Further, depending on the desired composition, a raw material containing several kinds of rare earth elements such as a light rare earth oxide mixture may be used. Alternatively, a metal may be used as a raw material.

【0009】(a) 工程における原料混合物の製造として
は、特に限定されるものではなく、公知の方法が用いら
れるが、各成分が均一に分布し、最終的に得られる粉末
の特性を考慮すると原料混合物は粉末形態が好ましく、
粒径が小さく粒度分布の狭いものが得られる方法が好ま
しい。これらの製法としては固相法、液相法及び気相法
に大別され、何れの方法でも良いが生産性、製造効率の
点では固相法がよい。固相法としては上記構成成分の原
料を粉末形態で混合する方法である。混合はミキサー、
ボールミル、振動ミル等を用い乾式、湿式のいずれでも
よいが、湿式の方が効率がよい。
The production of the raw material mixture in the step (a) is not particularly limited and a known method can be used. However, considering the characteristics of the powder finally obtained, the respective components are uniformly distributed. The raw material mixture is preferably in powder form,
A method in which a particle having a small particle size and a narrow particle size distribution is obtained is preferable. These production methods are roughly classified into a solid phase method, a liquid phase method and a gas phase method, and any method may be used, but the solid phase method is preferable in terms of productivity and production efficiency. The solid phase method is a method of mixing the raw materials of the above constituents in powder form. Mixing is a mixer,
Either a dry method or a wet method using a ball mill, a vibration mill or the like may be used, but the wet method is more efficient.

【0010】液相法としては、例えば溶湯噴霧法やプラ
ズマジェット法などの融液から製造する方法、沈澱生成
や溶媒除去による溶液から製造する方法がある。沈澱生
成による方法としては共沈法、均一沈澱法、アルコキシ
ド法、電解法、ゾルゲル法などがあり、溶媒除去による
方法には噴霧乾燥法、凍結乾燥法、熱ケロセン法、液体
乾燥法、エマルジョン法などがある。
Examples of the liquid phase method include a method of producing from a melt such as a melt spraying method and a plasma jet method, and a method of producing from a solution by precipitation formation and solvent removal. The method of forming a precipitate includes a coprecipitation method, a uniform precipitation method, an alkoxide method, an electrolytic method, a sol-gel method, etc., and a method of removing a solvent is a spray drying method, a freeze drying method, a heat kerosene method, a liquid drying method, an emulsion method. and so on.

【0011】気相法には蒸発−凝縮法と気相化学反応法
がある。前者はアークあるいはプラズマジェットなどを
用いて原料を高温に加熱して気化させ、次いでアークや
プラズマフレームの大きな温度勾配によって急冷し粒子
状に凝集させる方法である。後者の気相化学反応法は揮
発性化合物蒸気の化学反応によるもので、単一化学種の
熱分解や2種以上の化学種間の反応などがある。
The vapor phase method includes an evaporation-condensation method and a vapor phase chemical reaction method. The former is a method in which a raw material is heated to a high temperature by using an arc or a plasma jet to be vaporized, and then rapidly cooled by a large temperature gradient of the arc or the plasma flame to be agglomerated into particles. The latter gas phase chemical reaction method is based on a chemical reaction of a volatile compound vapor, and includes a thermal decomposition of a single chemical species and a reaction between two or more chemical species.

【0012】(b) 工程について。 本発明の(b) 工程では(a) 工程で得られた混合物を仮焼
する。最適仮焼温度は組成によっても異なるが800 ℃〜
1500℃が好ましく、さらに1000℃〜1300℃が好ましい。
仮焼温度が800℃より低いと固相反応が進みにくく、150
0℃より高いと、粉体の強固な凝集が進行し粉体特性が
悪化する。仮焼処理の方法は、具体的には通常の電気炉
等で仮焼することが挙げられる。
About (b) step. In the step (b) of the present invention, the mixture obtained in the step (a) is calcined. The optimum calcination temperature varies depending on the composition, but it is 800 ℃ ~
The temperature is preferably 1500 ° C, more preferably 1000 ° C to 1300 ° C.
If the calcination temperature is lower than 800 ° C, the solid-phase reaction is difficult to proceed,
If the temperature is higher than 0 ° C, strong agglomeration of the powder will proceed and the powder characteristics will deteriorate. As a method of calcination, specifically, calcination in an ordinary electric furnace or the like can be mentioned.

【0013】(b) 工程の前及び/又は後に粉体特性(粒
径が小さく、粒径分布の狭いものが好ましい)を向上さ
せるためにボールミル、振動ミル、ジェットミル、撹拌
型ミル、遊星ミル、ダイノーミル等の解砕機で粉砕する
ことが好ましい。ボールミル、振動ミル等では解砕粉の
平均粒径が1μm 付近に限界があるが、ジェットミル、
遊星ミル、撹拌型ミル、ダイノーミル等はより強力な粉
砕能力を持ち微粉化が可能である。
(B) A ball mill, a vibration mill, a jet mill, a stirring mill, a planetary mill for improving powder characteristics (preferably having a small particle size and a narrow particle size distribution) before and / or after the step. It is preferable to grind with a disintegrator such as a dyno mill. In ball mills, vibration mills, etc., the average particle size of crushed powder is limited to around 1 μm, but jet mills,
Planetary mills, stirring mills, dyno mills, etc. have more powerful crushing ability and can be pulverized.

【0014】(c) 工程について。 (c) 工程では (b)工程で得られた仮焼物に目的の組成と
なるように残りのチタン成分を主成分とする原料を配合
する。チタン成分の原料としては酸化物、水酸化物、塩
化物、硝酸塩、硫酸塩及びシュウ酸塩、ギ酸塩、酢酸
塩、アルコキシド等の有機酸塩、金属などが挙げられる
が、次の(d) 工程の仮焼で不純物を残留しないものが好
ましい。原料が粉末形態であるものにおいて、その粒度
は(b) 工程で得られた粉末の粒径によっても異なるが細
かいものが好ましく、具体的には5μm 以下、好ましく
は1μm 以下のものである。
About (c) step. In the step (c), the calcined product obtained in the step (b) is mixed with a raw material containing the remaining titanium component as a main component so as to have a desired composition. Examples of the raw material of the titanium component include oxides, hydroxides, chlorides, nitrates, sulfates and oxalates, formates, acetates, organic acid salts such as alkoxides, and metals, but the following (d) It is preferable that the calcination in the process does not leave impurities. When the raw material is in the form of powder, the particle size thereof is preferably fine although it varies depending on the particle size of the powder obtained in the step (b), specifically 5 μm or less, preferably 1 μm or less.

【0015】(c) 工程における原料の配合方法として
は、均一に混合できる方法であれば特に限定されるもの
ではなく、公知の方法が用いられるが最終的に得られる
粉末の特性を考慮すると原料を配合したものは粉末形態
が好ましく、粒径が小さく粒度分布の狭いものが得られ
る方法が好ましい。これらの配合方法としては乾式法、
湿式法いずれの方法によってもおこなうことができる。
乾式とは乳鉢ミキサー、ボールミル等の通常の混合方法
で混合することを意味する。
The method of blending the raw materials in the step (c) is not particularly limited as long as it is a method capable of uniformly mixing, and a known method can be used, but considering the characteristics of the powder finally obtained, The powder form is preferable, and a method in which a powder having a small particle size and a narrow particle size distribution is obtained is preferable. As a blending method of these, a dry method,
It can be performed by any of the wet methods.
The dry method means mixing by a usual mixing method such as a mortar mixer and a ball mill.

【0016】湿式法とは (b)工程で得られた仮焼物とチ
タン成分を主成分とする溶液形態の原料を混合後、沈澱
剤、例えばアンモニア水、炭酸アンモニウム、シュウ酸
アンモニウム、アルコール水溶液又は水と反応させるこ
とにより両者の混合物の沈澱を得る方法または、溶媒除
去による方法、例えば噴霧乾燥法、凍結乾燥法、熱ケロ
セン法、液体乾燥法、エマルジョン法などがある。ま
た、(b) 工程同様(c) 工程の前及び/又は後に粉体特性
(粒径が小さく、粒径分布の狭いものが好ましい)を向
上させるためにボールミル、振動ミル、ジェットミル、
撹拌型ミル、遊星ミル、ダイノーミル等の解砕機で粉砕
することが好ましい。
What is the wet method? After mixing the calcined product obtained in step (b) with a solution-form raw material containing a titanium component as a main component, a precipitant such as aqueous ammonia, ammonium carbonate, ammonium oxalate, an aqueous alcohol solution or There are a method of obtaining a precipitate of a mixture of both by reacting with water, or a method of removing a solvent, for example, a spray drying method, a freeze drying method, a heat kerosene method, a liquid drying method, an emulsion method and the like. In addition, as in step (b), a ball mill, a vibration mill, a jet mill, or a mill for improving powder properties (preferably having a small particle size and a narrow particle size distribution) before and / or after the step (c),
It is preferable to grind with a disintegrating machine such as a stirring mill, a planetary mill or a dyno mill.

【0017】(d) 工程について。 (d) 工程では (c)工程で得られた配合物を仮焼する。
(d)工程における仮焼温度は700 ℃〜1300℃、好ましく
は900 ℃〜1100℃である。仮焼温度700 ℃未満では混合
粉末の固相反応が不十分であり、また1300℃を超えると
粉末が粗大化するからである。また、(c) 工程同様(d)
工程の前及び/又は後に粉体特性を向上させるためにボ
ールミル、振動ミル、ジェットミル、撹拌型ミル、遊星
ミル、ダイノーミル等の解砕機で粉砕することが好まし
い。
(D) About process. In the step (d), the compound obtained in the step (c) is calcined.
The calcination temperature in step (d) is 700 ° C to 1300 ° C, preferably 900 ° C to 1100 ° C. This is because if the calcination temperature is less than 700 ° C, the solid-phase reaction of the mixed powder is insufficient, and if it exceeds 1300 ° C, the powder becomes coarse. Also, as in step (c), (d)
In order to improve the powder properties before and / or after the step, it is preferable to grind with a disintegrator such as a ball mill, a vibration mill, a jet mill, a stirring mill, a planetary mill or a dyno mill.

【0018】[0018]

【実施例】以下、本発明の実施例について具体的に説明
する。 [実施例1]BaCO3 粉末及びSm2O3 粉末をBa:Sm のモル
比が1:1となるようにボールミルにより20時間湿式混
合した。得られた混合物スラリーを加熱乾燥した後、空
気中において温度1200℃(表1では仮焼1として表示)
で2時間仮焼した。仮焼物をボールミルにより20時間湿
式解砕を行なった。得られた粉砕物スラリーを加熱乾燥
した後、得られた粉末とTiO2粉末をBa:Sm:Tiのモル比が
1:2:4 となるように秤量し、ボールミルにより20時間湿
式混合しチタン成分を配合した。得られた配合物を空気
中において温度1050℃(表1では仮焼2として表示)で
2時間仮焼した。得られた仮焼物を再びボールミルを用
いて20時間湿式粉砕した。得られたスラリーを加熱乾燥
した後、ポリビニルアルコールを適当量加えて混練を行
ない、32メッシュのふるいで造粒した。造粒粉を成形圧
力800kg/cm2 で加圧成形し、空気中において温度1350℃
(表1では焼結として表示)で5時間焼成した。
EXAMPLES Examples of the present invention will be specifically described below. Example 1 BaCO 3 powder and Sm 2 O 3 powder were wet-mixed with a ball mill for 20 hours so that the molar ratio of Ba: Sm was 1: 1. After heating and drying the obtained mixture slurry, the temperature is 1200 ° C in air (indicated as calcination 1 in Table 1).
It was calcined for 2 hours. The calcined product was wet crushed for 20 hours with a ball mill. After heating and drying the obtained pulverized product slurry, the obtained powder and TiO2 powder have a molar ratio of Ba: Sm: Ti of
It was weighed so as to be 1: 2: 4, and wet mixed with a ball mill for 20 hours to mix the titanium component. The resulting formulation was calcined in air at a temperature of 1050 ° C. (denoted as Calcination 2 in Table 1) for 2 hours. The obtained calcined product was wet pulverized again for 20 hours using a ball mill. The resulting slurry was dried by heating, and then an appropriate amount of polyvinyl alcohol was added and kneading was performed, followed by granulation with a 32 mesh sieve. Granulated powder is pressure molded at a molding pressure of 800 kg / cm 2 , and the temperature is 1350 ° C in air.
(Indicated as sintering in Table 1) and fired for 5 hours.

【0019】得られた焼結体を直径約 10 mm、高さ約4
mmの円筒状に加工した。この焼結体の密度は理論密度の
97.2%であり高密度であった(表1)。また、この焼結
体の誘電特性の評価は空洞型共振器を用いた透過法によ
りGHz 帯でのεr 、品質係数Q及びτf の測定を行なっ
た。測定は横河ヒューレット・パッカード社製ネットワ
ークアナライザー(型番:YHP 8510)を用い、村田製作
所社製(型番:DRG 8553)測定治具を用いて行なった。
また、共振モードはTE01δモードを用いた。試料の共
振周波数は3〜4GHz であった。なお、一般にGHz 帯で
の誘電特性の測定においては測定法により測定値が異な
る場合が多く、測定値の比較にあたってはその測定方法
にも十分な配慮をする必要がある。特に、品質係数Qの
測定においては注意が必要である。共振周波数foの温度
依存性については、-30 ℃から+80 ℃の範囲で測定し、
温度係数τf を求めた。それらの結果を表1に示す。な
お、表中の品質係数Qの値は共振周波数foと品質係数Q
との間の関係式fo×Q=一定の関係を用いて1GHz での
値に換算して示した。
The sintered body thus obtained had a diameter of about 10 mm and a height of about 4 mm.
It was processed into a cylindrical shape of mm. The density of this sintered body is the theoretical density
The density was 97.2%, which was high density (Table 1). For evaluation of the dielectric properties of this sintered body, εr, quality factor Q and τf in the GHz band were measured by a transmission method using a cavity type resonator. The measurement was performed using a Yokogawa Hewlett-Packard network analyzer (model number: YHP 8510) and a measuring jig manufactured by Murata Manufacturing Co., Ltd. (model number: DRG 8553).
The resonance mode used was the TE01δ mode. The resonance frequency of the sample was 3 to 4 GHz. In general, when measuring dielectric properties in the GHz band, the measured values often differ depending on the measuring method, and it is necessary to give due consideration to the measuring methods when comparing the measured values. In particular, care must be taken when measuring the quality factor Q. Regarding the temperature dependence of the resonance frequency fo, measure in the range of -30 ℃ to +80 ℃,
The temperature coefficient τf was calculated. The results are shown in Table 1. The values of the quality factor Q in the table are the resonance frequency fo and the quality factor Q.
The relational expression fo × Q = and the relational expression between and are converted into the value at 1 GHz and shown.

【0020】[0020]

【表1】 [Table 1]

【0021】[比較例1]実施例1と同一組成の粉末を
従来法により合成した。実施例1と同一組成(Ba:Sm:Ti
のモル比が1:2:4 )となるように実施例1で用いたBaCO
3 粉末とSm2O3及びTiO2粉末を秤量しボールミルに一括
に仕込20時間湿式混合した。得られた配合物を空気中に
おいて温度1050℃(表1では表作成の都合上、仮焼2の
欄に示した)で2時間仮焼した。得られた仮焼物を再び
ボールミルを用いて20時間湿式粉砕した。得られたスラ
リーを加熱乾燥した後、ポリビニルアルコールを適当量
加えて混練を行ない、32メッシュのふるいで造粒した。
造粒粉を成形圧力800kg/cm2 で加圧成形し、空気中にお
いて温度1350℃で5 時間焼成した。得られた焼結体を直
径約10 mm 、高さ約4mmの円筒状に加工した。この焼結
体の密度は理論密度の67.4%であり低密度であった。こ
のことは実施例1の粉末は焼結性が高いことを示してい
る。
[Comparative Example 1] A powder having the same composition as in Example 1 was synthesized by a conventional method. Same composition as in Example 1 (Ba: Sm: Ti
Used in Example 1 so that the molar ratio of BaCO was 1: 2: 4).
The three powders and the Sm 2 O 3 and TiO 2 powders were weighed and put into a ball mill all at once, and wet mixed for 20 hours. The obtained composition was calcined in air at a temperature of 1050 ° C. (in Table 1, for convenience of preparation of the table, shown in the column of calcination 2) for 2 hours. The obtained calcined product was wet pulverized again for 20 hours using a ball mill. The resulting slurry was dried by heating, and then an appropriate amount of polyvinyl alcohol was added and kneading was performed, followed by granulation with a 32 mesh sieve.
The granulated powder was pressure-molded at a molding pressure of 800 kg / cm 2 and fired in air at a temperature of 1350 ° C for 5 hours. The obtained sintered body was processed into a cylindrical shape having a diameter of about 10 mm and a height of about 4 mm. The density of this sintered body was 67.4% of the theoretical density, which was low. This indicates that the powder of Example 1 has high sinterability.

【0022】[比較例2]比較例1で得た粉末を用いて
焼成温度を100 ℃高めた1450℃で5時間焼成した。得ら
れた焼結体の密度は理論密度の95.3%であった。これは
ほぼ実施例1と同様である。この焼結体の誘電特性を実
施例1と同様の方法により測定した結果を表1に示し
た。実施例1の焼結体で得られた品質係数Qと比較して
かなり低い値であることがわかる。
[Comparative Example 2] The powder obtained in Comparative Example 1 was used for calcination at 1450 ° C, which was increased by 100 ° C for 5 hours. The density of the obtained sintered body was 95.3% of the theoretical density. This is almost the same as in the first embodiment. The results of measuring the dielectric properties of this sintered body by the same method as in Example 1 are shown in Table 1. It can be seen that the value is considerably lower than the quality factor Q obtained for the sintered body of Example 1.

【0023】[実施例2〜9]表1に示す組成となるよ
うにBaCO3 粉末及び稀土類酸化物粉末(Sm2O3 、La
2O3 、Pr6O11、Nd2O3 、Eu2O3 )をボールミルにより20
時間湿式混合した。得られた混合物スラリーを加熱乾燥
した後、空気中において表1に示す温度(仮焼1:(b)
工程の仮焼温度)で2時間仮焼した。仮焼物をボールミ
ルにより20時間湿式解砕を行なった。得られた粉砕物ス
ラリーを加熱乾燥した後、得られた粉末とTiO2粉末を表
1に示す組成となるように秤量し、ボールミルにより20
時間湿式混合しチタン成分を配合した。得られた配合物
を空気中において表1に示す温度(仮焼2:(d) 工程の
仮焼温度)で2時間仮焼した。得られた仮焼物を再びボ
ールミルを用いて20時間湿式粉砕した。得られたスラリ
ーを加熱乾燥した後、ポリビニルアルコールを適当量加
えて混練を行ない、32メッシュのふるいで造粒した。造
粒粉を成形圧力800kg/cm2 で加圧成形し、空気中におい
て表1に示す温度(焼結:焼成温度)で5時間焼成し
た。得られた焼結体の密度(%)及び誘電特性(εr、
Q及びτf )を表1に示す。
[Examples 2 to 9] BaCO 3 powder and rare earth oxide powder (Sm 2 O 3 , La to have the composition shown in Table 1).
2 O 3 , Pr 6 O 11 , Nd 2 O 3 , Eu 2 O 3 ) with a ball mill to 20
Wet mixed for hours. After heating and drying the obtained mixture slurry, the temperature shown in Table 1 in air (calcination 1: (b)
It was calcined at the calcination temperature of the process) for 2 hours. The calcined product was wet crushed for 20 hours with a ball mill. After heating and drying the obtained pulverized product slurry, the obtained powder and TiO 2 powder are weighed so as to have the composition shown in Table 1, and are weighed with a ball mill.
The titanium component was blended by time wet mixing. The obtained blend was calcined in air at the temperature shown in Table 1 (calcination 2: the calcination temperature of step (d)) for 2 hours. The obtained calcined product was wet pulverized again for 20 hours using a ball mill. The resulting slurry was dried by heating, and then an appropriate amount of polyvinyl alcohol was added and kneading was performed, followed by granulation with a 32 mesh sieve. The granulated powder was pressure-molded at a molding pressure of 800 kg / cm 2 and fired in air at the temperature (sintering: firing temperature) shown in Table 1 for 5 hours. The density (%) and dielectric properties (εr,
Q and τ f) are shown in Table 1.

【0024】[比較例3〜6]比較例1と同様に粉末を
従来法により合成した。表1に示す組成となるように実
施例で用いたBaCO3 粉末と稀土類酸化物粉末及びTiO2
末を秤量しボールミルに一括に仕込20時間湿式混合し
た。得られた配合物を空気中において表1に示す温度
(表1では表作成の都合上、(d) 工程の仮焼温度の欄に
示した)で2時間仮焼した。得られた仮焼物を再びボー
ルミルを用いて20時間湿式粉砕した。得られたスラリー
を加熱乾燥した後、ポリビニルアルコールを適当量加え
て混練を行ない、32メッシュのふるいで造粒した。造粒
粉を成形圧力800kg/cm2 で加圧成形し、空気中において
表1に示す温度で5時間焼成した。得られた焼結体の密
度及び誘電特性を表1に示す。
[Comparative Examples 3 to 6] Similar to Comparative Example 1, powders were synthesized by a conventional method. The BaCO 3 powder, the rare earth oxide powder and the TiO 2 powder used in the examples were weighed so that the compositions shown in Table 1 were obtained, and they were all put together in a ball mill and wet mixed for 20 hours. The obtained composition was calcined in air at a temperature shown in Table 1 (in Table 1, for convenience of preparation of the table, shown in the column of calcination temperature in step (d)) for 2 hours. The obtained calcined product was wet pulverized again for 20 hours using a ball mill. The resulting slurry was dried by heating, and then an appropriate amount of polyvinyl alcohol was added and kneading was performed, followed by granulation with a 32 mesh sieve. The granulated powder was pressure-molded at a molding pressure of 800 kg / cm 2 and fired in air at the temperature shown in Table 1 for 5 hours. Table 1 shows the density and dielectric properties of the obtained sintered body.

【0025】[0025]

【発明の効果】本発明の如く、原料配合及び仮焼を二段
階に分けて行なう方法によれば、均一性が高く、不純物
相の少ない誘電体粉末が得られ、特にマイクロ波領域で
品質係数の高い優れた誘電体特性を有する粉末を製造す
ることができる。
According to the method of the present invention in which the raw material mixing and the calcination are performed in two steps, a dielectric powder having a high uniformity and a small impurity phase can be obtained, and the quality factor is particularly high in the microwave region. It is possible to produce a powder having high dielectric properties and high dielectric properties.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 バリウム、チタン及び稀土類元素を主成
分とする誘電体粉末を製造するにあたり、(a) 構成成分
のうちバリウムと稀土類元素を主成分とする原料混合物
を製造する工程、(b) 前記(a) 工程で得られた混合物を
仮焼する工程、(c) 前記(b) 工程で得られた仮焼物に目
的の組成となるように残りのチタン成分を主成分とする
原料を配合する工程、(d) 前記(c) 工程で得られた配合
物を仮焼する工程、の各工程を結合してなることを特徴
とする誘電体粉末の製造方法。
1. A method for producing a dielectric powder containing barium, titanium and a rare earth element as main components, wherein (a) a step of producing a raw material mixture containing barium and a rare earth element as main components, b) a step of calcining the mixture obtained in the step (a), (c) a raw material mainly containing the remaining titanium component so that the calcined product obtained in the step (b) has a desired composition And a step of calcining the mixture obtained in the step (c), and a step of calcination of the mixture obtained in the step (c).
JP3318457A 1991-11-06 1991-11-06 Production of dielectric material powder Pending JPH05132319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3318457A JPH05132319A (en) 1991-11-06 1991-11-06 Production of dielectric material powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3318457A JPH05132319A (en) 1991-11-06 1991-11-06 Production of dielectric material powder

Publications (1)

Publication Number Publication Date
JPH05132319A true JPH05132319A (en) 1993-05-28

Family

ID=18099336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3318457A Pending JPH05132319A (en) 1991-11-06 1991-11-06 Production of dielectric material powder

Country Status (1)

Country Link
JP (1) JPH05132319A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174711A (en) * 2003-12-10 2005-06-30 Tdk Corp Dielectric ceramic powder, manufacturing method of dielectric ceramic powder, and compound dielectric material
JP2008115042A (en) * 2006-11-06 2008-05-22 Matsushita Electric Ind Co Ltd Method for producing barium titanate powder, barium titanate powder, and multilayer ceramic capacitor using the same
JP2011219351A (en) * 2010-03-25 2011-11-04 Seiko Instruments Inc BaTi2O5-BASED COMPOSITE OXIDE AND METHOD FOR PRODUCING BaTi2O5-BASED COMPOSITE OXIDE

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174711A (en) * 2003-12-10 2005-06-30 Tdk Corp Dielectric ceramic powder, manufacturing method of dielectric ceramic powder, and compound dielectric material
JP2008115042A (en) * 2006-11-06 2008-05-22 Matsushita Electric Ind Co Ltd Method for producing barium titanate powder, barium titanate powder, and multilayer ceramic capacitor using the same
JP2011219351A (en) * 2010-03-25 2011-11-04 Seiko Instruments Inc BaTi2O5-BASED COMPOSITE OXIDE AND METHOD FOR PRODUCING BaTi2O5-BASED COMPOSITE OXIDE

Similar Documents

Publication Publication Date Title
Fuierer et al. La2Ti2O7 ceramics
JP3974723B2 (en) Dielectric porcelain manufacturing method
JP3559434B2 (en) Method for producing dielectric porcelain composition
JPH05132319A (en) Production of dielectric material powder
Xu et al. Preparation of Ba6− 3xNd8+ 2xTi18O54 via ethylenediaminetetraacetic acid precursor
CN111825445B (en) High-dielectric-constant microwave dielectric ceramic material, preparation and application thereof
JPH08133834A (en) Dielectric porcelain composition and its production
JPH08133832A (en) Dielectric particle of plate-shaped oxide
JP3176119B2 (en) Acicular dielectric oxide particles and method for producing the same
JP3117271B2 (en) Method for producing dielectric ceramic composition for high frequency
JPH11130544A (en) Dielectric ceramic composition and its production
JPH0328109A (en) Production of compound oxide powder
JP2887244B2 (en) High frequency dielectric ceramic composition
JP3359427B2 (en) High frequency dielectric ceramic composition
JP3330024B2 (en) High frequency dielectric ceramic composition
JP2835253B2 (en) High frequency dielectric ceramic composition and dielectric material
JPH09169567A (en) Dielectric porcelain composition for high frequency
JP3329980B2 (en) High frequency dielectric ceramic composition and method for producing the same
JPH04303512A (en) Manufacture of calcined body for dielectric porcelain
JPH05109316A (en) Manufacture of dielectric porcelain for microwave
JPH0877828A (en) Dielectric ceramic composition and its manufacture
JPH0696465B2 (en) Method for manufacturing calcined product for producing BMT sintered body and BMT sintered body
JPH04282506A (en) Dielectric porcelain composition
JPH0612913A (en) Dielectric porcelain composition and its manufacture
JPH0640725A (en) Acicular oxide dielectric particles and their production