JPH0877828A - Dielectric ceramic composition and its manufacture - Google Patents

Dielectric ceramic composition and its manufacture

Info

Publication number
JPH0877828A
JPH0877828A JP6213871A JP21387194A JPH0877828A JP H0877828 A JPH0877828 A JP H0877828A JP 6213871 A JP6213871 A JP 6213871A JP 21387194 A JP21387194 A JP 21387194A JP H0877828 A JPH0877828 A JP H0877828A
Authority
JP
Japan
Prior art keywords
dielectric ceramic
composition
ceramic composition
value
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6213871A
Other languages
Japanese (ja)
Inventor
Takahiro Takada
隆裕 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6213871A priority Critical patent/JPH0877828A/en
Publication of JPH0877828A publication Critical patent/JPH0877828A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide such a dielectric ceramic composition as exhibits stable dielectric characteristics despite of calcining it under lower temperature than usual by mixing specific composition calcination powder of Ba-Sn-Ti-O systems. ZnO, etc., to specific composition calcination power of Ba-Mg-Ta-O system and calcining it. CONSTITUTION: Calcination powder of a formula III is mixed at the rate of 50mol. or less to calcination powder 100mol. of formula I or II, ZnO or MnCO3 is added at the rate of 5mol. or less to this calcination powder mixture 100mol., and after that it is calcined in the atmosphere or oxygen atmosphere under 1300 to 1650 deg.C so as to provide a target composition. This composition is a dielectric ceramic composition represented by a formula IV. In the formula, 0.20<=Z<=0.80; 0.00<x<=0.50; (y) represents mol. number of MnO and/or ZnO to 1mol. of the main component formula V.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は誘電体磁器組成物に関
し、より詳細には、主としてマイクロ波帯域において使
用されるレゾネータ、フィルタ、コンデンサ、回路基板
などを構成する誘電体磁器組成物及びその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric porcelain composition, and more particularly, to a dielectric porcelain composition which constitutes a resonator, a filter, a capacitor, a circuit board, etc. used mainly in the microwave band and its manufacture. Regarding the method.

【0002】[0002]

【従来の技術】近年、高周波用誘電体磁器は、自動車電
話、携帯電話、コードレス電話などの無線通信機器の空
中線共用器(デュプレクサ)や電圧制御発振器(VC
O)などに使用される共振器、あるいはCATV用チュ
ーナに使用されるフィルタなどに多く用いられている。
このような共振器などにおいては、高誘電率を有する材
料を使用することにより高周波の波長を真空中のεr
-1/2(εr :比誘電率)の長さに短縮し、かかる周波数
における1波長、1/2波長、あるいは1/4波長のマ
イクロ波を高周波用誘電体磁器部品の中に閉じこめ、所
定の作用効果が得られるように小形に構成されたものが
一般的に知られている。
2. Description of the Related Art In recent years, high frequency dielectric porcelain has been used as an antenna duplexer and a voltage controlled oscillator (VC) for wireless communication equipment such as car phones, mobile phones and cordless phones.
It is often used for resonators used in O) or the like, or filters used for CATV tuners.
In such a resonator, by using a material with a high dielectric constant, the high-frequency wavelength can be controlled by ε r in a vacuum.
-1/2r : relative permittivity) is shortened, and microwave of 1 wavelength, 1/2 wavelength, or 1/4 wavelength at such frequency is confined in high frequency dielectric ceramic parts, It is generally known to have a small size so as to obtain a predetermined effect.

【0003】前記高周波用誘電体磁器に要求される特性
としては、(1)誘電体中では電磁波の波長がεr -1/2
に短縮され、同じ共振周波数ならば比誘電率が大きいほ
ど小形化できるため、可能な限り比誘電率が大であるこ
と、(2)高周波帯域での誘電損失が小さいこと、すな
わちQ値が大きいこと、(3)温度変化による共振周波
数の変化率が小さいこと、すなわち比誘電率εrの温度
依存性が小さく、かつ安定していること、の3つの特性
が挙げられる。
The characteristics required for the high frequency dielectric ceramics are as follows: (1) The wavelength of the electromagnetic wave in the dielectric is ε r -1/2
Since it can be miniaturized as the relative dielectric constant increases with the same resonance frequency, the relative dielectric constant should be as large as possible. (2) The dielectric loss in the high frequency band should be small, that is, the Q value should be large. And (3) the change rate of the resonance frequency due to temperature change is small, that is, the temperature dependence of the relative permittivity ε r is small and stable.

【0004】また、現在主として用いられているマイク
ロ波帯域は、民生用機器では1GHz前後であるが、情
報量の増大、機器動作の高速化により、より高い周波数
帯域(1〜数GHz)でも利用することができるマイク
ロ波用電子部品が必要となってきている。従って、該マ
イクロ波用電子部品を構成する誘電体磁器組成物として
は、マイクロ波の損失をできる限り少なくするためにQ
値の大きい材料が求められ、さらに電子部品の大きさを
できる限り小さくするために、比誘電率の大きい材料が
求められている。
Further, the microwave band mainly used at present is around 1 GHz for consumer appliances, but it is used in higher frequency bands (1 to several GHz) due to the increase in the amount of information and the faster operation of the appliances. There is an increasing need for microwave electronic components that can be used. Therefore, in order to reduce the microwave loss as much as possible, the dielectric ceramic composition constituting the microwave electronic component has a Q
A material having a large value is required, and a material having a large relative dielectric constant is required in order to reduce the size of the electronic component as much as possible.

【0005】従来、前記特性を有する誘電体磁器組成物
として、BaO−TiO2 系、ZrTiO4 系など多く
のものが知られており、Ba(Mg1/3 Ta2/3 )O3
系、Ba(Zn1/3 Ta2/3 )O3 系などもその一つと
して知られている。
Conventionally, many dielectric ceramic compositions having the above characteristics, such as BaO--TiO 2 system and ZrTiO 4 system, are known, and Ba (Mg 1/3 Ta 2/3 ) O 3 is known.
System, Ba (Zn 1/3 Ta 2/3 ) O 3 system, etc. are also known as one of them.

【0006】これらの誘電体磁器組成物に要求される特
性としては、前述したように比誘電率(εr )やQ値が
大きいこと、共振周波数の温度係数(τf )が0に近い
ことの他に、例えば原料純度、原料ロットによる温度係
数(τf )のばらつきをある程度コントロールできるこ
とが挙げられる。
The characteristics required for these dielectric ceramic compositions are that the relative permittivity (ε r ) and Q value are large as described above, and that the temperature coefficient (τ f ) of the resonance frequency is close to zero. Besides, it is possible to control the variation in the temperature coefficient (τ f ) depending on the material purity and the material lot to some extent.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
Ba(Mg1/3 Ta2/3 )O3 系あるいはBa(Zn
1/3 Ta2/3 )O3 系の材料では、Q値は大きいものの
比誘電率(εr )が28以下と小さいために素子を小型
化しにくく、焼結性を得るために非常に制御された焼成
条件下で試料を作製する必要があった。さらにこれらの
材料は、そのままでは共振周波数の温度係数(τf )を
制御することができないため、希土類元素など種々の添
加物を加えることによりこの共振周波数の温度係数(τ
f )を変化させる必要があったが、その際の特性が系統
的に検討されておらず、容易に種々の要求特性に合致し
た誘電体磁器組成物を供給することができないという課
題があった。
However, the conventional Ba (Mg 1/3 Ta 2/3 ) O 3 system or Ba (Zn
With 1/3 Ta 2/3 ) O 3 -based materials, although the Q value is large, the relative permittivity (ε r ) is as small as 28 or less, making it difficult to miniaturize the element and controlling it to obtain sinterability. It was necessary to prepare the sample under the specified firing conditions. Furthermore, since these materials cannot control the temperature coefficient (τ f ) of the resonance frequency as they are, the temperature coefficient of the resonance frequency (τ f ) can be obtained by adding various additives such as rare earth elements.
f ) had to be changed, but the characteristics at that time were not systematically examined, and there was the problem that it was not possible to easily supply a dielectric ceramic composition that met various required characteristics. .

【0008】本発明は上記した課題に鑑み発明されたも
のであって、高いQ値及び比誘電率(εr )を有し、共
振周波数の温度係数(τf )が+150〜−150pp
m/℃の範囲内で任意の値に制御することができる誘電
体磁器組成物を提供することを目的としている。
The present invention has been made in view of the above problems and has a high Q value and a relative dielectric constant (ε r ) and a temperature coefficient (τ f ) of a resonance frequency of +150 to −150 pp.
It is an object of the present invention to provide a dielectric ceramic composition that can be controlled to any value within the range of m / ° C.

【0009】また、1300〜1650°Cという従来
より低い焼成温度であっても安定した誘電特性が得ら
れ、高周波用通信装置等において要求される特性を満足
し得る誘電体磁器組成物の製造方法を提供することを目
的としている。
Further, a method for producing a dielectric porcelain composition which can obtain stable dielectric characteristics even at a firing temperature of 1300 to 1650 ° C. which is lower than the conventional one and can satisfy the characteristics required in high frequency communication devices and the like. Is intended to provide.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に本発明に係る誘電体磁器組成物は、Ba((Mg/Z
n)1/3 Ta2/3 )O3 ・xBa(Snz Ti1-z )O
3 +y(MnO+ZnO)(式中、x、y、zはそれぞ
れ0.00<x≦0.50、0.00≦y≦0.05、
0.20≦z≦0.80の範囲の値を示す。yは主成分
Ba((Mg/Zn)1/3 Ta2/3 )O3 ・xBa(S
z Ti1-z )O3 1モルに対するMnOおよび/また
はZnOのモル数を示す。)で表わされる組成であるこ
とを特徴としている。(1) また、本発明に係る誘電体磁器組成物の製造方法は、上
記(1)記載の誘電体磁器組成物の製造方法であって、
Ba(Mg1/3 Ta2/3 )O3 あるいはBa(Zn1/3
Ta2/3 )O3 の仮焼粉100モルに対し、50モル以
下の割合でBa(Snz Ti1-z )O3 (ただし0.2
0≦z≦0.80)の仮焼粉を混合し、さらに前記仮焼
粉の混合物100モルに対し、ZnOあるいはMnCO
3 を5モル以下の割合で添加し、その後大気中あるいは
酸素雰囲気中で、1300〜1650°Cで焼成するこ
とを特徴としている。(2) 上記誘電体磁器組成物の製造方法において用いる原料粉
末は、Ba、Mg、Ta、Znを含有する化合物から選
ばれる粉末、また、Zn及び/またはMnを含有する化
合物から選ばれる粉末であり、前記原料粉末は前記金属
の酸化物に限られず、例えば炭酸塩、シュウ酸塩、硝酸
塩、アルコキシドなどの粉末で、焼成後に目的の酸化物
が得られるものならばどのようなものでも良い。前記金
属の酸化物又は炭酸塩を原料粉末として使用する場合の
好ましい平均粒径は数μm程度であり、これらの原料粉
末を通常行われる方法により湿式混合し、さらに乾燥、
仮焼、解砕、造粒、成形などを行って所定の形状を有す
る成形体を作製した後に焼成する。前記酸化物又は炭酸
塩を仮焼合成する際の温度は1000〜1200℃程度
が好ましい。仮焼温度が1000℃未満では原料組成物
が多く残り、均一な焼成を妨げることになり、他方12
00℃を超えると焼結が始まり、微粉砕するのが困難に
なり、Q値に悪影響を及ぼす。前記方法により製造され
た誘電体磁器組成物の組織は、ほぼ均一な粒径を有す
る。
In order to achieve the above object, a dielectric ceramic composition according to the present invention has a composition of Ba ((Mg / Z
n) 1/3 Ta 2/3) O 3 · xBa (Sn z Ti 1-z) O
3 + y (MnO + ZnO) (where x, y and z are 0.00 <x ≦ 0.50, 0.00 ≦ y ≦ 0.05, respectively)
Values in the range of 0.20 ≦ z ≦ 0.80 are shown. y is the main component Ba ((Mg / Zn) 1/3 Ta 2/3 ) O 3 · xBa (S
It shows the number of moles of MnO and / or ZnO with respect to 1 mole of n z Ti 1-z ) O 3 . ) Is a composition represented by. (1) The method for producing a dielectric ceramic composition according to the present invention is the method for producing a dielectric ceramic composition according to (1) above,
Ba (Mg 1/3 Ta 2/3 ) O 3 or Ba (Zn 1/3
Ba (Sn z Ti 1-z ) O 3 (however, 0.2 with respect to 100 mol of the calcined powder of Ta 2/3 ) O 3 at a ratio of 50 mol or less
0 ≦ z ≦ 0.80) of the calcined powder, and ZnO or MnCO is added to 100 mol of the calcined powder mixture.
It is characterized in that 3 is added at a ratio of 5 mol or less, and then fired at 1300 to 1650 ° C. in the air or an oxygen atmosphere. (2) The raw material powder used in the method for producing the dielectric ceramic composition is a powder selected from compounds containing Ba, Mg, Ta and Zn, and a powder selected from compounds containing Zn and / or Mn. The raw material powder is not limited to the oxide of the metal, and may be powder of carbonate, oxalate, nitrate, alkoxide or the like, as long as the target oxide can be obtained after firing. When the metal oxide or carbonate is used as a raw material powder, a preferable average particle diameter is about several μm, and these raw material powders are wet-mixed by a commonly-used method and further dried,
Calcination, crushing, granulation, molding, etc. are performed to produce a molded body having a predetermined shape, and then firing. The temperature for calcining and synthesizing the oxide or carbonate is preferably about 1000 to 1200 ° C. If the calcination temperature is less than 1000 ° C, a large amount of the raw material composition remains, which hinders uniform calcination.
If it exceeds 00 ° C, sintering will start, and it will be difficult to pulverize it, which will adversely affect the Q value. The structure of the dielectric ceramic composition produced by the above method has a substantially uniform grain size.

【0011】[0011]

【作用】上記構成の誘電体磁器組成物によれば、Ba
((Mg/Zn)1/3 Ta2/3 )O3 ・xBa(Snz
Ti1-z )O3 +y(MnO+ZnO)(式中、x、
y、zはそれぞれ0.00<x≦0.50、0.00≦
y≦0.05、0.20≦z≦0.80の範囲の値を示
す。yは主成分Ba((Mg/Zn)1/3 Ta2/3 )O
3 ・xBa(Snz Ti1-z )O3 1モルに対するMn
Oおよび/またはZnOのモル数を示す。)で表わされ
る組成であることにより、比誘電率(εr )が25〜3
8と高く、Q値が測定周波数3GHzで10000以上
と大きいために誘電損失が小さく、かつ組成などを変化
させることにより共振周波数の温度係数(τf )を+1
50〜−150ppm/℃の範囲内で特定の値に制御す
ることが可能となる。
According to the dielectric ceramic composition having the above structure, Ba
((Mg / Zn) 1/3 Ta 2/3) O 3 · xBa (Sn z
Ti 1-z ) O 3 + y (MnO + ZnO) (where x,
y and z are 0.00 <x ≦ 0.50 and 0.00 ≦, respectively.
Values in the range of y ≦ 0.05 and 0.20 ≦ z ≦ 0.80 are shown. y is the main component Ba ((Mg / Zn) 1/3 Ta 2/3 ) O
Mn for 1 mol of 3 · xBa (Sn z Ti 1-z ) O 3
The number of moles of O and / or ZnO is shown. ), The relative dielectric constant (ε r ) is 25 to 3
8 and the Q value is as large as 10,000 or more at the measurement frequency of 3 GHz, the dielectric loss is small, and the temperature coefficient (τ f ) of the resonance frequency is +1 by changing the composition.
It becomes possible to control to a specific value within the range of 50 to -150 ppm / ° C.

【0012】前記誘電体磁器組成物において、xの値は
Ba((Mg/Zn)1/3 Ta2/3)O3 100モルに
対するBa(Snz Ti1-z )O3 のモル比を示してい
るが、このxの値が0.00であると焼成温度が高くな
り、比誘電率(εr )が25以下と小さくなるため、Q
値等の誘電特性が安定しなくなる。他方xの値が0.5
0以上であると、Q値が10000以下(3GHz)と
小さくなり共振器などとしての使用が難しくなる。
In the above dielectric ceramic composition, the value of x is the molar ratio of Ba (Sn z Ti 1-z ) O 3 to 100 mol of Ba ((Mg / Zn) 1/3 Ta 2/3 ) O 3. As shown, when the value of x is 0.00, the firing temperature becomes high and the relative permittivity (ε r ) becomes small at 25 or less.
Dielectric properties such as values become unstable. On the other hand, the value of x is 0.5
When it is 0 or more, the Q value becomes as small as 10,000 or less (3 GHz), and it becomes difficult to use it as a resonator or the like.

【0013】yの値は、Ba((Mg/Zn)1/3 Ta
2/3 )O3 ・xBa(Snz Ti1-z )O3 100モル
に対するMnOおよび/またはZnOのモル比を示して
いるが、このyの値が0.05を超えるとQ値が100
00以下(3GHz)と小さくなり、温度係数(τf
を+150〜−150ppm/℃の範囲内で特定の値に
制御することができなくなる。
The value of y is Ba ((Mg / Zn) 1/3 Ta
2/3 ) O 3 · xBa (Sn z Ti 1-z ) O 3 shows the molar ratio of MnO and / or ZnO with respect to 100 mol. When the value of y exceeds 0.05, the Q value becomes 100.
Temperature coefficient (τ f ) becomes smaller than 00 (3 GHz)
Cannot be controlled to a specific value within the range of +150 to −150 ppm / ° C.

【0014】zの値は、Tiに対するSnのモル比を示
しているが、このzの値が0.20未満であるとQ値が
10000以下(3GHz)と小さくなり、他方zの値
が0.80を超えると共振周波数の温度係数(τf )を
+150〜−150ppm/℃の範囲内で特定の値に制
御することができなくなる。
The value of z indicates the molar ratio of Sn to Ti. When the value of z is less than 0.20, the Q value becomes as small as 10000 or less (3 GHz), while the value of z is 0. If it exceeds 0.80, the temperature coefficient (τ f ) of the resonance frequency cannot be controlled to a specific value within the range of +150 to −150 ppm / ° C.

【0015】上記(2)記載の誘電体磁器組成物の製造
方法によれば、Ba(Mg1/3 Ta2/3 )O3 あるいは
Ba(Zn1/3 Ta2/3 )O3 の仮焼粉100モルに対
し、50モル以下の割合でBa(Snz Ti1-z )O3
(ただし0.20≦z≦0.80)の仮焼粉を混合し、
さらに前記仮焼粉の混合物100モルに対し、ZnOあ
るいはMnCO3 を5モル以下の割合で添加し、その後
大気中あるいは酸素雰囲気中で、1300〜1650°
Cで焼成するので、焼結体の平均結晶粒径が均一に制御
され、比誘電率(εr )が25〜38と高く、Q値が測
定周波数3GHzで10000以上と大きいために誘電
損失が小さく、かつ組成などを変化させることにより共
振周波数の温度係数(τf )を+150〜−150pp
m/℃の範囲内で特定の値に制御された誘電体磁器組成
物が製造される。
According to the method for producing a dielectric ceramic composition described in (2) above, a temporary composition of Ba (Mg 1/3 Ta 2/3 ) O 3 or Ba (Zn 1/3 Ta 2/3 ) O 3 is used. Shokona 100 moles, at a ratio of 50 mol Ba (Sn z Ti 1-z ) O 3
(However, 0.20 ≦ z ≦ 0.80) is mixed with the calcined powder,
Further, ZnO or MnCO 3 was added at a ratio of 5 mol or less to 100 mol of the mixture of the calcined powder, and then 1300 to 1650 ° in the air or oxygen atmosphere.
Since firing is performed at C, the average crystal grain size of the sintered body is uniformly controlled, the relative dielectric constant (ε r ) is as high as 25 to 38, and the Q value is as large as 10000 or more at the measurement frequency of 3 GHz, so that the dielectric loss is large. The temperature coefficient (τ f ) of the resonance frequency is +150 to −150 pp by making it small and changing the composition.
A dielectric porcelain composition controlled to a specific value within the range of m / ° C. is produced.

【0016】前記誘電体磁器組成物の製造方法におい
て、焼成温度が1300℃未満であると緻密化が十分に
進行せず、Q値が10000以下(3GHz)と小さく
なり、比誘電率(εr )も十分高くならず、他方焼成温
度が1650℃を超えると、誘電体磁器組成物自体が軟
化して焼成前の成形体の形を保持することができなくな
る。
In the method for producing the above-mentioned dielectric ceramic composition, if the firing temperature is less than 1300 ° C., the densification does not proceed sufficiently, the Q value becomes less than 10,000 (3 GHz), and the relative dielectric constant (ε r ) Is not sufficiently high, and on the other hand, when the firing temperature exceeds 1650 ° C., the dielectric ceramic composition itself is softened and the shape of the molded body before firing cannot be retained.

【0017】[0017]

【実施例及び比較例】以下、本発明に係る誘電体磁器組
成物及びその製造方法の実施例及び比較例を説明する。
まず、実施例に係る誘電体磁器組成物の製造方法につい
て説明する。
EXAMPLES AND COMPARATIVE EXAMPLES Examples and comparative examples of the dielectric ceramic composition and the method for producing the same according to the present invention will be described below.
First, a method for manufacturing a dielectric ceramic composition according to an example will be described.

【0018】平均粒径が数μmのBaCO3 、MgOあ
るいはZnO、Ta25 、SnO2 、TiO2 、Mn
CO3 から選ばれる粉末を表1ー1〜表1ー3に示した
割合で調合を行う。ここで表1ー1〜表1ー3に示した
x、y、zは、原料粉末の組成をBa((Mg/Zn)
1/3 Ta2/3 )O3 ・xBa(Snz Ti1-z )O3
y(MnO+ZnO)で表示した場合のx、y、zに対
応する。
BaCO 3 , MgO or ZnO, Ta 2 O 5 , SnO 2 , TiO 2 , Mn having an average particle size of several μm.
Powders selected from CO 3 are compounded at the ratios shown in Table 1-1 to Table 1-3. Here, x, y, and z shown in Tables 1-1 to 1-3 have the composition of the raw material powder of Ba ((Mg / Zn)).
1/3 Ta 2/3) O 3 · xBa (Sn z Ti 1-z) O 3 +
Corresponds to x, y, and z when represented by y (MnO + ZnO).

【0019】最初に各原料粉末を表1及び表2に示した
割合になるように正確に秤量し、適量の玉石、公知の分
散剤、純水とともにポットミル内で24時間湿式混合を
行うことにより、スラリー状の原料粉末混合物を得る。
この際に、焼結助剤としてZnO及び/あるいはMnC
3 を主成分100モルに対して0.00〜5.00モ
ルの範囲において加えても良い。
First, each raw material powder was accurately weighed so as to have the ratio shown in Tables 1 and 2, and wet-mixed for 24 hours in a pot mill together with an appropriate amount of cobblestone, a known dispersant, and pure water. , To obtain a raw material powder mixture in the form of a slurry.
At this time, ZnO and / or MnC are used as sintering aids.
O 3 may be added in the range of 0.00 to 5.00 mol with respect to 100 mol of the main component.

【0020】次に、このスラリー状の原料粉末混合物を
脱水乾燥させた後、解砕する。
Next, the slurry-like raw material powder mixture is dehydrated and dried and then crushed.

【0021】次に、解砕された粉末を、例えばジルコニ
ア製の焼成ルツボ内に移し、1000℃で仮焼合成を行
う。そして、所定の固溶体が合成されていることをx線
解析やICP発光分光分析などの組成分析手段で確認す
る。
Next, the crushed powder is transferred into a firing crucible made of, for example, zirconia, and calcined at 1000 ° C. for synthesis. Then, it is confirmed by composition analysis means such as x-ray analysis or ICP emission spectroscopy that the predetermined solid solution is synthesized.

【0022】次に、仮焼合成粉を解砕し、1.0μm前
後の均一粉に整粒する。整粒が終了した後、この粉末に
有機バインダーなどを添加して成形を行い、直径が15
mm、厚みが8mmの円板形状の成形体を作製する。
Next, the calcined synthetic powder is crushed and sized to a uniform powder of about 1.0 μm. After the sizing is completed, an organic binder or the like is added to this powder to perform molding, and the diameter is 15
A disk-shaped molded body having a thickness of 8 mm and a thickness of 8 mm is produced.

【0023】次に、得られた成形体を600℃で脱脂し
た後、脱脂後の成形体を、例えばマグネシア製の焼成板
上に載置して、大気中あるいは酸素雰囲気中で焼成を行
う。焼成条件は、焼成温度が1300〜1650℃、焼
成時間が2.0〜8.0時間である。
Next, after degreasing the obtained molded body at 600 ° C., the degreased molded body is placed on, for example, a magnesia firing plate and fired in the air or in an oxygen atmosphere. The firing conditions are a firing temperature of 1300 to 1650 ° C. and a firing time of 2.0 to 8.0 hours.

【0024】次に、前記焼成により得られた焼結体を純
水中で十分洗浄した後、セラミックスの表面が平行にな
るように、また共振周波数が3GHzになるような形状
に研磨し、電気的特性を測定する。
Next, the sintered body obtained by the above-mentioned firing was thoroughly washed in pure water, and then polished so that the surfaces of the ceramics were parallel to each other and the resonance frequency was 3 GHz, and the sintered body was electrolyzed. To measure physical characteristics.

【0025】なお、本実施例では原料として酸化物を使
用しているが、原料は酸化物に限られず、炭酸塩、シュ
ウ酸塩、硝酸塩などで焼成後に目的の酸化物が得られる
ものならばどのようなものでも良い。また、製造された
誘電体磁器組成物の組成については、焼成により得られ
た誘電体磁器組成物を酸に溶解させた後、ICP発光分
光分析を行うことにより焼結体の組成を確認した。さら
に焼結体の構造を観察するために、焼結体を破断した後
にエッチング処理を行い、走査型電子顕微鏡(SEM)
でその表面を観察したところ、実施例に係る誘電体磁器
組成物はほぼ均一粒径の粒子により形成された緻密な構
造を有することがわかった。
Although an oxide is used as a raw material in the present embodiment, the raw material is not limited to the oxide, and any carbonate, oxalate, nitrate or the like can be used as long as the target oxide can be obtained after firing. Anything is fine. Regarding the composition of the produced dielectric porcelain composition, the composition of the sintered body was confirmed by dissolving the dielectric porcelain composition obtained by firing in an acid and then performing ICP emission spectral analysis. Further, in order to observe the structure of the sintered body, an etching process was performed after the sintered body was broken, and a scanning electron microscope (SEM) was used.
As a result of observing the surface thereof, it was found that the dielectric ceramic composition according to the example had a dense structure formed of particles having a substantially uniform particle size.

【0026】次に、実施例に係る誘電体磁器組成物の電
気的特性の測定方法を説明する。
Next, a method for measuring the electrical characteristics of the dielectric ceramic composition according to the example will be described.

【0027】電気特性については、共振周波数、比誘電
率(εr )、及びQ値をHakki −Coleman により提唱さ
れたThe Post Resonance Techniqueを利用することによ
り測定した。
The electrical characteristics were measured by using the resonance frequency, relative permittivity (ε r ), and Q value by using The Post Resonance Technique proposed by Hakki-Coleman.

【0028】図1(a)は、前記電気特性の測定に用い
られた装置を模式的に示した平面図であり、(b)は前
記装置の正面図である。
FIG. 1A is a plan view schematically showing an apparatus used for measuring the electric characteristics, and FIG. 1B is a front view of the apparatus.

【0029】測定の対象である試料(誘電体磁器組成
物)11は2枚の平行な金属板12で挟まれた状態で固
定されている。13は金属板を試料の上に乗せた状態で
安定させるための支柱である。
A sample (dielectric ceramic composition) 11 to be measured is fixed in a state of being sandwiched between two parallel metal plates 12. Reference numeral 13 is a column for stabilizing the metal plate placed on the sample.

【0030】比誘電率測定の際には、ネットワークアナ
ライザーの一方のプローブ14より高周波を発振して周
波数特性を測定し、得られたTE01δモードの共振周
波数ピークと試料11の寸法より比誘電率(εr )を求
めた。また標準試料を用いて金属板12の表面比抵抗を
求め、この値から金属板12の誘電損失分を求め、全体
の誘電損失値から金属板12の誘電損失分を除き、試料
11のQ値を求めた。さらに、共振周波数の温度係数
(τf )については、前記共振周波数の測定雰囲気の温
度を−30〜+85℃に変化させて測定することにより
行った。
At the time of measuring the relative permittivity, a high frequency is oscillated from one probe 14 of the network analyzer to measure the frequency characteristic, and the relative permittivity (from the obtained resonance frequency peak of the TE01δ mode and the size of the sample 11 is measured ( ε r ) was obtained. Further, the surface resistivity of the metal plate 12 is calculated using a standard sample, the dielectric loss of the metal plate 12 is calculated from this value, the dielectric loss of the metal plate 12 is removed from the overall dielectric loss value, and the Q value of sample 11 is calculated. I asked. Further, the temperature coefficient (τ f ) of the resonance frequency was measured by changing the temperature of the atmosphere for measuring the resonance frequency from −30 to + 85 ° C.

【0031】測定のための試料は各実施例(組成)ごと
に50個製造し、それらの試料11について電気的特性
をそれぞれ測定し、平均値を算出した。その結果を表1
ー1〜表1ー3に示す。
Fifty samples for each example (composition) were manufactured for measurement, and the electrical characteristics of each sample 11 were measured, and the average value was calculated. The results are shown in Table 1.
-1 to Table 1-3.

【0032】なお比較例として、本発明の組成範囲外の
組成を有する誘電体磁器組成物を上記実施例と同様の条
件で製造し、また組成は本発明の範囲内であって130
0℃より低い温度や1650℃より高い温度に焼成温度
を設定して製造した誘電体磁器組成物についても、その
電気的特性を測定した。その結果も併せて表1ー1〜表
1ー3に示し、比較例には*印を付すものとする。なお
表中はBa(Mg1/ 3 Ta2/3 )O3 ・xBa(Sn
z Ti1-z )O3 +y(MnO+ZnO)の組成を有す
る誘電体磁器組成物を、はBa(Zn1/3 Ta2/3
3 ・xBa(Snz Ti1-z )O3 +y(MnO+Z
nO)の組成を有する誘電体磁器組成物をそれぞれ示し
ている。
As a comparative example, a dielectric ceramic composition having a composition outside the composition range of the present invention was produced under the same conditions as in the above-mentioned example, and the composition was within the range of the present invention.
The electrical characteristics of the dielectric ceramic composition produced by setting the firing temperature to a temperature lower than 0 ° C. or a temperature higher than 1650 ° C. were also measured. The results are also shown in Tables 1-1 to 1-3, and the comparative examples are marked with *. Note in the tables Ba (Mg 1/3 Ta 2/3 ) O 3 · xBa (Sn
A dielectric ceramic composition having a composition of z Ti 1-z ) O 3 + y (MnO + ZnO) is represented by Ba (Zn 1/3 Ta 2/3 ).
O 3 · xBa (Sn z Ti 1-z) O 3 + y (MnO + Z
The dielectric ceramic composition has a composition of nO).

【0033】[0033]

【表1ー1】 [Table 1-1]

【0034】[0034]

【表1ー2】 [Table 1-2]

【0035】[0035]

【表1ー3】 [Table 1-3]

【0036】表1ー1〜表1ー3の結果より明らかなよ
うに、実施例に係る誘電体磁器組成物では比誘電率(ε
r )が25〜38と高く、Q値が測定周波数3GHzで
10000以上と大きいために誘電損失が小さく、かつ
組成などを変化させることにより共振周波数の温度係数
(τf )を+150〜−150ppm/℃の範囲内で特
定の値に制御することができる。
As is clear from the results shown in Tables 1-1 to 1-3, the relative dielectric constant (ε
r ) is as high as 25 to 38, the Q value is as large as 10000 or more at the measurement frequency of 3 GHz, so that the dielectric loss is small and the temperature coefficient (τ f ) of the resonance frequency is +150 to −150 ppm / by changing the composition. It can be controlled to a specific value within the range of ° C.

【0037】また焼成温度を1300℃〜1650℃に
設定することにより上記の優れた電気的特性を有する誘
電体磁器組成物を製造することができる。
Further, by setting the firing temperature to 1300 ° C. to 1650 ° C., the dielectric ceramic composition having the above-mentioned excellent electrical characteristics can be produced.

【0038】一方比較例に係る誘電体磁器組成物で、x
の値が0.00であったり0.50を超えたもの、yの
値が0.05を超えたもの、zの値が0.20未満であ
ったり0.80を超えたものにおいては、Q値、比誘電
率(εr )、及び共振周波数の温度係数(τf )の少な
くとも一つの電気的特性が上記した範囲を満足せず、共
振器などとして使用するのが難しいものであることがわ
かった。
On the other hand, in the dielectric ceramic composition according to the comparative example, x
When the value of is 0.00 or more than 0.50, the value of y is more than 0.05, and the value of z is less than 0.20 or more than 0.80, The electrical characteristics of at least one of Q value, relative permittivity (ε r ) and temperature coefficient of resonance frequency (τ f ) do not satisfy the above range, and it is difficult to use as a resonator. I understood.

【0039】また、焼成温度が1300未満や1650
を超えたものについても、得られた誘電体磁器組成物の
電気的特性が同様に満足できるものではなかった。
The firing temperature is less than 1300 or 1650.
The electrical characteristics of the obtained dielectric ceramic composition were similarly unsatisfactory even for those exceeding the above range.

【0040】[0040]

【発明の効果】以上詳述したように、本発明に係る誘電
体磁器組成物にあっては、Ba((Mg/Zn)1/3
2/3 )O3 ・xBa(Snz Ti1-z )O3 +y(M
nO+ZnO)(式中、x、y、zはそれぞれ0.00
<x≦0.50、0.00≦y≦0.05、0.20≦
z≦0.80の範囲の値を示す。yは主成分Ba((M
g/Zn)1/3 Ta2/3 )O3 ・xBa(Snz Ti
1-z )O3 1モルに対するMnOおよび/またはZnO
のモル数を示す。)で表わされる組成であることによ
り、比誘電率(εr )が25〜38と高く、Q値が測定
周波数3GHzで10000以上と大きいために誘電損
失が小さく、かつ組成などを変化させることにより共振
周波数の温度係数(τf )を+150〜−150ppm
/℃の範囲内で特定の値に制御することが可能な誘電体
磁器組成物を提供することができる。
As described above in detail, in the dielectric ceramic composition according to the present invention, Ba ((Mg / Zn) 1/3 T
a 2/3 ) O 3 · xBa (Sn z Ti 1-z ) O 3 + y (M
nO + ZnO) (wherein x, y, and z are each 0.00)
<X ≦ 0.50, 0.00 ≦ y ≦ 0.05, 0.20 ≦
Values in the range of z ≦ 0.80 are shown. y is the main component Ba ((M
g / Zn) 1/3 Ta 2/3 ) O 3 · xBa (Sn z Ti
MnO and / or ZnO per 1 mol of 1-z ) O 3
The number of moles of ), The relative permittivity (ε r ) is as high as 25 to 38, and the Q value is as large as 10000 or more at the measurement frequency of 3 GHz, so that the dielectric loss is small and the composition etc. can be changed. Resonance frequency temperature coefficient (τ f ) +150 to −150 ppm
It is possible to provide a dielectric ceramic composition that can be controlled to a specific value within the range of / ° C.

【0041】また、このよう前記誘電体磁器組成物の特
性を利用することにより高周波用共振器、フィルタなど
を大幅に小形化することが可能となる。
Further, by utilizing the characteristics of the dielectric ceramic composition as described above, it becomes possible to greatly reduce the size of a high frequency resonator, a filter and the like.

【0042】また、本発明に係る誘電体磁器組成物の製
造方法にあっては、Ba(Mg1/3Ta2/3 )O3 ある
いはBa(Zn1/3 Ta2/3 )O3 の仮焼粉100モル
に対し、50モル以下の割合でBa(Snz Ti1-z
3 (ただし0.20≦z≦0.80)の仮焼粉を混合
し、さらに前記仮焼粉の混合物100モルに対し、Zn
OあるいはMnCO3 を5モル以下の割合で添加し、そ
の後大気中あるいは酸素雰囲気中で、1300〜165
0°Cで焼成するので、焼結体の平均結晶粒径が均一に
制御され、比誘電率(εr )が25〜38と高く、Q値
が測定周波数3GHzで10000以上と大きいために
誘電損失が小さく、かつ組成などを変化させることによ
り共振周波数の温度係数(τf )を+150〜−150
ppm/℃の範囲内で特定の値に制御された誘電体磁器
組成物を容易に製造することができる。
In the method for producing a dielectric ceramic composition according to the present invention, Ba (Mg 1/3 Ta 2/3 ) O 3 or Ba (Zn 1/3 Ta 2/3 ) O 3 is used. the calcined powder to 100 moles, at a ratio of 50 mol Ba (Sn z Ti 1-z )
A calcined powder of O 3 (however, 0.20 ≦ z ≦ 0.80) was mixed, and Zn was added to 100 mol of the mixture of the calcined powder.
O or MnCO 3 is added at a ratio of 5 mol or less, and then 1300 to 165 in air or oxygen atmosphere.
Since firing is performed at 0 ° C, the average crystal grain size of the sintered body is uniformly controlled, the relative permittivity (ε r ) is as high as 25 to 38, and the Q value is as large as 10000 or more at the measurement frequency of 3 GHz. The loss is small, and the temperature coefficient (τ f ) of the resonance frequency is +150 to −150 by changing the composition.
A dielectric ceramic composition controlled to a specific value within the range of ppm / ° C. can be easily manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は、実施例に係る誘電体磁器組成物の電
気特性の測定に用いられた装置を模式的に示した平面図
であり、(b)は前記装置の正面図である。
FIG. 1 (a) is a plan view schematically showing an apparatus used for measuring electrical characteristics of a dielectric ceramic composition according to an example, and FIG. 1 (b) is a front view of the apparatus. .

【符号の説明】[Explanation of symbols]

11 誘電体磁器組成物 11 Dielectric porcelain composition

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Ba((Mg/Zn)1/3 Ta2/3 )O
3 ・xBa(SnzTi1-z )O3 +y(MnO+Zn
O)(式中、x、y、zはそれぞれ0.00<x≦0.
50、0.00≦y≦0.05、0.20≦z≦0.8
0の範囲の値を示す。yは主成分Ba((Mg/Zn)
1/3 Ta2/3 )O3 ・xBa(SnzTi1-z )O3
モルに対するMnOおよび/またはZnOのモル数を示
す。)で表わされる組成であることを特徴とする誘電体
磁器組成物。
1. Ba ((Mg / Zn) 1/3 Ta 2/3 ) O
3 x Ba (Sn z Ti 1-z ) O 3 + y (MnO + Zn
O) (where x, y, and z are 0.00 <x ≦ 0.
50, 0.00 ≦ y ≦ 0.05, 0.20 ≦ z ≦ 0.8
A value in the range of 0 is shown. y is the main component Ba ((Mg / Zn))
1/3 Ta 2/3) O 3 · xBa (Sn z Ti 1-z) O 3 1
The number of moles of MnO and / or ZnO relative to the moles is shown. ) A dielectric ceramic composition having a composition represented by
【請求項2】 Ba(Mg1/3 Ta2/3 )O3 あるいは
Ba(Zn1/3 Ta2/3 )O3 の仮焼粉100モルに対
し、50モル以下の割合でBa(Snz Ti1-z )O3
(ただし0.20≦z≦0.80)の仮焼粉を混合し、
さらに前記仮焼粉の混合物100モルに対し、ZnOあ
るいはMnCO3 を5モル以下の割合で添加し、その後
大気中あるいは酸素雰囲気中で、1300〜1650°
Cで焼成することを特徴とする請求項1記載の誘電体磁
器組成物の製造方法。
2. Ba (Sn) at a ratio of 50 mol or less with respect to 100 mol of calcined powder of Ba (Mg 1/3 Ta 2/3 ) O 3 or Ba (Zn 1/3 Ta 2/3 ) O 3. z Ti 1-z ) O 3
(However, 0.20 ≦ z ≦ 0.80) is mixed with the calcined powder,
Further, ZnO or MnCO 3 was added at a ratio of 5 mol or less to 100 mol of the mixture of the calcined powder, and then 1300 to 1650 ° in the air or oxygen atmosphere.
The method for producing a dielectric ceramic composition according to claim 1, wherein the firing is performed at C.
JP6213871A 1994-09-07 1994-09-07 Dielectric ceramic composition and its manufacture Pending JPH0877828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6213871A JPH0877828A (en) 1994-09-07 1994-09-07 Dielectric ceramic composition and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6213871A JPH0877828A (en) 1994-09-07 1994-09-07 Dielectric ceramic composition and its manufacture

Publications (1)

Publication Number Publication Date
JPH0877828A true JPH0877828A (en) 1996-03-22

Family

ID=16646403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6213871A Pending JPH0877828A (en) 1994-09-07 1994-09-07 Dielectric ceramic composition and its manufacture

Country Status (1)

Country Link
JP (1) JPH0877828A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005097707A1 (en) * 2004-03-31 2005-10-20 Murata Manufacturing Co., Ltd. Translucent ceramic, process for producing the same, optical part and optical apparatus
CN1301230C (en) * 2005-08-26 2007-02-21 天津大学 Millimeter wave dielectric ceramic and its preparation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005097707A1 (en) * 2004-03-31 2005-10-20 Murata Manufacturing Co., Ltd. Translucent ceramic, process for producing the same, optical part and optical apparatus
CN1301230C (en) * 2005-08-26 2007-02-21 天津大学 Millimeter wave dielectric ceramic and its preparation method

Similar Documents

Publication Publication Date Title
JP3562454B2 (en) High frequency porcelain, dielectric antenna, support base, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
KR100415757B1 (en) Dielectric ceramic composition, method of preparing dielectric ceramic material, and dielectric resonator
US5733831A (en) Ceramic dielectrics and methods for forming them
JP3974723B2 (en) Dielectric porcelain manufacturing method
JP3559434B2 (en) Method for producing dielectric porcelain composition
JPH08133834A (en) Dielectric porcelain composition and its production
JPH0877828A (en) Dielectric ceramic composition and its manufacture
KR0173185B1 (en) Dielectric ceramic composition for high frequency
JPH11130544A (en) Dielectric ceramic composition and its production
JP4535589B2 (en) Dielectric porcelain and dielectric resonator using the same
JPWO2004106261A1 (en) High frequency porcelain composition, method for producing the same, and planar high frequency circuit
JP3214308B2 (en) Dielectric porcelain composition
JPH07235216A (en) Dielectric ceramic composition and its manufacture
JPH07215765A (en) Dielectric porcelain composition and its production
JP4959043B2 (en) Dielectric porcelain composition, method for producing the same, and dielectric resonator
JP2002187771A (en) Dielectric porcelain and dielectric resonator using the same
JP2977707B2 (en) High frequency dielectric ceramic composition
JPH06295619A (en) Dielectric porcelain and dielectric oscillator
JPH10324566A (en) Dielectric ceramic composition, its production and dielectric resonator and dielectric filter using that
JPH0729415A (en) Dielectric porcelain serving also as antenna
JP3830342B2 (en) Dielectric porcelain and dielectric resonator using the same
JP3359427B2 (en) High frequency dielectric ceramic composition
JP3330024B2 (en) High frequency dielectric ceramic composition
JP2005187240A (en) Dielectric ceramic composition and its production method
JP2002211976A (en) Microwave dielectric porcelain composition and dielectric resonator