JP3559434B2 - Method for producing dielectric porcelain composition - Google Patents

Method for producing dielectric porcelain composition Download PDF

Info

Publication number
JP3559434B2
JP3559434B2 JP26758597A JP26758597A JP3559434B2 JP 3559434 B2 JP3559434 B2 JP 3559434B2 JP 26758597 A JP26758597 A JP 26758597A JP 26758597 A JP26758597 A JP 26758597A JP 3559434 B2 JP3559434 B2 JP 3559434B2
Authority
JP
Japan
Prior art keywords
dielectric ceramic
ceramic composition
crystal
dielectric
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26758597A
Other languages
Japanese (ja)
Other versions
JPH11106255A (en
Inventor
善裕 大川
俊一 村川
敏幸 須恵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP26758597A priority Critical patent/JP3559434B2/en
Publication of JPH11106255A publication Critical patent/JPH11106255A/en
Application granted granted Critical
Publication of JP3559434B2 publication Critical patent/JP3559434B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、マイクロ波、ミリ波等の高周波領域において、εr、Q値が高く、τfをゼロ付近に安定に制御し、製造上εr、Q値およびτf特性のばらつきの小さい誘電体磁器組成物及びその製造方法に関するものであり、例えば、マイクロ波やミリ波などの高周波領域において使用される種々の共振器用材料やMIC用誘電体基板材料、誘電体導波路用材料や積層型セラミックコンデンサー等に用いることができる誘電体磁器組成物及びその製造方法に関する。
【0002】
【従来の技術】
誘電体磁器は、マイクロ波やミリ波等の高周波領域において、誘電体共振器、MIC用誘電体基板や導波路等に広く利用されている。そこに要求される特性として(1)誘電体中では波長が1/εr1/ に短縮されるので、小型化の要求に対して比誘電率が大きい事、(2)高周波での誘電損失が小さい事、すなわち高Qであること、(3)共振周波数の温度に対する変化が小さいこと、即ち、比誘電率の温度依存性が小さく且つ安定であること、以上の3特性が主として挙げられる。
【0003】
これらを満たすものとして、本件出願人は、特開平6−76633号に示されるLnAlCaTi系(Lnは稀土類元素)の誘電体磁器組成物を提案した。
【0004】
【発明が解決しようとする問題点】
ところで、このLnAlCaTi系誘電体磁器組成物では、比誘電率εrが34〜46と高く、Q値は20000以上と大きくできるものの、Q値が低いという課題があった。
【0005】
本発明は、上記の課題に鑑みて案出されたもので、高Q値である誘電体磁器組成物を提供するものである。
【0006】
【課題を解決するための手段】
本発明者等は上記課題に対し、検討を重ねた結果、Q値が高い誘電体磁器組成物の製造方法を提供できることを知見した。
【0007】
すなわち、金属元素として少なくとも稀土類元素(Ln)、Al、M(MはCaおよびSrのうち少なくとも1種以上)、Ba、及びTiを含有し、これらの金属元素のモル比による組成式をaLn・bAl・cMO・dBaO・eTiOと表したとき、前記a、b、c、d、eおよびxが
0.056≦a≦0.450
0.056≦b≦0.450
0.100≦c≦0.500
0≦d≦0.100
0.100<e<0.470
3≦x≦4
ただし、0.75≦b/a≦1.25
0.75≦e/(c+d)≦1.25
a+b+c+d+e=1
の範囲内にあり、相対密度95%以上、気孔率5%以下、平均結晶粒径1〜30μmであり、結晶相としてα−Alを含むことを特徴とする。さらに次の要件を満足すると、Q値が高くなることを知見した。
【0008】
第1に、α−Al量が、ペロブスカイト型構造の結晶相の量に比べて体積で1/100000以上1/10以下の誘電体磁器組成物であることを特徴とする。ペロブスカイト型構造の結晶相はLnAlO(X+3)/2 (ただし3≦x≦4)とMBaTiO(MはCaおよびSrのうち少なくとも1種以上)との固溶体を含むものからなることが望ましい。
【0009】
第2に、ペロブスカイト型構造の結晶相からなる結晶の粒界に存在するα−Alの体積が、ペロブスカイト型構造の結晶相からなる結晶の粒内に存在するα−Alの体積よりも多い誘電体磁器組成物であることを特徴とする。ペロブスカイト型構造の結晶相はLnAlO(X+3)/2 (ただし3≦x≦4)とMBaTiO(MはCaおよびSrのうち少なくとも1種以上)との固溶体を含むものからなることが望ましい。
【0010】
第3に、結晶相Ln(3≦x≦4)(Lnは稀土類元素)の量が、ペロブスカイト型構造の結晶相の量に比べて体積で1/10以下(ゼロを含む)である誘電体磁器組成物であることを特徴とする。ペロブスカイト型構造の結晶相はLnAlO(X+3)/2 (ただし3≦x≦4)とMBaTiO(MはCaおよびSrのうち少なくとも1種以上)との固溶体を含むものからなることが望ましい。
【0011】
ここで、本発明の製造方法で得られる誘電体磁器組成物とは、焼結体のことを意味している。
【0012】
また、本発明で得られる誘電体磁器組成物において、各成分のモル比a、b、c、d、eを上記の範囲に限定した理由は以下の通りである。
【0013】
即ち、0.056≦a≦0.450としたのは、a<0.056の場合はτfが正に大きくなり、τfの絶対値が30を越えてしまうからであり、a>0.450の場合はQ値が20000よりも低下するとともに、τfが負に大きくなり、その絶対値が30を越えてしまうからである。特に、0.078≦a≦0.400が好ましい。
【0014】
また、0.056≦b≦0.450としたのは、b<0.056の場合はQ値が30000よりも低下し、τfが正に大きくなり、b>0.450の場合はQ値が30000よりも低下し、τfが負に大きくなるためである。特に、0.078≦b≦0.400が好ましい。
【0015】
さらに、0.100≦c≦0.500としたのは、c<0.100の場合はQ値が30000よりも低下し、τfが負に大きくなり、c>0.500の場合はQ値が低下し、τfが正に大きくなり、その絶対値が30を越えてしまうからである。特に、0.150≦c≦0.450が好ましい。
【0016】
また、0≦d≦0.100としたのは、0.100<dであるとQ値が低下するからである。
【0017】
また、0.100<e<0.470としたのは、e≦0.100の場合はτfが負に大きくなり、e≧0.470の場合はQ値が30000よりも低下しτfが正に大きくなるからである。特に、0.150≦e≦0.420が好ましい。
【0018】
また、0.75≦b/a≦1.25としたのは、b/a<0.75であるとQ値が低下するからでり、、b/a>1.25であるとQ値が低下するからである。
【0019】
また、0.75≦e/(c+d)≦1.25としたのは、e/(c+d)<0.75であるとQ値が低下するからでり、e/(C+d)>1.25であるとQ値が低下するからである。
【0020】
なお、稀土類元素(Ln)はY、La、Ce、Pr、Sm、Eu、Gd、Dy、Er、Yb、Nd等がある。これらの稀土類元素の酸化物Ln(ただし3≦x≦4)としては、例えばY、La、CeO、Pr11、Sm、Eu、Gd、Dy、Er、Yb、Ndがある。これらの稀土類元素は、Y、La、Sm、Gd、Dy、Er、Yb、Ndが望ましく、La、Ndが特に望ましい。
【0021】
さらに、本発明で得られる誘電体磁器組成物は、前記組成物を主成分として、これにZnO、NiO、SnO、Co、MnCO、ZrO、WO、LiCO、RbCO、Sc、V、CuO、SiO、MgCO、Cr、B、GeO、Sb、Nb、Ta等を添加しても良い。これらは、その添加成分にもよるが、主成分100重量部に対して6重量部以下の割合で添加することができる。
【0022】
また、本発明で得られる誘電体磁器組成物において相対密度95%以上、気孔率5%以下、平均結晶粒径1〜30μmとしたのは高いQ値が得られ、これ以外の範囲ではεrおよびQ値が低下するからである。結晶粒径は焼結体内部を無作為に10箇所以上SEM写真を撮り、これらを平均して求める。そのためには写真100cmにあたり50〜200個程度の結晶が写る倍率が望ましい。
【0023】
本発明で得られる誘電体磁器組成物において結晶相としてα−Alを含むのはQ値を高くするためであり、α−Alが存在しないとQ値が低くなるからである。Q値を高くするためには、α−Al量が、ペロブスカイト型構造の結晶相の量に比べて体積で1/100000以上1/10以下であることが望ましい。1/100000より小さい場合や、1/10より大きい場合はQ値が低下する。Q値を高くするためには、α−Al量がペロブスカイト型構造の結晶相の量に比べて体積で1/10000以上1/30以下が特に望ましい。Q値を高くするためには、ペロブスカイト型構造の結晶相はLnAlO(X+3)/2(ただし3≦x≦4)とMBaTiOの固溶体(MはCaおよびSrのうち少なくとも1種以上)を含むものであることが望ましい。
【0024】
また、Q値を高くするためにはペロブスカイト型構造の結晶相からなる結晶の粒界に存在するα−Alの体積が、ペロブスカイト型構造の結晶相からなる結晶の粒内に存在するα−Alの体積よりも多いことが望ましい。Q値を高くするためにはペロブスカイト型構造の結晶相からなる結晶の粒界に存在するα−Alの体積が、ペロブスカイト型構造の結晶相からなる結晶の粒内に存在するα−Alの体積の3倍以上であることが特に望ましい。
【0025】
本発明で得られる誘電体磁器組成物において、結晶相Ln(3≦x≦4)(Lnは稀土類元素)の量が、ペロブスカイト型結晶相の量に比べて体積で1/10以下であることを特徴とするのは、高いQ値が得られるからであり、1/10より大きいとQ値が低下するからである。Q値を高くするためには、結晶相Ln(3≦x≦4)(Lnは稀土類元素)の量が、ペロブスカイト型結晶相の量に比べて体積で1/15以下が特に望ましい。またQ値を高くするためには、ペロブスカイト型結晶相はLnAlO(X+3)/2(ただし3≦x≦4)とMTiOの固溶体(MはCa、SrおよびBaのうち少なくとも1種以上)を含むものであることが望ましい。
【0026】
ペロブスカイト型構造の結晶相、α−Al、Ln(3≦x≦4)(Lnは稀土類元素)の存在は、焼結体内部をTEM(透過型電子顕微鏡)を用いてX線スペクトルを測定することにより確認する。また、ペロブスカイト型構造の結晶相、α−Al、Ln(3≦x≦4)(Lnは稀土類元素)の存在量の体積比較はTEMを用いて以下の方法により行う。
【0027】
焼結体内部を3箇所以上無作為に選び、結晶全体が写っている結晶の結晶相を結晶粒子毎に同定する。TEMの倍率は写真100cm当たり、結晶全体が写っている結晶が10〜50個程度となる様にする。TEM写真に含まれる面積を同じ結晶相毎に合計し、これらの面積比を便宜的に体積比とする。また、結晶粒内、粒界に存在するα−Alの体積比も同様にして求める。
【0028】
本発明の誘電体磁器組成物を得るためには、以下の製造方法により製造することが必要である。
【0029】
出発原料として稀土類元素(Ln)、Al、M(MはCaおよびSrのうち少なくとも1種以上)、Ba及びTiの酸化物、炭酸塩、窒化物、炭化物等の焼成により酸化物に変化する原料を用い、これらの金属元素のモル比による組成式をaLn・bAl・cMO・dBaO・eTiOと表したとき、前記a、b、c、d、eおよびxが
0.056≦a≦0.450
0.056≦b≦0.450
0.100≦c≦0.500
0≦d≦0.100
0.100<e<0.470
3≦x≦4
ただし、0.75≦b/a≦1.25
0.75≦e/(c+d)≦1.25
a+b+c+d+e=1
の範囲内にある原料を粉砕して、メジアン粒子径0.4〜2.2μmとし、この粉砕物を1000〜1300℃で1〜10時間仮焼後、メジアン粒子径0.4〜2.2μmに湿式粉砕する。このスラリ−に熱分解温度100〜800℃の有機バインダ−を2〜10重量%添加後造粒し、相対密度45〜70%にて任意形状に成形、有機バインダ−に含まれる炭素を熱処理により95%以上除去し、昇温速度5〜300℃/時間で昇温、相対密度95%以上に達する温度にて1450℃〜1650℃で1時間〜20時間保持し、最高温度から700℃までを降温速度5〜300℃/時間で降温することにより、α−Al結晶相を生成させて本発明の誘電体磁器組成物を得ることができる。望ましくは上記と同様にして仮焼、粉砕後得られたスラリ−に、分散剤例えばポリアクリル酸アンモニウム等を添加して、等電位点よりもpHを1以上変更してスラリ−の電位を変更した後、鋳込み成形等の成形型中でスラリー粒子を沈降させる方法で成形する。分散剤は飽和吸着量の2〜10倍添加することが望ましい。鋳込み成形後上記と同様にしてバインダ−除去、焼成を行い、本発明の誘電体磁器組成物を得ることができる。
【0030】
本発明の誘電体磁器組成物の製造方法は、例えば以下の通りである。出発原料として、高純度の酸化ネオジウム、酸化アルミニウム、炭酸カルシウム、炭酸ストロンチウム、炭酸バリウム、酸化チタンの各粉末を用いて、所望の割合となるように秤量後、純水を加え、混合原料のメジアン粒子径が0.4〜2.2μmとなるまで1〜100時間、ジルコニアボール等を使用したミルにより湿式混合・粉砕を行う。この混合物を乾燥後、1000〜1300℃で1〜10時間仮焼する。こうして得られた仮焼物をメジアン粒子径が0.4〜2.2μmとなるまで1〜100時間、ジルコニアボール等を使用したミルにより湿式混合・粉砕を行う。さらに2〜10重量%の熱分解温度100〜800℃の有機バインダーを加えてから脱水し、その後造粒または整粒する。
【0032】
または、上記と同様に仮焼、粉砕後のスラリ−にポリアクリル酸アンモニウム等を添加して0.1〜2mg/m吸着させ、電位点よりもpHを3〜4高くした後、鋳込み成形等の成形型内でスラリー中の粒子を沈降させる方法で成形する。その後上記と同様にしてバインダ−の除去、焼成を行い、本発明の誘電体磁器組成物を得ることができる。
【0033】
なお、本発明の製造方法の例として、酸化ネオジウムを稀土類酸化物のうち少なくともひとつ以上に置き換えてもよい。
【0034】
また、成形型内でスラリー中の粒子を沈降させる成形方法としては、上述した鋳込み成形や遠心成形等を行うことができる。
【0035】
【参考例1】
誘電体磁器組成物の組成を種々変更しQ値を確認した。出発原料として高純度の酸化ネオジウム(Nd)、酸化アルミニウム(Al)、炭酸カルシウム(CaCO)、酸化チタン(TiO)の各粉末を用いてそれらを表1のモル比の割合となるように秤量後、純水を加え、混合原料のメジアン粒径が2.2μm以下となるまで、ボールミルにより約20時間湿式混合、粉砕、乾燥後、1200℃で2時間仮焼した。
【0036】
この仮焼物のメジアン粒径が2.2μm以下となるまで、ミルにより約20時間湿式混合、粉砕を行った。さらに得られたスラリ−に熱分解温度が150〜500℃であるバインダ−を5重量%加えてからスプレ−ドライにより整粒した。得られた整粒粉体を相対密度45〜70%となる圧力で円板状に成形し、空気中500℃で3時間熱処理して有機バインダ−に含まれる炭素分を95%以上除去し、昇温速度50℃/時間で昇温、1450〜1650℃の温度で2時間保持、最高温度から800℃まで降温速度10℃/時間で降温、800℃から室温まで100℃/時間で降温して焼成した。
【0037】
得られた焼結体の円板部を平面研磨し、アセトン中で超音波洗浄し、120℃で1時間乾燥した後、円柱共振器法により測定周波数3.5〜4.5GHzで比誘電率εr、Q値、共振周波数の温度係数τfを個測定した。Q値は、マイクロ波誘電体において一般に成立するQ値×測定周波数f=−定の関係から1GHzでのQ値に換算した。共振周波数の温度係数τfは、−40〜85℃の範囲で測定した。また、相対密度、気孔率を測定した。
【0038】
ペロブスカイト型構造の結晶相、α−Al、Ndの存在は、焼結体内部をTEM(透過型電子顕微鏡)を用いてX線スペクトルを測定することにより確認した。また、ペロブスカイト型構造の結晶相、α−Al、Ndの存在量の体積比較はTEMを用いて以下の方法により行った。
【0039】
焼結体内部を10箇所以上無作為に選び、結晶粒子全体が写っている結晶粒子の結晶相を結晶粒子毎に同定した。TEMの倍率は、写真100cm当たり結晶が40個程度写る様にした。TEM写真に含まれる面積を同じ結晶相毎に合計し、これらの面積比を便宜的に体積比とした。また、結晶粒内、粒界に存在するα−Alの体積比も同様に求めた。
【0040】
この結果を表1のNo.1〜17に示す。表1から明らかなように、各成分の組成比が本発明の範囲内のもの(No.1〜17)は、比誘電率εrが31以上、Q値が30000(1GHzにおいて)以上の優れた誘電特性が得られた。また、ペロブスカイト型構造の結晶相はNdAlOとMBaTiO(MはCaおよびSrのうち少なくとも1種以上)との固溶体であった。
【0041】
一方、本発明の範囲外の試料(No.18〜39)は、Q値が低いか、またはτfの絶対値が大きく30を越えた。
【0042】
【表1】

Figure 0003559434
【0043】
【参考例2】
次に、上記と同様にして出発原料として高純度の稀土類酸化物(Ln(ただし3≦x≦4)、具体的にはY、La、CeO、Pr11、Sm、Eu、Gd、Dy、Er、Yb、Nd)、酸化アルミニウム(Al)、炭酸カルシウム(CaCO)、炭酸ストロンチウム(SrCO)、炭酸バリウム(BaCO)、酸化チタン(TiO)の各粉末を用いてそれらを表2のモル比の割合となるように秤量後、純水を加え、混合原料のメジアン粒径が2.2μm以下となるまで、ボールミルにより約20時間湿式混合、粉砕、乾燥後、1200℃で2時間仮焼した。
【0044】
この仮焼物のメジアン粒径が2.2μm以下となるまで、ミルにより約20時間湿式混合、粉砕を行った。さらに得られたスラリ−に熱分解温度が150〜500℃であるバインダ−を5重量%加えてからスプレ−ドライにより整粒した。得られた整粒粉体を相対密度45〜70%となる圧力で円板状に成形し、空気中500℃で3時間熱処理して有機バインダ−に含まれる炭素分を95%以上除去し、昇温速度50℃/時間で昇温、1450〜1650℃の温度で2時間保持、最高温度から800℃まで降温速度10℃/時間で降温、800℃から室温まで100℃/時間で降温して焼成した。
【0045】
得られた焼結体の円板部を平面研磨し、アセトン中で超音波洗浄し、120℃で1時間乾燥した後、円柱共振器法により測定周波数3.5〜4.5GHzで比誘電率εr、Q値、共振周波数の温度係数τfを個測定した。Q値は、マイクロ波誘電体において一般に成立するQ値×測定周波数f=−定の関係から1GHzでのQ値に換算した。共振周波数の温度係数τfは、−40〜85℃の範囲で測定した。また、相対密度、気孔率を測定した。
【0046】
ペロブスカイト型構造の結晶相、α−Al、Ln(3≦x≦4)(Lnは稀土類元素)の存在は、焼結体内部をTEM(透過型電子顕微鏡)を用いてX線スペクトルを測定することにより確認した。また、ペロブスカイト型構造の結晶相、α−Al、Ln(3≦x≦4)(Lnは稀土類元素)の存在量の体積比較はTEMを用いて以下の方法により行った。
【0047】
焼結体内部を10箇所無作為に選び、結晶粒子全体が写っている結晶粒子の結晶相を結晶粒子毎に同定した。TEMの倍率は、写真100cm当たり結晶が40個程度写る様にした。TEM写真に含まれる面積を同じ結晶相毎に合計し、これらの面積比を便宜的に体積比とした
この結果を表2のNo.40〜90に示す。表2から明らかなように、各成分の組成比が本発明の範囲内のもの(No.40〜90)は、比誘電率εrが31以上、Q値が30000(1GHzにおいて)以上の優れた誘電特性が得られた。また、ペロブスカイト型構造の結晶相はLnAlO(X+3)/2 (ただし3≦x≦4)とMBaTiO(MはCaおよびSrのうち少なくとも1種以上)との固溶体であった。
【0048】
一方、本発明の範囲外の試料(No.91〜112)は、Q値が低いか、またはτfの絶対値が大きく30を越えた。
【0049】
【表2】
Figure 0003559434
【0050】
【表3】
Figure 0003559434
【0051】
【実施例1】
さらに、参考例1、2と同様に出発原料として高純度の稀土類酸化物(Ln(ただし3≦x≦4)、具体的にはY、La、CeO、Pr11、Sm、Eu、Gd、Dy、Er、Yb、Nd)、酸化アルミニウム(Al)、炭酸カルシウム(CaCO)、炭酸ストロンチウム(SrCO)、炭酸バリウム(BaCO)、酸化チタン(TiO)の各粉末を用いてそれらを表2、3のモル比の割合となるように秤量後、純水を加え、混合原料のメジアン粒径が2.2μm以下となるまで、ボールミルにより約20時間湿式混合、粉砕、乾燥後、1200℃で2時間仮焼した。
【0052】
この仮焼物のメジアン粒径が2.2μm以下となるまで、ミルにより約20時間湿式混合、粉砕を行った。得られたスラリ−に、分散剤としてポリアクリル酸アンモニウムを添加して、等電位点よりもpHを2〜5高くしてスラリ−の電位を変更した後、鋳込み成形した。ポリアクリル酸アンモニウムの添加量は飽和吸着量の2〜10倍であった。鋳込み成形後実施例1、2と同様にしてバインダ−除去、焼成等を行い、同様の評価を行った。
【0053】
その結果、実施例1、2と同様に1GHz換算において30000以上のQ値が得られた。
【0054】
一方、分散剤を添加せず、電位、pHの調整をしなかった場合はQ値が20000よりも低くなった。
【0055】
【発明の効果】
以上詳述した通り、本発明によれば、高周波領域において高い誘電率及び高いQ値を得る事ができる。これにより、マイクロ波やミリ波領域において使用される共振器用材料やMIC用誘電体基板材料、誘電体導波線路、誘電体アンテナ、その他の各種電子部品等に充分適用することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a dielectric ceramic composition which has a high εr and Q value and stably controls τf near zero in a high frequency region such as microwaves and millimeter waves, and has a small variation in εr, Q value and τf characteristics in manufacturing. For example, the present invention relates to various resonator materials, MIC dielectric substrate materials, dielectric waveguide materials, multilayer ceramic capacitors, and the like used in high-frequency regions such as microwaves and millimeter waves. The present invention relates to a dielectric ceramic composition that can be used and a method for producing the same.
[0002]
[Prior art]
2. Description of the Related Art Dielectric ceramics are widely used in dielectric resonators, MIC dielectric substrates, waveguides, and the like in high-frequency regions such as microwaves and millimeter waves. The required characteristics are (1) the wavelength is reduced to 1 / εr1 / 2 in the dielectric, so that the relative dielectric constant is large for the demand for miniaturization, and (2) the dielectric loss at high frequencies is reduced. The three main characteristics are as follows: small, that is, high Q; and (3) small change in resonance frequency with respect to temperature, that is, small and stable temperature dependence of relative permittivity.
[0003]
In order to satisfy these requirements, the present applicant has proposed an LnAlCaTi-based (Ln is a rare earth element) dielectric ceramic composition disclosed in JP-A-6-76633.
[0004]
[Problems to be solved by the invention]
By the way, this LnAlCaTi-based dielectric porcelain composition has a problem that the relative dielectric constant εr is as high as 34 to 46 and the Q value can be increased to 20,000 or more, but the Q value is low.
[0005]
The present invention has been devised in view of the above problems, and provides a dielectric ceramic composition having a high Q value.
[0006]
[Means for Solving the Problems]
The present inventors have studied the above problem and found that a method for producing a dielectric ceramic composition having a high Q value can be provided.
[0007]
That is, at least a rare earth element (Ln), Al, M (M is at least one of Ca and Sr), Ba, and Ti are contained as metal elements, and a composition formula based on a molar ratio of these metal elements is aLn When represented as 2 O X .bAl 2 O 3 .cMO.dBaO.eTiO 2 , the a, b, c, d, e and x are 0.056 ≦ a ≦ 0.450.
0.056 ≦ b ≦ 0.450
0.100 ≦ c ≦ 0.500
0 ≦ d ≦ 0.100
0.100 <e <0.470
3 ≦ x ≦ 4
However, 0.75 ≦ b / a ≦ 1.25
0.75 ≦ e / (c + d) ≦ 1.25
a + b + c + d + e = 1
Wherein the relative density is 95% or more, the porosity is 5% or less, the average crystal grain size is 1 to 30 μm, and α-Al 2 O 3 is contained as a crystal phase. Further, it has been found that when the following requirements are satisfied, the Q value increases.
[0008]
Firstly, the dielectric ceramic composition is characterized in that the amount of α-Al 2 O 3 is from 1/100000 to 1/10 by volume as compared with the amount of the crystal phase having a perovskite structure. It is desirable that the crystal phase having a perovskite structure contains a solid solution of LnAlO (X + 3) / 2 (where 3 ≦ x ≦ 4) and MBaTiO 3 (M is at least one of Ca and Sr).
[0009]
Second, the volume of α-Al 2 O 3 present at the grain boundary of the crystal composed of the perovskite-type crystal phase is changed to the value of α-Al 2 O 3 existing within the crystal grains composed of the perovskite-type crystal phase. Characterized in that it is a dielectric porcelain composition larger than the volume of the dielectric ceramic composition. It is desirable that the crystal phase having a perovskite structure contains a solid solution of LnAlO (X + 3) / 2 (where 3 ≦ x ≦ 4) and MBaTiO 3 (M is at least one of Ca and Sr).
[0010]
Third, the amount of the crystalline phase Ln 2 O X (3 ≦ x ≦ 4) (Ln is a rare earth element) is 1/10 or less (including zero) by volume as compared with the amount of the crystalline phase having a perovskite structure. Wherein the dielectric ceramic composition is It is desirable that the crystal phase having a perovskite structure contains a solid solution of LnAlO (X + 3) / 2 (where 3 ≦ x ≦ 4) and MBaTiO 3 (M is at least one of Ca and Sr).
[0011]
Here, the dielectric ceramic composition obtained by the production method of the present invention means a sintered body.
[0012]
The reason why the molar ratios a, b, c, d, and e of the respective components in the dielectric ceramic composition obtained by the present invention are limited to the above ranges is as follows.
[0013]
That is, 0.056 ≦ a ≦ 0.450 is set because, when a <0.056, τf becomes positive and the absolute value of τf exceeds 30, and a> 0.450. In this case, the Q value is lower than 20000, τf is negatively large, and its absolute value exceeds 30. In particular, 0.078 ≦ a ≦ 0.400 is preferable.
[0014]
The reason for setting 0.056 ≦ b ≦ 0.450 is that when b <0.056, the Q value is lower than 30,000, τf becomes positive, and when b> 0.450, the Q value is Is lower than 30,000 and τf becomes negatively large. In particular, it is preferable that 0.078 ≦ b ≦ 0.400.
[0015]
Further, the reason for setting 0.100 ≦ c ≦ 0.500 is that when c <0.100, the Q value becomes lower than 30,000, τf becomes larger negatively, and when c> 0.500, the Q value becomes Is decreased, and τf becomes large positively, and its absolute value exceeds 30. In particular, it is preferable that 0.150 ≦ c ≦ 0.450.
[0016]
The reason why 0 ≦ d ≦ 0.100 is that the Q value decreases when 0.100 <d.
[0017]
Also, the reason for setting 0.100 <e <0.470 is that when e ≦ 0.100, τf becomes large negatively, and when e ≧ 0.470, the Q value becomes lower than 30,000 and τf becomes positive. Because it becomes larger. In particular, it is preferable that 0.150 ≦ e ≦ 0.420.
[0018]
The reason that 0.75 ≦ b / a ≦ 1.25 is satisfied is that the Q value decreases when b / a <0.75, and the Q value decreases when b / a> 1.25. Is reduced.
[0019]
Further, the reason that 0.75 ≦ e / (c + d) ≦ 1.25 is satisfied is that if e / (c + d) <0.75, the Q value decreases, and e / (C + d)> 1.25. The reason is that the Q value decreases when.
[0020]
The rare earth elements (Ln) include Y, La, Ce, Pr, Sm, Eu, Gd, Dy, Er, Yb, Nd and the like. Examples of these rare earth element oxides Ln 2 O X (3 ≦ x ≦ 4) include Y 2 O 3 , La 2 O 3 , CeO 2 , Pr 6 O 11 , Sm 2 O 3 , and Eu 2 O. 3, there is Gd 2 O 3, Dy 2 O 3, Er 2 O 3, Yb 2 O 3, Nd 2 O 3. These rare earth elements are preferably Y, La, Sm, Gd, Dy, Er, Yb, and Nd, and particularly preferably La and Nd.
[0021]
Furthermore, the dielectric porcelain composition obtained by the present invention comprises, as a main component, the above-mentioned composition, and ZnO, NiO, SnO 2 , Co 3 O 4 , MnCO 3 , ZrO 2 , WO 3 , LiCO 3 , Rb 2 CO 3 , Sc 2 O 3 , V 2 O 5 , CuO, SiO 2 , MgCO 3 , Cr 2 O 3 , B 2 O 3 , GeO 2 , Sb 2 O 5 , Nb 2 O 5 , Ta 2 O 5, etc. It may be added. These can be added at a ratio of 6 parts by weight or less based on 100 parts by weight of the main component, depending on the added components.
[0022]
In the dielectric porcelain composition obtained by the present invention, the relative density of 95% or more, the porosity of 5% or less, and the average crystal grain size of 1 to 30 μm provide a high Q value. This is because the Q value decreases. The crystal grain size is determined by taking SEM photographs at 10 or more locations inside the sintered body at random and averaging these. For that purpose, it is desirable that the magnification is such that about 50 to 200 crystals per 100 cm 2 of a photograph are captured.
[0023]
The reason that the dielectric ceramic composition obtained in the present invention contains α-Al 2 O 3 as a crystal phase is to increase the Q value, and the Q value is reduced when α-Al 2 O 3 is not present. is there. In order to increase the Q value, the amount of α-Al 2 O 3 is desirably from 1/10000 to 1/10 by volume as compared with the amount of the crystalline phase having a perovskite structure. If it is smaller than 1/100000 or larger than 1/10, the Q value decreases. In order to increase the Q value, it is particularly desirable that the amount of α-Al 2 O 3 is 1/10000 to 1/30 by volume as compared with the amount of the crystal phase having the perovskite structure. In order to increase the Q value, the crystal phase of the perovskite structure includes LnAlO (X + 3) / 2 (where 3 ≦ x ≦ 4) and a solid solution of MBaTiO 3 (M is at least one of Ca and Sr). Is desirable.
[0024]
Further, in order to increase the Q value, the volume of α-Al 2 O 3 present at the grain boundary of the crystal composed of the crystal phase having the perovskite structure exists in the crystal grains composed of the crystal phase having the perovskite structure. It is desirable that the volume is larger than the volume of α-Al 2 O 3 . In order to increase the Q value, the volume of α-Al 2 O 3 present at the grain boundary of the crystal composed of the perovskite-type crystal phase is changed to the value of α-Al 2 O 3 present in the crystal grains composed of the perovskite-type crystal phase. It is particularly desirable that the volume is at least three times the volume of Al 2 O 3 .
[0025]
In the dielectric ceramic composition obtained by the present invention, the amount of the crystal phase Ln 2 O X (3 ≦ x ≦ 4) (Ln is a rare earth element) is 1/10 by volume as compared with the amount of the perovskite type crystal phase. The reason for being the following is that a high Q value is obtained, and if it is larger than 1/10, the Q value decreases. In order to increase the Q value, the amount of the crystal phase Ln 2 O X (3 ≦ x ≦ 4) (Ln is a rare earth element) is preferably 1/15 or less in volume compared to the amount of the perovskite type crystal phase. desirable. Further, in order to increase the Q value, the perovskite-type crystal phase is made of a solid solution of LnAlO (X + 3) / 2 (3 ≦ x ≦ 4) and MTiO 3 (M is at least one of Ca, Sr and Ba). It is desirable to include it.
[0026]
Crystal phase of a perovskite-type structure, the presence of α-Al 2 O 3, Ln 2 O X (3 ≦ x ≦ 4) (Ln is rare earth element) is used inside the sintered body TEM (transmission electron microscope) By confirming the X-ray spectrum. Further, the volume comparison of the abundance of the crystal phase having a perovskite structure, α-Al 2 O 3 , and Ln 2 O X (3 ≦ x ≦ 4) (Ln is a rare earth element) is performed by the following method using TEM. .
[0027]
The inside of the sintered body is randomly selected at three or more places, and the crystal phase of the crystal in which the entire crystal is captured is identified for each crystal particle. The magnification of the TEM is set so that about 10 to 50 crystals in which the entire crystal is taken per 100 cm 2 of the photograph. The areas included in the TEM photograph are totaled for each same crystal phase, and the area ratio of these areas is referred to as a volume ratio for convenience. Further, the volume ratio of α-Al 2 O 3 present in the crystal grains and at the grain boundaries is determined in the same manner.
[0028]
In order to obtain the dielectric porcelain composition of the present invention, it is necessary to produce it by the following production method.
[0029]
As starting materials, rare earth elements (Ln), Al, M (M is at least one of Ca and Sr), Ba and Ti oxides, carbonates, nitrides, carbides, etc., are converted to oxides by firing. When a raw material is used and the composition formula based on the molar ratio of these metal elements is expressed as aLn 2 O X .bAl 2 O 3 .cMO.dBaO.eTiO 2 , a, b, c, d, e, and x are 0. 0.056 ≦ a ≦ 0.450
0.056 ≦ b ≦ 0.450
0.100 ≦ c ≦ 0.500
0 ≦ d ≦ 0.100
0.100 <e <0.470
3 ≦ x ≦ 4
However, 0.75 ≦ b / a ≦ 1.25
0.75 ≦ e / (c + d) ≦ 1.25
a + b + c + d + e = 1
Is crushed to a median particle diameter of 0.4 to 2.2 μm, and after calcination of the crushed material at 1000 to 1300 ° C. for 1 to 10 hours, a median particle diameter of 0.4 to 2.2 μm Wet grinding. After adding 2 to 10% by weight of an organic binder having a thermal decomposition temperature of 100 to 800 ° C. to the slurry, granulation is performed, and the slurry is formed into an arbitrary shape at a relative density of 45 to 70%, and carbon contained in the organic binder is subjected to heat treatment. 95% or more is removed, the temperature is raised at a rate of 5 to 300 ° C./hour, the temperature is maintained at 1450 ° C. to 1650 ° C. for 1 hour to 20 hours at a temperature at which the relative density reaches 95% or more. By lowering the temperature at a temperature lowering rate of 5 to 300 ° C./hour, an α-Al 2 O 3 crystal phase is generated, and the dielectric ceramic composition of the present invention can be obtained. Desirably, a dispersing agent such as ammonium polyacrylate is added to the slurry obtained after calcination and pulverization in the same manner as described above, and the pH is changed by one or more from the equipotential point to change the potential of the slurry. After that, molding is performed by a method of causing slurry particles to settle in a molding die such as casting. It is desirable to add the dispersant 2 to 10 times the saturated adsorption amount. After the casting, the binder is removed and baked in the same manner as described above to obtain the dielectric ceramic composition of the present invention.
[0030]
The method for producing the dielectric ceramic composition of the present invention is, for example, as follows. As starting materials, high-purity neodymium oxide, aluminum oxide, calcium carbonate, strontium carbonate, barium carbonate, and titanium oxide powders were weighed to a desired ratio, pure water was added, and the median of the mixed raw materials was obtained. Wet mixing / pulverization is performed by a mill using zirconia balls or the like for 1 to 100 hours until the particle diameter becomes 0.4 to 2.2 μm. After drying this mixture, it is calcined at 1000 to 1300 ° C. for 1 to 10 hours. The calcined product thus obtained is wet-mixed and pulverized by a mill using zirconia balls or the like for 1 to 100 hours until the median particle diameter becomes 0.4 to 2.2 μm. Further, 2 to 10% by weight of an organic binder having a thermal decomposition temperature of 100 to 800 ° C. is added, followed by dehydration, and then granulation or sizing.
[0032]
Alternatively, similarly to the above, the slurry after calcination and pulverization is added with ammonium polyacrylate or the like to adsorb 0.1 to 2 mg / m 2 , and the pH is raised 3 to 4 above the potential point, and then cast molding Molding is performed by a method in which particles in the slurry are settled in a mold such as the one described above. Thereafter, the binder is removed and baked in the same manner as above to obtain the dielectric ceramic composition of the present invention.
[0033]
In addition, as an example of the production method of the present invention, neodymium oxide may be replaced with at least one of rare earth oxides.
[0034]
In addition, as a molding method for causing the particles in the slurry to settle in the molding die, the above-described casting molding, centrifugal molding, and the like can be performed.
[0035]
[Reference Example 1]
The Q value was confirmed by variously changing the composition of the dielectric ceramic composition. Using high purity neodymium oxide (Nd 2 O 3 ), aluminum oxide (Al 2 O 3 ), calcium carbonate (CaCO 3 ), and titanium oxide (TiO 2 ) powders as starting materials, and using them in the molar ratio shown in Table 1. , And pure water was added. The mixture was wet-mixed with a ball mill for about 20 hours, pulverized and dried until the median particle diameter of the mixed raw material became 2.2 μm or less, and then calcined at 1200 ° C. for 2 hours. .
[0036]
The calcined product was wet-mixed and pulverized for about 20 hours by a mill until the median particle size became 2.2 μm or less. Further, 5% by weight of a binder having a thermal decomposition temperature of 150 to 500 ° C. was added to the obtained slurry, followed by spray-drying and sizing. The obtained sized powder is formed into a disk shape at a pressure that gives a relative density of 45 to 70%, and heat-treated in air at 500 ° C. for 3 hours to remove carbon content contained in the organic binder by 95% or more. The temperature is raised at a rate of 50 ° C./hour, maintained at a temperature of 1450 to 1650 ° C. for 2 hours, cooled from the maximum temperature to 800 ° C. at a rate of 10 ° C./hour, and lowered from 800 ° C. to room temperature at a rate of 100 ° C./hour. Fired.
[0037]
The disk portion of the obtained sintered body is polished in a plane, ultrasonically cleaned in acetone, dried at 120 ° C. for 1 hour, and then measured for relative dielectric constant at a measurement frequency of 3.5 to 4.5 GHz by a cylindrical resonator method. εr, Q value, and temperature coefficient τf of the resonance frequency were measured. The Q value was converted to a Q value at 1 GHz from a relation of Q value × measurement frequency f = −constant which generally holds in a microwave dielectric. The temperature coefficient τf of the resonance frequency was measured in the range of -40 to 85 ° C. Further, the relative density and the porosity were measured.
[0038]
The presence of the crystal phase having a perovskite structure, α-Al 2 O 3 and Nd 2 O 3 was confirmed by measuring the X-ray spectrum inside the sintered body using a TEM (transmission electron microscope). The volume comparison of the amounts of the perovskite-type crystal phase, α-Al 2 O 3 , and Nd 2 O 3 was performed using TEM by the following method.
[0039]
The inside of the sintered body was randomly selected at 10 or more places, and the crystal phase of the crystal particles in which the entire crystal particles were captured was identified for each crystal particle. The magnification of the TEM was such that about 40 crystals appeared per 100 cm 2 of the photograph. The areas included in the TEM photograph were totaled for each of the same crystal phases, and the area ratios thereof were defined as volume ratios for convenience. In addition, the volume ratio of α-Al 2 O 3 present in the crystal grains and at the grain boundaries was similarly determined.
[0040]
The results are shown in Table 1. 1 to 17. As is clear from Table 1, those having a composition ratio of each component within the range of the present invention (Nos. 1 to 17) have excellent relative dielectric constants εr of 31 or more and Q values of 30000 (at 1 GHz) or more. Dielectric properties were obtained. The crystal phase of the perovskite structure was a solid solution of NdAlO 3 and MBaTiO 3 (M is at least one of Ca and Sr).
[0041]
On the other hand, in the samples (Nos. 18 to 39) outside the range of the present invention, the Q value was low, or the absolute value of τf exceeded 30.
[0042]
[Table 1]
Figure 0003559434
[0043]
[Reference Example 2]
Next, a high-purity rare earth oxide (Ln 2 O X (3 ≦ x ≦ 4), specifically, Y 2 O 3 , La 2 O 3 , CeO 2 , Pr 6 O 11, Sm 2 O 3 , Eu 2 O 3, Gd 2 O 3, Dy 2 O 3, Er 2 O 3, Yb 2 O 3, Nd 2 O 3), aluminum oxide (Al 2 O 3), carbonate Powders of calcium (CaCO 3 ), strontium carbonate (SrCO 3 ), barium carbonate (BaCO 3 ), and titanium oxide (TiO 2 ) were weighed so as to have a molar ratio shown in Table 2, and then pure water was used. Was added, wet-mixed by a ball mill for about 20 hours, pulverized, dried, and calcined at 1200 ° C. for 2 hours until the median particle size of the mixed raw material became 2.2 μm or less.
[0044]
The calcined product was wet-mixed and pulverized for about 20 hours by a mill until the median particle size became 2.2 μm or less. Further, 5% by weight of a binder having a thermal decomposition temperature of 150 to 500 ° C. was added to the obtained slurry, followed by spray-drying and sizing. The obtained sized powder is formed into a disk shape at a pressure that gives a relative density of 45 to 70%, and heat-treated in air at 500 ° C. for 3 hours to remove carbon content contained in the organic binder by 95% or more. The temperature is raised at a rate of 50 ° C./hour, maintained at a temperature of 1450 to 1650 ° C. for 2 hours, cooled from the maximum temperature to 800 ° C. at a rate of 10 ° C./hour, and lowered from 800 ° C. to room temperature at a rate of 100 ° C./hour. Fired.
[0045]
The disk portion of the obtained sintered body is polished in a plane, ultrasonically cleaned in acetone, dried at 120 ° C. for 1 hour, and then measured for relative dielectric constant at a measurement frequency of 3.5 to 4.5 GHz by a cylindrical resonator method. εr, Q value, and temperature coefficient τf of the resonance frequency were measured. The Q value was converted to a Q value at 1 GHz from a relation of Q value × measurement frequency f = −constant which generally holds in a microwave dielectric. The temperature coefficient τf of the resonance frequency was measured in the range of -40 to 85 ° C. Further, the relative density and the porosity were measured.
[0046]
Crystal phase of a perovskite-type structure, the presence of α-Al 2 O 3, Ln 2 O X (3 ≦ x ≦ 4) (Ln is rare earth element) is used inside the sintered body TEM (transmission electron microscope) It was confirmed by measuring the X-ray spectrum. The volume comparison of the amount of the perovskite-type crystal phase, α-Al 2 O 3 , and Ln 2 O X (3 ≦ x ≦ 4) (Ln is a rare earth element) is performed by the following method using TEM. Was.
[0047]
The inside of the sintered body was randomly selected at 10 points, and the crystal phase of the crystal particle in which the entire crystal particle was captured was identified for each crystal particle. The magnification of the TEM was such that about 40 crystals appeared per 100 cm 2 of the photograph. The areas included in the TEM photographs were totaled for each same crystal phase, and the area ratios of these areas were defined as volume ratios for convenience. 40 to 90. As is clear from Table 2, the composition ratio of each component within the range of the present invention (No. 40 to 90) is excellent in that the relative dielectric constant εr is 31 or more and the Q value is 30000 (at 1 GHz) or more. Dielectric properties were obtained. The crystal phase of the perovskite structure was a solid solution of LnAlO (X + 3) / 2 (where 3 ≦ x ≦ 4) and MBaTiO 3 (M is at least one of Ca and Sr).
[0048]
On the other hand, samples (Nos. 91 to 112) out of the range of the present invention had a low Q value or a large absolute value of τf exceeding 30.
[0049]
[Table 2]
Figure 0003559434
[0050]
[Table 3]
Figure 0003559434
[0051]
Embodiment 1
Furthermore, as in Reference Examples 1 and 2, high-purity rare earth oxides (Ln 2 O X (3 ≦ x ≦ 4), specifically Y 2 O 3 , La 2 O 3 , CeO 2 , Pr 6 O 11, Sm 2 O 3, Eu 2 O 3, Gd 2 O 3, Dy 2 O 3, Er 2 O 3, Yb 2 O 3, Nd 2 O 3), aluminum oxide (Al 2 O 3) , Calcium carbonate (CaCO 3 ), strontium carbonate (SrCO 3 ), barium carbonate (BaCO 3 ), and titanium oxide (TiO 2 ) were weighed so as to have the molar ratios shown in Tables 2 and 3. Thereafter, pure water was added, and the mixture was wet-mixed, pulverized, and dried by a ball mill for about 20 hours until the median particle size of the mixed raw material became 2.2 μm or less, and then calcined at 1200 ° C. for 2 hours.
[0052]
The calcined product was wet-mixed and pulverized for about 20 hours by a mill until the median particle size became 2.2 μm or less. To the obtained slurry, ammonium polyacrylate was added as a dispersing agent, and the pH of the slurry was raised by 2 to 5 above the equipotential point to change the potential of the slurry, followed by casting. The addition amount of ammonium polyacrylate was 2 to 10 times the saturated adsorption amount. After casting, binder removal and firing were performed in the same manner as in Examples 1 and 2, and the same evaluation was performed.
[0053]
As a result, similarly to Examples 1 and 2, a Q value of 30,000 or more was obtained in 1 GHz conversion.
[0054]
On the other hand, when the dispersant was not added and the potential and pH were not adjusted, the Q value was lower than 20,000.
[0055]
【The invention's effect】
As described in detail above, according to the present invention, a high dielectric constant and a high Q value can be obtained in a high frequency region. As a result, the present invention can be sufficiently applied to resonator materials, MIC dielectric substrate materials, dielectric waveguides, dielectric antennas, and other various electronic components used in microwave and millimeter wave regions.

Claims (5)

金属元素として少なくとも稀土類元素(Ln)、Al、M(MはCaおよびSrのうち少なくとも1種以上)、Ba、及びTiを含有し、これらの金属元素のモル比による組成式をaLn・bAl・cMO・dBaO・eTiOと表したとき、前記a、b、c、d、eおよびxが
0.056≦a≦0.450
0.056≦b≦0.450
0.100≦c≦0.500
0≦d≦0.100
0.100<e<0.470
3≦x≦4
ただし、0.75≦b/a≦1.25
0.75≦e/(c+d)≦1.25
a+b+c+d+e=1
の範囲内にあり、相対密度95%以上、気孔率5%以下、平均結晶粒径1〜30μm、結晶相としてα−Alを含む誘電体磁器組成物の製造方法であって、仮焼、粉砕後のスラリーに分散剤を添加して、等電位点のpHよりもpHを1以上変更した後、上記スラリー中の粒子を成形型内で沈降させて成形する工程を有することを特徴とする誘電体磁器組成物の製造方法。
It contains at least rare earth elements (Ln), Al, M (M is at least one of Ca and Sr), Ba, and Ti as metal elements, and the composition formula based on the molar ratio of these metal elements is aLn 2 O X , bAl 2 O 3 .cMO.dBaO.eTiO 2 , wherein a, b, c, d, e, and x are 0.056 ≦ a ≦ 0.450.
0.056 ≦ b ≦ 0.450
0.100 ≦ c ≦ 0.500
0 ≦ d ≦ 0.100
0.100 <e <0.470
3 ≦ x ≦ 4
However, 0.75 ≦ b / a ≦ 1.25
0.75 ≦ e / (c + d) ≦ 1.25
a + b + c + d + e = 1
Wherein the relative density is 95% or more, the porosity is 5% or less, the average crystal grain size is 1 to 30 μm, and the dielectric ceramic composition contains α-Al 2 O 3 as a crystal phase. After the baking and pulverization, a dispersing agent is added to the slurry, the pH is changed by one or more from the pH at the equipotential point, and then the particles in the slurry are settled in a molding die to form. Of producing a dielectric porcelain composition.
α−Al量が、ペロブスカイト型構造の結晶相の量に比べて体積で1/100000以上1/10以下の誘電体磁器組成物を得ることを特徴とする請求項1記載の誘電体磁器組成物の製造方法。α-Al 2 O 3 amount, the dielectric according to claim 1, wherein the obtaining 1/100000 least 1/10 of the following dielectric ceramic composition by volume relative to the amount of the crystalline phase of the perovskite type structure A method for producing a porcelain composition. ペロブスカイト型構造の結晶相からなる結晶の粒界に存在するα−Alの体積が、ペロブスカイト型構造の結晶相からなる結晶の粒内に存在するα−Alの体積よりも多い誘電体磁器組成物を得ることを特徴とする請求項1または2記載の誘電体磁器組成物の製造方法。The volume of α-Al 2 O 3 present at the grain boundary of the crystal composed of the perovskite type crystal phase is larger than the volume of α-Al 2 O 3 existing within the crystal grains of the crystal composed of the perovskite type crystal. 3. The method for producing a dielectric ceramic composition according to claim 1, wherein a large amount of the dielectric ceramic composition is obtained. 結晶相Ln(3≦x≦4)(Lnは稀土類元素)の量が、ペロブスカイト型構造の結晶相の量に比べて体積で1/10以下である誘電体磁器組成物を得ることを特徴とする請求項1〜3何れかに記載の誘電体磁器組成物の製造方法。A dielectric ceramic composition is obtained in which the amount of the crystalline phase Ln 2 O X (3 ≦ x ≦ 4) (Ln is a rare earth element) is 1/10 or less in volume as compared with the amount of the perovskite type crystalline phase. The method for producing a dielectric ceramic composition according to any one of claims 1 to 3, wherein: ペロブスカイト型構造の結晶相がLnAlO(X+3)/2(ただし3≦x≦4)とMBaTiO(MはCaおよびSrのうち少なくとも1種以上)との固溶体を含む誘電体磁器組成物を得ることを特徴とする請求項1〜4何れかに記載の誘電体磁器組成物の製造方法。Obtaining a dielectric ceramic composition containing a solid solution of a perovskite type crystal phase of LnAlO (X + 3) / 2 (where 3 ≦ x ≦ 4) and MBaTiO 3 (M is at least one of Ca and Sr) The method for producing a dielectric ceramic composition according to any one of claims 1 to 4, wherein
JP26758597A 1997-09-30 1997-09-30 Method for producing dielectric porcelain composition Expired - Fee Related JP3559434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26758597A JP3559434B2 (en) 1997-09-30 1997-09-30 Method for producing dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26758597A JP3559434B2 (en) 1997-09-30 1997-09-30 Method for producing dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JPH11106255A JPH11106255A (en) 1999-04-20
JP3559434B2 true JP3559434B2 (en) 2004-09-02

Family

ID=17446816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26758597A Expired - Fee Related JP3559434B2 (en) 1997-09-30 1997-09-30 Method for producing dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JP3559434B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6503861B1 (en) * 1999-01-14 2003-01-07 Kyocera Corporation Dielectric ceramic composition, method of preparing dielectric ceramic material, and dielectric resonator
JP4959043B2 (en) * 1999-09-29 2012-06-20 京セラ株式会社 Dielectric porcelain composition, method for producing the same, and dielectric resonator
JP4699581B2 (en) * 1999-10-18 2011-06-15 日本特殊陶業株式会社 Microwave dielectric ceramic composition
JP3830342B2 (en) * 2000-06-26 2006-10-04 京セラ株式会社 Dielectric porcelain and dielectric resonator using the same
KR100729998B1 (en) 2000-05-30 2007-06-20 쿄세라 코포레이션 Dielectric porcelain, dielectric porcelain composition, method of manufacturing the same and dielectric resonator using the same
US6734126B2 (en) * 2000-10-30 2004-05-11 Sumitomo Special Metals Co., Ltd. Dielectric ceramic composition for microwave use
US6756335B2 (en) 2000-11-20 2004-06-29 Kyocera Corporation Dielectric porcelain and resonator using the same
JP2004143033A (en) 2002-08-30 2004-05-20 Murata Mfg Co Ltd Dielectric ceramic composition for high-frequency, dielectric resonator, dielectric filter, dielectric duplexer and communication apparatus
KR101118425B1 (en) * 2005-06-24 2012-03-06 히타치 긴조쿠 가부시키가이샤 Dielectric ceramic composition for electronic device
JP5349146B2 (en) * 2009-06-08 2013-11-20 京セラ株式会社 Dielectric ceramics and dielectric resonator
CN114426431B (en) * 2022-02-24 2023-02-24 中国科学院新疆理化技术研究所 Ordered oxygen-deficient perovskite layered structure thermosensitive ceramic material and preparation method thereof

Also Published As

Publication number Publication date
JPH11106255A (en) 1999-04-20

Similar Documents

Publication Publication Date Title
KR100415757B1 (en) Dielectric ceramic composition, method of preparing dielectric ceramic material, and dielectric resonator
JP3559434B2 (en) Method for producing dielectric porcelain composition
JP3974723B2 (en) Dielectric porcelain manufacturing method
KR20010109472A (en) Dielectric porcelain, dielectric porcelain composition, method of manufacturing the same and dielectric resonator using the same
JP2003238242A (en) Dielectric porcelain and dielectric resonator using the same
EP0727789A1 (en) Dielectric procelain composition and its manufacture
JPH08295561A (en) Dielectric porcelain composition
JP2902923B2 (en) High frequency dielectric ceramic composition
EP0540029B1 (en) Sintered ceramic Ba-Mg-W perowskite used as high-frequency resonator and dielectric substrate
US6051515A (en) Dielectric ceramics
JP3493316B2 (en) High frequency dielectric ceramic composition and dielectric resonator
JP4959043B2 (en) Dielectric porcelain composition, method for producing the same, and dielectric resonator
JPH11130544A (en) Dielectric ceramic composition and its production
JP3830342B2 (en) Dielectric porcelain and dielectric resonator using the same
JP3340019B2 (en) High frequency dielectric ceramic composition
JP2842756B2 (en) High frequency dielectric ceramic composition
JP2002187771A (en) Dielectric porcelain and dielectric resonator using the same
JP2835253B2 (en) High frequency dielectric ceramic composition and dielectric material
JP3340008B2 (en) High frequency dielectric ceramic composition
JP2887244B2 (en) High frequency dielectric ceramic composition
JP4753463B2 (en) Dielectric porcelain and dielectric resonator using the same
JP2003165772A (en) Dielectric material and method for producing dielectric material
JP3411170B2 (en) High frequency dielectric ceramic composition
JP3469986B2 (en) High frequency dielectric ceramic composition
JP5349146B2 (en) Dielectric ceramics and dielectric resonator

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees