JP5349146B2 - Dielectric ceramics and dielectric resonator - Google Patents

Dielectric ceramics and dielectric resonator Download PDF

Info

Publication number
JP5349146B2
JP5349146B2 JP2009136772A JP2009136772A JP5349146B2 JP 5349146 B2 JP5349146 B2 JP 5349146B2 JP 2009136772 A JP2009136772 A JP 2009136772A JP 2009136772 A JP2009136772 A JP 2009136772A JP 5349146 B2 JP5349146 B2 JP 5349146B2
Authority
JP
Japan
Prior art keywords
dielectric
catio
dielectric ceramic
value
temperature coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009136772A
Other languages
Japanese (ja)
Other versions
JP2010280550A (en
Inventor
諭史 豊田
誠一郎 平原
俊一 村川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2009136772A priority Critical patent/JP5349146B2/en
Publication of JP2010280550A publication Critical patent/JP2010280550A/en
Application granted granted Critical
Publication of JP5349146B2 publication Critical patent/JP5349146B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、マイクロ波および/またはミリ波等を含む高周波領域において、高い比誘電率εr(真空の誘電率εoとの比)および共振の先鋭度(品質係数)Q値を有する誘電体セラミックスおよび誘電体共振器に関する。   The present invention relates to a dielectric ceramic having a high relative dielectric constant εr (ratio to the dielectric constant εo of vacuum) and a sharpness of resonance (quality factor) Q value in a high frequency region including microwaves and / or millimeter waves, and the like. The present invention relates to a dielectric resonator.

携帯電話の中継基地局やBSアンテナなどには共振器が組み込まれている。その共振器の中核部には誘電体セラミックスが使用される。この誘電体セラミックスに求められる特性としては、比誘電率εr,誘電損失の逆数として求められるQ値,共振周波数の温度係数τfがある。携帯電話などの基地局やBSアンテナに使用される共振器の設計の違いから、誘電体セラミックスに求められる比誘電率も様々であり、特に比誘電率が45程度の誘電体セラミックスについて、高いQ値と共振周波数の温度係数τfの良好なものの要求が高まっていた。   A resonator is incorporated in a mobile phone relay base station or BS antenna. Dielectric ceramics are used at the core of the resonator. Characteristics required for this dielectric ceramic include a relative dielectric constant εr, a Q value obtained as an inverse of dielectric loss, and a temperature coefficient τf of a resonance frequency. Due to differences in the design of resonators used in base stations such as mobile phones and BS antennas, the dielectric constant required for dielectric ceramics varies, and in particular for dielectric ceramics having a relative dielectric constant of about 45, a high Q is required. The demand for a good value and a good temperature coefficient τf of the resonance frequency has increased.

このような比誘電率εrが45程度を示す誘電体セラミックスとして、特許文献1にはLn,Al,CaおよびTiを含有し、SrOおよび/またはBaOが添加されたもの(Lnは少なくとも1種類以上の希土類元素)が提案されている。   As such dielectric ceramics having a relative dielectric constant εr of about 45, Patent Document 1 contains Ln, Al, Ca and Ti, and SrO and / or BaO added (Ln is at least one kind or more) Rare earth elements) have been proposed.

特許第3274950号公報Japanese Patent No. 3274950

近年では、比誘電率εrが45程度を示す誘電体セラミックスにおいて、さらにQ値を向上させつつ、かつ共振周波数の温度係数を0ppm/℃に近づけたものの要求が高まっている。このような特性を有する誘電体セラミックスとして、特許文献1に記載されている希土類元素にLaを用いたLa−Al−Ca−Ti系のものが考えられるが、要求通りの誘電体セラミックスが得られていなかった。   In recent years, there has been an increasing demand for dielectric ceramics having a relative dielectric constant εr of about 45, with a further improvement in Q value and a temperature coefficient of resonance frequency approaching 0 ppm / ° C. As a dielectric ceramic having such characteristics, a La-Al-Ca-Ti system using La as a rare earth element described in Patent Document 1 can be considered, but a desired dielectric ceramic can be obtained. It wasn't.

本発明の目的は、La−Al−Ca−Ti系にBaOを適量添加して45近辺の比誘電率εrと高いQ値が得られ、かつ共振周波数の温度係数を0ppm/℃に近づけた誘電体セラミックスを得ること、ならびにこれを用いた共振器を得ることにある。   An object of the present invention is to add a suitable amount of BaO to a La—Al—Ca—Ti system to obtain a dielectric constant εr and a high Q value in the vicinity of 45, and a temperature coefficient of resonance frequency close to 0 ppm / ° C. It is to obtain a body ceramic and to obtain a resonator using this.

本発明の一形態に係る誘電体セラミックスは、組成式をαLa・βAl
γCaO・δTiO(ただし、3≦x≦4)と表した場合に、モル比α,β,γ,δが下記式を満足する成分100モル部に対して、バリウムの含有量が酸化物換算で0.001モル部以上0.009モル部以下であり、かつ単独のCaTiO結晶を含むことを特徴とする。
The dielectric ceramic according to one embodiment of the present invention has a composition formula of αLa 2 O x · βAl 2 O 3 ·
When expressed as γCaO · δTiO 2 (where 3 ≦ x ≦ 4), the barium content is converted to oxide with respect to 100 mol parts of the components whose molar ratios α, β, γ, and δ satisfy the following formula: in not more than 0.001 parts by mole or more 0.009 mol part, and characterized in that it comprises a single CaTiO 3 crystals.

0.16≦α≦0.21
0.16≦β≦0.22
0.29≦γ≦0.36
0.29≦δ≦0.37
(ただし、α+β+γ+δ=1)
また、本発明の一形態に係る誘電体共振器は、前記誘電体セラミックスを誘電体材料に用いたことを特徴とする。
0.16 ≦ α ≦ 0.21
0.16 ≦ β ≦ 0.22
0.29 ≦ γ ≦ 0.36
0.29 ≦ δ ≦ 0.37
(However, α + β + γ + δ = 1)
A dielectric resonator according to an aspect of the present invention is characterized in that the dielectric ceramic is used as a dielectric material.

本発明の誘電体セラミックスおよび誘電体共振器によれば、比誘電率εrが45近辺の値を示し、高いQ値が得られ、且つ−40〜85℃の温度範囲での共振周波数の温度係数を0ppm/℃に近づけることができ、気温差の激しい場所においても長期間にわたって安定して良好な性能を維持できる。   According to the dielectric ceramics and dielectric resonator of the present invention, the relative dielectric constant εr shows a value around 45, a high Q value is obtained, and the temperature coefficient of the resonance frequency in the temperature range of −40 to 85 ° C. Can be brought close to 0 ppm / ° C., and good performance can be stably maintained over a long period even in a place where the temperature difference is severe.

本発明の一形態に係る誘電体共振器の一例を模式的に示す一部断面図である。It is a partial sectional view showing typically an example of a dielectric resonator concerning one form of the present invention.

以下に、本発明の一形態に係る誘電体セラミックスについて説明する。この誘電体セラミックスは、La,Al,CaおよびTiを含有し、組成式を、αLa・βAl・γCaO・δTiO(ただし、3≦x≦4)と表したとき、モル比α,β,γ,δが、次の式を満足する。0.16≦α≦0.21、0.16≦β≦0.22、0.29≦γ≦0.36、0.29≦δ≦0.37かつα+β+γ+δ=1を満足する。さらに、この成分100モル部に対して、バリウムの含有量が酸化物換算で0.001モル部以上0.009モル部以下であり、かつ単独のCaTiOの結晶を含む。
The dielectric ceramic according to one embodiment of the present invention will be described below. This dielectric ceramic contains La, Al, Ca, and Ti. When the composition formula is expressed as αLa 2 O x · βAl 2 O 3 · γCaO · δTiO 2 (where 3 ≦ x ≦ 4), The ratios α, β, γ, and δ satisfy the following formula. 0.16 ≦ α ≦ 0.21, 0.16 ≦ β ≦ 0.22, 0.29 ≦ γ ≦ 0.36, 0.29 ≦ δ ≦ 0.37 and α + β + γ + δ = 1 are satisfied. Furthermore, with respect to 100 mol parts of this component, the barium content is not less than 0.001 mol parts and not more than 0.009 mol parts in terms of oxide, and contains a single crystal of CaTiO 3 .

ここで、共振周波数の温度係数τfについては、前記組成範囲の主成分であるLa−Al−Ca−Ti系誘電体セラミックス100モル部に対し、バリウムを酸化物換算で0.001モル部以上0.009モル部以下とし、従来よりも少ないバリウム添加量に最適化しており、さらに誘電体セラミックス中にCaTiO結晶を析出させるようにしている。 Here, regarding the temperature coefficient τf of the resonance frequency, 0.001 mol part or more of barium in terms of oxide is 0 with respect to 100 mol part of the La—Al—Ca—Ti dielectric ceramic which is the main component of the composition range. It is optimized to be less than 0.009 mole part and less than the conventional barium addition amount, and CaTiO 3 crystals are precipitated in the dielectric ceramic.

この構成により、本実施形態の誘電体セラミックスは、45近辺の比誘電率εrが得られ、かつ高いQ値および0ppm/℃またはこの値に近い共振周波数の温度係数τfが得られる。すなわち、−40〜85℃の温度範囲で0ppm/℃またはこの値に近い共振周波数の温度係数を得ることができる。また、このような誘電体セラミックスを例えば携帯電話の基地局あるいはBSアンテナに共振器として用いれば、温度変化の激しい場所においても、性能変化を極小化できるため、長期にわたって安定して使用することが可能となる。   With this configuration, the dielectric ceramic of the present embodiment has a relative dielectric constant εr of around 45, and a high Q value and a temperature coefficient τf of 0 ppm / ° C. or a resonance frequency close to this value. That is, the temperature coefficient of the resonance frequency close to 0 ppm / ° C. or this value in the temperature range of −40 to 85 ° C. can be obtained. In addition, if such a dielectric ceramic is used as a resonator in, for example, a mobile phone base station or a BS antenna, the performance change can be minimized even in a place where the temperature changes rapidly. It becomes possible.

このように、0ppm/℃またはこの値に近い共振周波数の温度係数τfが得られる理由としては、誘電体セラミックス焼結体中で化合物を形成し易いバリウムの添加量を少なくし異相の形成を抑制したことと、誘電体セラミックス中にプラスの共振周波数の温度係数τfを有するCaTiO結晶を析出させ、温度係数τfを調整したことによる。また、CaTiO結晶を析出させれば、−40〜25℃までの温度係数τfと、25〜85℃までの温度係数τfを、いずれの条件においても、0ppm/℃またはこの値に近づけることが可能となり、−40〜85℃の範囲で共振周波数の温度係数がほぼ一定の誘電体セラミックスが得られる。 As described above, the reason why the temperature coefficient τf of the resonance frequency close to 0 ppm / ° C. can be obtained is that the amount of barium that easily forms a compound in the dielectric ceramic sintered body is reduced to suppress the formation of a different phase. This is because a CaTiO 3 crystal having a temperature coefficient τf of a positive resonance frequency is precipitated in the dielectric ceramics, and the temperature coefficient τf is adjusted. Moreover, if CaTiO 3 crystal is precipitated, the temperature coefficient τf up to −40 to 25 ° C. and the temperature coefficient τf up to 25 to 85 ° C. can be brought to 0 ppm / ° C. or close to this value under any conditions. Thus, a dielectric ceramic having a substantially constant temperature coefficient of resonance frequency in the range of −40 to 85 ° C. can be obtained.

なお、従来のLa−Al−Ca−Ti系誘電体セラミックス焼結体では、LaAlO原料とCaTiO原料がともに微粉砕され平均粒径1μm程度の微粉として用いられている。このため、CaTiOとLaAlOとが均一に互いに固溶しあっており、焼結体中にはCaTiO結晶が単独で析出することが抑制される。 In the conventional La—Al—Ca—Ti dielectric ceramic sintered body, both the LaAlO 3 raw material and the CaTiO 3 raw material are finely pulverized and used as fine powder having an average particle diameter of about 1 μm. For this reason, CaTiO 3 and LaAlO 3 are uniformly solid-solved with each other, and the precipitation of CaTiO 3 crystals alone in the sintered body is suppressed.

本実施形態では、平均粒径1μm程度に微粉砕したCaTiO原料に、予め準備した別の平均粒径3μm以上の粗粒からなるCaTiO原料を前記微粉砕したCaTiO原料の全質量に対し、10〜40%の割合添加混合し、粒配したCaTiO原料を用いる。これにより、CaTiOとLaAlOとの固溶を一部抑制しており、La−Al−Ca−Ti系誘電体セラミックス焼結体中にCaTiO結晶を析出させている。前記粗粒からなるCaTiO原料の平均粒径が3μm以上であると、焼結体中にCaTiO結晶を析出させやすく、0ppm/℃近くの共振周波数の温度係数τfを得やすい。 In this embodiment, the CaTiO 3 material was finely pulverized to an average particle size of about 1 [mu] m, relative to the total weight of CaTiO 3 material the CaTiO 3 raw material consisting of another average particle diameter 3μm or more coarse particles previously prepared were the finely pulverized Then, a CaTiO 3 raw material that is added and mixed in a proportion of 10 to 40% and is distributed is used. Thereby, a part of solid solution of CaTiO 3 and LaAlO 3 is suppressed, and CaTiO 3 crystals are precipitated in the La—Al—Ca—Ti based dielectric ceramic sintered body. When the average particle diameter of the coarse CaTiO 3 raw material is 3 μm or more, CaTiO 3 crystals are easily precipitated in the sintered body, and a temperature coefficient τf of a resonance frequency near 0 ppm / ° C. is easily obtained.

ここで、各成分のモル比α,β,γおよびδを上記の範囲に限定した理由は以下の通りである。   Here, the reason why the molar ratios α, β, γ, and δ of each component are limited to the above ranges is as follows.

まず、0.16≦α≦0.21としたのは、この範囲内であると比誘電率(εr)が大きく,Q値が高く、共振周波数の温度係数τfの絶対値を小さくできるからである。特に、αの下限は0.17が好ましく、αの上限は0.20が好ましい。   First, 0.16 ≦ α ≦ 0.21 is set because the relative permittivity (εr) is large, the Q value is high, and the absolute value of the temperature coefficient τf of the resonance frequency can be reduced within this range. is there. In particular, the lower limit of α is preferably 0.17, and the upper limit of α is preferably 0.20.

また、0.16≦β≦0.22としたのは、この範囲内であると比誘電率(εr)が大きく、Q値が高く、τfの絶対値を小さくできるからである。特に、βの下限は、0.17が好ましく、βの上限は、0.20が好ましい。   Further, the reason why 0.16 ≦ β ≦ 0.22 is set is that, if it is within this range, the relative dielectric constant (εr) is large, the Q value is high, and the absolute value of τf can be decreased. In particular, the lower limit of β is preferably 0.17, and the upper limit of β is preferably 0.20.

また、0.29≦γ≦0.36としたのは、この範囲内であると比誘電率(εr)が大きく、Q値が高く、τfの絶対値を小さくできるからである。特に、γの下限は0.30が好ましく、γの上限は0.35が好ましい。   Further, the reason why 0.29 ≦ γ ≦ 0.36 is set is that if it is within this range, the relative dielectric constant (εr) is large, the Q value is high, and the absolute value of τf can be small. In particular, the lower limit of γ is preferably 0.30, and the upper limit of γ is preferably 0.35.

また、0.29≦δ≦0.37としたのは、この範囲内であると比誘電率(εr)が大きく,Q値が高く,τfの絶対値を小さくできるからである。特に、δの下限は0.30が好ましく,δの上限は0.35が好ましい。   Further, the reason why 0.29 ≦ δ ≦ 0.37 is set is that the relative permittivity (εr) is large, the Q value is high, and the absolute value of τf can be decreased within this range. In particular, the lower limit of δ is preferably 0.30, and the upper limit of δ is preferably 0.35.

また、上記主成分100モル部に対して、バリウムの添加量を酸化物換算で0.001モル部以上0.009モル部以下としたのは、比誘電率εrとQ値の向上効果が得られ、焼結性が低下しないからである。なお、0.009モル部より超えると、添加したバリウム成分が、誘電体セラミックス中の不純物などと異相となる化合物を形成し易く、比誘電率εr、Q値および共振周波数の温度係数τfの値を低下させる。   The addition amount of barium to 0.001 mol part or more and 0.009 mol part or less in terms of oxide with respect to 100 mol parts of the main component is effective in improving the relative dielectric constant εr and Q value. This is because the sinterability does not deteriorate. When the amount exceeds 0.009 mole part, the added barium component tends to form a compound that is different from the impurities in the dielectric ceramic, and the values of the relative dielectric constant εr, the Q value, and the temperature coefficient τf of the resonance frequency. Reduce.

なお、誘電体セラミックス中のバリウム量については、誘電体セラミックスの一部を粉砕し、得られた粉体を塩酸などの溶液に溶解した後、IPC発光分光分析装置(島津製作所製:ICPS−8100)を用いてBaの量を測定し酸化物換算することにより得られる。測定装置の誤差は分析値をnとするとn±√nである。   As for the amount of barium in the dielectric ceramic, a part of the dielectric ceramic is pulverized, and the obtained powder is dissolved in a solution such as hydrochloric acid, and then an IPC emission spectroscopic analyzer (manufactured by Shimadzu Corporation: ICPS-8100). ) To measure the amount of Ba and convert it to oxide. The error of the measuring device is n ± √n where n is the analysis value.

また、誘電体セラミックス中にCaTiO結晶が単独で存在するかどうかについては、例えば、波長分散型X線マイクロアナライザー装置(日本電子製JXA−8100)を用いて、誘電体セラミックスの任意の表面のCa,Ti元素の分布状態を調べることにより確認することが可能である。他の表面よりもCa,Ti元素の検出比率が高い部分にCaTiO結晶が存在している。 Whether or not the CaTiO 3 crystal is present alone in the dielectric ceramic is determined using, for example, a wavelength dispersive X-ray microanalyzer device (JXA-8100 manufactured by JEOL Ltd.), on any surface of the dielectric ceramic. This can be confirmed by examining the distribution of Ca and Ti elements. CaTiO 3 crystals are present in portions where the detection ratio of Ca and Ti elements is higher than that of other surfaces.

また、誘電体セラミックスの表面におけるCaTiO結晶の割合が、面積率で3%以上15%以下であることを特徴としている。CaTiO結晶の割合が、面積率で前記範囲内にあれば、絶対値で0〜2ppm/℃の共振周波数の温度係数の範囲内とすることが可能となり、より0pp/℃に近い値にできる。
Further, the ratio of CaTiO 3 crystals on the surface of the dielectric ceramic is 3% or more and 15% or less in terms of area ratio. If the ratio of the CaTiO 3 crystal is within the above range in terms of area ratio, the absolute value can be within the range of the temperature coefficient of the resonance frequency of 0 to 2 ppm / ° C., which is closer to 0 pp m / ° C. it can.

ここで、任意の表面におけるCaTiO結晶の割合の面積率を測定する方法としては、例えば、前記CaTiO結晶の確認で用いた波長分散型X線マイクロアナライザー装置(日本電子製JXA−8100)により、誘電体セラミックスの任意の表面の100μm×100μmの範囲のCa,Ti元素の分布状態を2箇所以上測定し、他の表面よりもCa,Ti元素の検出比率が高い部分の全測定面積に対する面積比率を算出し、これを合算して測定箇所数で除算することにより測定することが可能である。 Here, as a method of measuring the area ratio of the ratio of CaTiO 3 crystal on an arbitrary surface, for example, with a wavelength dispersion X-ray microanalyzer device (JXA-8100 manufactured by JEOL Ltd.) used in the confirmation of the CaTiO 3 crystal. Measure the distribution state of Ca and Ti elements in an area of 100 μm × 100 μm on any surface of dielectric ceramics at two or more locations, and the area with respect to the total measurement area of the portion where the detection ratio of Ca and Ti elements is higher than other surfaces It is possible to measure by calculating the ratio, adding up and dividing by the number of measurement points.

また、本実施形態の誘電体セラミックスは、リートベルト法によって算出されるCaTiO結晶の格子定数のaが5.409以上5.415以下、bが5.408以上5.416以下、cが7.643以上7.656以下であることを特徴としている。これにより、バリウムの固溶状態が安定化され、より優れた誘電特性を示す誘電体セラミックスを得ることが可能となる。 Further, in the dielectric ceramic of the present embodiment, the lattice constant a of the CaTiO 3 crystal calculated by the Rietveld method is 5.409 or more and 5.415 or less, b is 5.408 or more and 5.416 or less, and c is 7 .643 or more and 7.656 or less. Thereby, the solid solution state of barium is stabilized, and it becomes possible to obtain a dielectric ceramic exhibiting more excellent dielectric properties.

リートベルト法とは、物質のX線回折パターンから結晶の構造パラメータを精密化する方法であり、測定されたX線回折パターンと結晶の構造データを入力として与え、構造パラメータなどを動かすことで、計算された回折強度と測定された回折強度ができるだけ一致するように精密化する方法である。本実施形態では、解析ソフトRIETANを用い、例えば結晶構造モデルとして(Ca0.7Nd0.3)(Ti0.7Al0.3)O(結晶系:orthorhombic,空間群:No.62,格子定数:a=5.3803Å,b=5.4003Å,c=7.614)を参考にして格子定数を算出することが可能である。また、X線回折チャートは、例えばX線回折装置(PANalytical社製 X’PertPRO)により、測定範囲:2θ=10°〜100°,線源:CuKα,出力電圧,電流:45kV,40mAの測定の条件で測定することが可能である。 The Rietveld method is a method of refining the crystal structure parameters from the X-ray diffraction pattern of the substance. By giving the measured X-ray diffraction pattern and crystal structure data as inputs, and moving the structure parameters, This is a method of refinement so that the calculated diffraction intensity and the measured diffraction intensity match as much as possible. In the present embodiment, analysis software RIETON is used, for example, as a crystal structure model (Ca 0.7 Nd 0.3 ) (Ti 0.7 Al 0.3 ) O 3 (crystal system: orthohombic, space group: No. 62). , Lattice constant: a = 5.3803Å, b = 5.4003Å, c = 7.614), and the lattice constant can be calculated. The X-ray diffraction chart is measured with, for example, an X-ray diffractometer (X'Pert PRO manufactured by PANalytical), measurement range: 2θ = 10 ° to 100 °, radiation source: CuKα 1 , output voltage, current: 45 kV, 40 mA. It is possible to measure under the following conditions.

また、本実施形態の誘電体セラミックスはボイド率が4%以下であることを特徴としている。これにより、誘電体セラミックスがより緻密化されるため、強度や硬度などの機械的特性の低下を抑えることができる。よって、ハンドリング時、落下時、共振器内への取付け時および各携帯電話基地局等への設置後にかかる衝撃等によって、誘電体セラミックスにカケや割れおよび破損等が生じ難い。より好ましくはボイド率を3%以下とする。   In addition, the dielectric ceramic of the present embodiment is characterized in that the void ratio is 4% or less. Thereby, since dielectric ceramic is densified more, the fall of mechanical characteristics, such as intensity | strength and hardness, can be suppressed. Therefore, the dielectric ceramics are less likely to be broken, broken, damaged, etc. due to an impact or the like during handling, dropping, mounting in the resonator, or after installation in each mobile phone base station or the like. More preferably, the void ratio is 3% or less.

なお、ボイド率は例えば次のようにして測定する。まず、100μm×100μmの範囲が観察できるように、任意の倍率に調節した金属顕微鏡またはSEM等により、誘電体セラミックスの磁器表面および内部断面の数カ所を写真または画像として撮影する。そして、この写真または画像を画像解析装置により解析することにより、数カ所のボイド率を算出し、この平均値を求めることで算出することが可能である。画像解析装置としては例えばニレコ社製のLUZEX−FS等を用いればよい。   The void ratio is measured, for example, as follows. First, several portions of the ceramic surface and internal cross section of dielectric ceramics are photographed or photographed with a metal microscope or SEM adjusted to an arbitrary magnification so that a range of 100 μm × 100 μm can be observed. Then, by analyzing this photograph or image with an image analysis device, it is possible to calculate several void ratios and obtain this average value. As an image analysis apparatus, for example, LUZEX-FS manufactured by Nireco Corporation may be used.

また、本実施形態の誘電体セラミックスは、不可避不純物として、Fe,Sr,Na,Ca,K,Si,Pb,Ni,CuまたはMgを酸化物換算で合計1質量%以下含んでいても良い。これにより、各種誘電特性の値が低下することが抑制され、焼結体としての機械的特性の低下が抑制される。   Further, the dielectric ceramic of the present embodiment may contain Fe, Sr, Na, Ca, K, Si, Pb, Ni, Cu or Mg as inevitable impurities in total of 1% by mass or less in terms of oxides. Thereby, it is suppressed that the value of various dielectric characteristics falls, and the fall of the mechanical characteristics as a sintered compact is suppressed.

次に、本実施形態の誘電体セラミックスの製造方法について説明する。例えば以下の工程(1)〜(7)を実施する。   Next, the manufacturing method of the dielectric ceramic of this embodiment is demonstrated. For example, the following steps (1) to (7) are performed.

(1)出発原料として、高純度の酸化ランタン(La)と高純度の酸化アルミニウム(Al),炭酸カルシウム(CaCO)および酸化チタン(TiO)の各粉末を準備する。しかる後、まずLaとAlを所望の割合となるように秤量後、純水を加え、混合原料の平均粒径が2.0μm以下となるまで1〜100時間、ジルコニアボール等を使用したボールミルにより湿式混合及び粉砕を行い混合物を得る。これと平行してCaCOとTiOについても、同様の工程を経て混合物を得る(1次調合)。 (1) As starting materials, high purity lanthanum oxide (La 2 O 3 ), high purity aluminum oxide (Al 2 O 3 ), calcium carbonate (CaCO 3 ) and titanium oxide (TiO 2 ) powders are prepared. . Thereafter, La 2 O 3 and Al 2 O 3 are first weighed to a desired ratio, then pure water is added, and zirconia balls are added for 1 to 100 hours until the average particle size of the mixed raw material becomes 2.0 μm or less. Etc. to obtain a mixture by wet mixing and pulverization with a ball mill using the like. In parallel with this, CaCO 3 and TiO 2 are also subjected to the same process to obtain a mixture (primary preparation).

(2)この混合物を乾燥後、1100〜1300℃でそれぞれ1〜10時間仮焼し、LaAlO,CaTiOの仮焼物を得る。 (2) This mixture is dried and calcined at 1100 to 1300 ° C. for 1 to 10 hours, respectively, to obtain a calcined product of LaAlO 3 and CaTiO 3 .

(3)得られた仮焼物をそれぞれ平均粒径1〜2μmとなるまで、ボールミル等により湿式粉砕し、得られた混合物をステンレス製容器に移し、乾燥後、メッシュパスしてLaAlO,CaTiOの原料を得る。なお、CaTiO原料ついては、焼成後に誘電体セラミックス中にCaTiO結晶を析出させるためには、粗粒からなる平均粒径3μm以上のCaTiO原料を予め準備しておき、それを粉砕後のCaTiO原料に対して、10〜40質量%の割合で添加したものを用いる。 (3) The obtained calcined product is wet pulverized with a ball mill or the like until the average particle size becomes 1 to 2 μm, and the resulting mixture is transferred to a stainless steel container, dried, mesh-passed, and LaAlO 3 , CaTiO 3. Get the ingredients. As for the CaTiO 3 raw material, in order to precipitate CaTiO 3 crystals in the dielectric ceramic after firing, a CaTiO 3 raw material having an average particle diameter of 3 μm or more consisting of coarse particles is prepared in advance, and the crushed CaTiO 3 is prepared. Those added at a rate of 10 to 40% by mass with respect to the three raw materials are used.

(4)LaAlO,CaTiOの原料をそれぞれ所望の割合秤量し、これに高純度で平均粒径0.5〜3μmのBaTiOを、バリウムの含有量が酸化物換算で0.001モル部以上0.009モル部以下となるよう秤量して混合し、純水を加えた後、ジルコニアボール等を使用したボールミルにより湿式混合を行う(2次調合)。 (4) Each raw material of LaAlO 3 and CaTiO 3 is weighed in a desired ratio, and BaTiO 3 having a high purity and an average particle size of 0.5 to 3 μm is added thereto, and the barium content is 0.001 mol part in terms of oxide. After weighing and mixing so as to be 0.009 mol part or less and adding pure water, wet mixing is performed by a ball mill using zirconia balls or the like (secondary preparation).

(5)3〜10質量%のバインダーを加えてから脱水し、その後、例えばスプレードライ法等により造粒または整粒し、得られた造粒体又は整粒粉体等を、例えば金型プレス法、冷間静水圧プレス法、押し出し成形法等により任意の形状に成形する。なお、造粒体又は整粒粉体等の形態は粉体等の固体のみならず、スラリー等の固体、液体混合物でも良い。この場合、液体は水以外の液体、例えばIPA(イソプロピルアルコール)、メタノ−ル、エタノ−ル、トルエン、アセトン等でも良い。   (5) 3-10 mass% binder is added and then dehydrated, and then granulated or sized by, for example, a spray drying method, and the resulting granulated product or sized powder is subjected to, for example, a die press It is formed into an arbitrary shape by a method such as a cold isostatic pressing method or an extrusion molding method. The form of the granulated body or the sized powder may be not only a solid such as a powder but also a solid such as a slurry or a liquid mixture. In this case, the liquid may be a liquid other than water, for example, IPA (isopropyl alcohol), methanol, ethanol, toluene, acetone or the like.

(6)得られた成形体を大気中1500℃〜1700℃で5〜10時間保持して焼成する。より好ましくは1550〜1650℃で焼成するのが良い。   (6) The obtained molded body is fired at 1500 ° C. to 1700 ° C. in the air for 5 to 10 hours. More preferably, baking is performed at 1550 to 1650 ° C.

(7)得られた焼成体を酸素5〜30体積%以上含むガス中において、温度1500〜1700℃、圧力300〜3000気圧で、1分〜100時間熱処理する。より好ましくは、温度1550〜1650℃,圧力1000〜2500気圧で20分〜3時間熱処理するのが良い。   (7) The obtained fired body is heat-treated at a temperature of 1500 to 1700 ° C. and a pressure of 300 to 3000 atm for 1 minute to 100 hours in a gas containing 5 to 30% by volume of oxygen. More preferably, heat treatment is performed at a temperature of 1550 to 1650 ° C. and a pressure of 1000 to 2500 atmospheres for 20 minutes to 3 hours.

次に、本実施形態の誘電体セラミックスを使用した誘電体共振器の一例について以下に説明する。図1に示すように、TEモ−ド型の誘電体共振器1は、軽量なアルミニウム等の金属からなる金属ケース2において、その内壁の相対向する両側に、入力端子3及び出力端子4を設けてなる。そして、入出力端子3と出力端子4の間に、上述した誘電体セラミックスをフィルタとして用いた誘電体磁器5を載置台6の所定位置に配置して構成される。このような誘電体共振器1は、入力端子3からミリ波および/またはマイクロ波の高周波が入力され、高周波は誘電体磁器5と自由空間との境界の反射によって誘電体磁器5内に閉じこめられ、特定の周波数で共振を起こす。そしてこの信号が出力端子4と電磁界結合して出力される。このように、本実施形態の誘電体セラミックスは、携帯電話の基地局やBSアンテナに使用される種々の共振器用材料として好適に利用できる。   Next, an example of a dielectric resonator using the dielectric ceramic of the present embodiment will be described below. As shown in FIG. 1, a TE mode type dielectric resonator 1 includes an input terminal 3 and an output terminal 4 on opposite sides of an inner wall of a metal case 2 made of a lightweight metal such as aluminum. It is provided. A dielectric ceramic 5 using the above-described dielectric ceramics as a filter is arranged between the input / output terminal 3 and the output terminal 4 at a predetermined position on the mounting table 6. In such a dielectric resonator 1, millimeter wave and / or microwave high frequency is input from the input terminal 3, and the high frequency is confined in the dielectric ceramic 5 by reflection at the boundary between the dielectric ceramic 5 and the free space. Resonance occurs at a specific frequency. This signal is then electromagnetically coupled to the output terminal 4 and output. As described above, the dielectric ceramic of the present embodiment can be suitably used as various resonator materials used for mobile phone base stations and BS antennas.

なお、本実施形態の誘電体セラミックスは上記に限定されず、入力端子3および出力端子4を誘電体磁器5に直接設けてもよい。また、誘電体磁器5は、本実施形態の誘電体セラミックスからなる所定形状の共振媒体であるが、その形状は直方体、立方体、板状体、円板、円柱、多角柱、または、その他共振が可能な立体形状であればよい。また、入力される高周波信号の周波数は500MHz〜500GHz程度であり、共振周波数としては2GHz〜80GHz程度が実用上好ましい。   The dielectric ceramic of the present embodiment is not limited to the above, and the input terminal 3 and the output terminal 4 may be directly provided on the dielectric ceramic 5. The dielectric porcelain 5 is a resonance medium having a predetermined shape made of the dielectric ceramic of the present embodiment, and the shape thereof is a rectangular parallelepiped, a cube, a plate, a disk, a cylinder, a polygonal column, or other resonance. Any three-dimensional shape is possible. The frequency of the input high frequency signal is about 500 MHz to 500 GHz, and the resonance frequency is preferably about 2 GHz to 80 GHz in practice.

また、本実施形態の誘電体セラミックスは、各種共振器用材料以外に、MIC(Monolithic IC)用誘電体基板材料、誘電体導波路用材料または積層型セラミックコンデンサの誘電体材料等に使用してもよい。   Further, the dielectric ceramic of the present embodiment may be used as a dielectric substrate material for MIC (Monolithic IC), a dielectric waveguide material, or a dielectric material of a multilayer ceramic capacitor in addition to various resonator materials. Good.

次に、実施例について説明する。   Next, examples will be described.

La−Al−Ca−Ti系材料のモル比α,β,γおよびδの値とバリウムの添加量を変えて試料を作製し、比誘電率εr,Q値および共振周波数の温度係数の測定をした。製造方法および特性測定方法の詳細を以下に説明する。   Samples were prepared by changing the molar ratios α, β, γ and δ of the La—Al—Ca—Ti-based material and the amount of barium added, and the relative permittivity εr, Q value and temperature coefficient of the resonance frequency were measured. did. Details of the manufacturing method and the characteristic measuring method will be described below.

出発原料として純度99.5質量%以上のLa,Al,CaCOおよびTiOを準備した。 La 2 O 3 , Al 2 O 3 , CaCO 3 and TiO 2 having a purity of 99.5% by mass or more were prepared as starting materials.

それぞれの材料を表1の割合となるように秤量後、LaとAlとを混合したもの、およびCaCOとTiOを、それぞれ別のボールミル内で純水を加え、混合原料の平均粒径が2μm以下となるまでジルコニアボールを使用したボールミルにより、湿式混合および粉砕し1次調合を行って2種類の混合物を得た。 After weighing each material to the ratio shown in Table 1, La 2 O 3 and Al 2 O 3 were mixed, and CaCO 3 and TiO 2 were added to each other in a separate ball mill, and mixed. The mixture was wet-mixed and pulverized by a ball mill using zirconia balls until the average particle size of the raw material became 2 μm or less, and primary mixing was performed to obtain two types of mixtures.

そして、それぞれの混合物を乾燥後、1200℃で仮焼しLaAlO,CaTiO仮焼物を得た。 After drying each mixture to obtain a calcined LaAlO 3, CaTiO 3 precalcination at 1200 ° C..

得られた2種類の仮焼物を湿式粉砕により、LaAlO,CaTiOの仮焼物ともに1〜2μmの平均粒径となるように、ボールミルを使用して粉砕しLaAlO原料、CaTiO原料を得た。なお、CaTiOについては、粉砕後の全質量に対し30質量%の割合で予め準備した粗粒からなる平均粒径3μmのCaTiO原料を添加・混合しCaTiO原料とした。 The obtained two types of calcined products are wet pulverized and pulverized using a ball mill so that both LaAlO 3 and CaTiO 3 calcined products have an average particle diameter of 1 to 2 μm to obtain LaAlO 3 raw materials and CaTiO 3 raw materials. It was. Note that the CaTiO 3, and a total mass with respect to the addition and mixing of CaTiO 3 raw material having an average particle diameter of 3μm consisting previously prepared coarse in a ratio of 30 mass% CaTiO 3 raw material after milling.

そして両者を混合し、さらにバリウム成分として、市販の平均粒径1μmの炭酸バリウムを添加し、純水を加え、1〜100時間ジルコニアボール等を使用したボールミルにより、湿式混合を行い、2次調合して数種類のスラリーを得た。   Then, both are mixed, and as a barium component, a commercially available barium carbonate having an average particle diameter of 1 μm is added, pure water is added, and wet mixing is performed by a ball mill using zirconia balls or the like for 1 to 100 hours to obtain a secondary preparation. Several types of slurry were obtained.

次に、前記スラリーにさらに1〜10質量%のバインダーを加えてから所定時間混合した後、脱水し、このスラリーをスプレードライヤーで噴霧造粒して2次原料を得た。この2次原料を金型プレス成形法によりφ20mm,高さ15mmの円柱体に成形し成形体を得た。   Next, 1 to 10% by mass of a binder was further added to the slurry and mixed for a predetermined time, followed by dehydration, and the slurry was spray granulated with a spray dryer to obtain a secondary material. This secondary material was molded into a cylindrical body having a diameter of 20 mm and a height of 15 mm by a die press molding method to obtain a molded body.

得られた成形体を大気中1500℃〜1700℃で10時間保持して焼成して、試料No.1〜27を得た。なお、これら試料は、焼成後に上下面と側面の一部に研磨加工を施し、アセトン中で超音波洗浄を行った。   The obtained molded body was held in the atmosphere at 1500 ° C. to 1700 ° C. for 10 hours and fired. 1-27 were obtained. In addition, after baking, these samples grind | polished upper and lower surfaces and a part of side surface, and ultrasonically cleaned in acetone.

なお、比較例として、バリウム成分を添加しない以外は前記と同様の工程にて製造された試料No.28も準備した。また、別の比較例として、粉砕後のCaTiO原料に平均粒径3μmの粗粒からなるCaTiO原料を添加しない以外は前記と同様の工程を経て製造された試料No.29も準備した。 As a comparative example, the sample No. manufactured in the same process as described above except that no barium component was added. 28 were also prepared. As another comparative example, a sample except without the addition of CaTiO 3 raw material consisting of coarse particles having an average particle size of 3μm in CaTiO 3 raw material after pulverization manufactured through the same processes No. 29 was also prepared.

次に、これら試料No.1〜29について、誘電特性を測定した。誘電特性は円柱共振器法により測定周波数3.5〜4.5GHzで比誘電率εr,Q値を測定した。Q値は、マイクロ波誘電体において一般的に成立する(Q値)×(測定周波数f)=一定の関係から、1GHzでのQ値に換算した。   Next, these sample Nos. Dielectric characteristics were measured for 1 to 29. The dielectric properties were measured by measuring the relative dielectric constant εr and Q values at a measurement frequency of 3.5 to 4.5 GHz by a cylindrical resonator method. The Q value was converted to a Q value at 1 GHz from the general relationship (Q value) × (measurement frequency f) = constant that is generally established in a microwave dielectric.

また、CaTiO結晶の有無については、波長分散型X線マイクロアナライザー装置(日本電子製JXA−8100)を用いて、各試料の任意の表面のCa,Ti元素の分布状態を確認し、他の表面よりもCa,Ti元素の検出比率が高い部分にCaTiO結晶が存在するとして確認を実施した。 Also, the presence of CaTiO 3 crystal, using wavelength dispersive X-ray microanalyzer apparatus (JEOL JXA-8100), of any surface of the sample Ca, check the distribution of Ti element, the other The confirmation was carried out on the assumption that CaTiO 3 crystals exist in the portion where the detection ratio of Ca and Ti elements is higher than the surface.

比較例と本実施形態のバリウムを含むLa−Al−Ca−Ti系材料における組成範囲、および添加量の臨界的意義を示す結果を表1に示す。なお、バリウムの添加量(=含有量)は酸化物であるBaO換算とした。   Table 1 shows the results showing the critical significance of the composition range and the amount added in the comparative example and the La—Al—Ca—Ti-based material containing barium of the present embodiment. In addition, the addition amount (= content) of barium was converted into BaO which is an oxide.

なお、表1において、比誘電率εrが40.0〜48.0の範囲内、Q値が30000以上、共振周波数の温度係数τfが−10〜+10の範囲内、25〜85℃および−40〜25℃のそれぞれの温度範囲内での温度係数の差が絶対値で2以内のものを良好範囲とした。   In Table 1, the relative permittivity εr is in the range of 40.0 to 48.0, the Q value is 30000 or more, the temperature coefficient τf of the resonance frequency is in the range of −10 to +10, 25 to 85 ° C., and −40 The difference in temperature coefficient within each temperature range of ˜25 ° C. was an absolute value of 2 or less, which was regarded as a good range.

Figure 0005349146
Figure 0005349146

表1に示すように、特にαの値が好適範囲内でない試料No.1,6については、比誘電率εrが40〜48の範囲外であり、共振周波数の温度係数も−10〜+10の範囲外であった。   As shown in Table 1, the sample No. For 1 and 6, the relative dielectric constant εr was outside the range of 40 to 48, and the temperature coefficient of the resonance frequency was also outside the range of −10 to +10.

また、特にβの値が好適範囲内でない試料No.7,10については、比誘電率εrが40.0〜48.0の範囲外であり、共振周波数の温度係数が−10〜+10の範囲外であった。   In particular, the sample No. whose β value is not within the preferred range. 7 and 10, the relative dielectric constant εr was outside the range of 40.0 to 48.0, and the temperature coefficient of the resonance frequency was outside the range of −10 to +10.

また、γの値が好適範囲内でない試料No.11については、Q値が30000以下であり、同様にγの値が好適範囲内でない試料No.17については、比誘電率εrが40.0〜48.0の範囲外、Q値が30000以下、さらに共振周波数の温度係数が−10〜+10の範囲外であった。   In addition, the sample No. whose γ value is not within the preferred range. For sample No. 11, the Q value is 30000 or less, and similarly, the sample No. For No. 17, the relative dielectric constant εr was outside the range of 40.0 to 48.0, the Q value was 30000 or less, and the temperature coefficient of the resonance frequency was outside the range of −10 to +10.

また、δの値が好適範囲でない試料No.18については、比誘電率εrが40.0〜48.0の範囲外であり、Q値が30000以下であった。同様にδの値が好適範囲でない試料No.21については、共振周波数の温度係数が−10〜+10の範囲外であった。   In addition, the sample No. where the value of δ is not in the preferred range. For 18, the relative dielectric constant εr was outside the range of 40.0 to 48.0, and the Q value was 30000 or less. Similarly, the sample No. whose δ value is not in the preferred range. For No. 21, the temperature coefficient of the resonance frequency was outside the range of −10 to +10.

また、バリウム成分が好適範囲でない試料No.22については、25〜85℃と−40〜25℃の共振周波数の温度係数の絶対値差が2を超えており、試料No.27については、共振周波数の温度係数が−10〜+10の範囲外であった。
In addition, Sample No. in which the barium component is not in a suitable range. For No. 22 , the absolute value difference of the temperature coefficients of the resonance frequencies of 25 to 85 ° C. and −40 to 25 ° C. exceeds 2, and sample no. For No. 27, the temperature coefficient of the resonance frequency was outside the range of −10 to +10.

また、比較例として製造した試料No.28については、バリウム成分を含有していないために、焼結性が低下して誘電体セラミックスを充分に緻密化させることができず、比誘電率εr,Q値ともに低い値を示した。   In addition, sample No. manufactured as a comparative example. For No. 28, since it did not contain a barium component, the sinterability was lowered and the dielectric ceramic could not be sufficiently densified, and both the relative permittivity εr and Q values were low.

また、比較例として製造した粗粒のCaTiO原料を添加せず粒配したCaTiO原料を用いなかった試料No.29については、共振周波数の温度係数が−10〜+10の範囲外の値を示し、かつ25〜85℃と−40〜25℃の共振周波数の温度係数の絶対値差が2を超える値を示した。 In Sample No. I was not used CaTiO 3 material arranged grain without adding CaTiO 3 raw material coarse particles was prepared as a comparative example For No. 29, the temperature coefficient of the resonance frequency shows a value outside the range of −10 to +10, and the absolute value difference of the temperature coefficient of the resonance frequency of 25 to 85 ° C. and −40 to 25 ° C. shows a value exceeding 2. It was.

これらの試料と比較して本発明範囲内の試料No.2〜5,8,9,12〜16,19,20,23〜26については、比誘電率εr,Q値,共振周波数の温度係数,25〜85℃と−40〜25℃の共振周波数の温度係数の絶対値差がともに範囲内の値を示した。   Compared with these samples, sample Nos. Within the scope of the present invention. 2 to 5, 8, 9, 12 to 16, 19, 20, 23 to 26, the relative permittivity εr, the Q value, the temperature coefficient of the resonance frequency, the resonance frequency of 25 to 85 ° C. and the resonance frequency of −40 to 25 ° C. The absolute value difference of temperature coefficient was within the range.

以上の結果より、モル比α,β,γ,δ(小数点以下3桁目を四捨五入)が、0.16≦α≦0.21、0.16≦β≦0.22、0.29≦γ≦0.36、0.29≦δ≦0.37かつα+β+γ+δ=1(小数点以下を四捨五入)を満足し、バリウムが酸化物換算で0.001モル部以上0.009モル部以下であり、かつCaTiO結晶を含むとよいことが判明した。 From the above results, the molar ratios α, β, γ, and δ (rounded to the third decimal place) are 0.16 ≦ α ≦ 0.21, 0.16 ≦ β ≦ 0.22, 0.29 ≦ γ. ≦ 0.36, 0.29 ≦ δ ≦ 0.37 and α + β + γ + δ = 1 (rounded to the nearest decimal place), and barium is 0.001 mol part or more and 0.009 mol part or less in terms of oxide, and It has been found that it is preferable to include CaTiO 3 crystals.

次に、CaTiO結晶の面積率を種々に変更した試料を作成し、共振周波数の温度係数を測定する試験を実施した。 Next, samples in which the area ratio of the CaTiO 3 crystal was variously changed were prepared, and a test for measuring the temperature coefficient of the resonance frequency was performed.

準備した試料は、α,β,γ,δ,バリウム添加量については、実施例1の試料No.14と同様の組成比率とし、粗粒のCaTiO原料(表にはCaTiO粗粒と記載)の添加量を表2のように変えたこと以外は実施例1の製造方法と同様に製造している。 The prepared samples are α, β, γ, δ, and the amount of barium added. 14 except that the amount of coarse CaTiO 3 raw material (shown as CaTiO 3 coarse particles in the table) was changed as shown in Table 2 and the composition ratio was the same as that of Example 1. ing.

そして、共振周波数の温度係数を実施例1と同様の方法にて測定した。   Then, the temperature coefficient of the resonance frequency was measured by the same method as in Example 1.

結果を表2に示す。   The results are shown in Table 2.

Figure 0005349146
Figure 0005349146

表2から、CaTiO粗粒の添加量が5質量%と少なく、CaTiO面積率が3%未満の2%と低い試料No.30については、温度係数τf自体は−10〜+10ppm/℃の範囲内ではあるものの25〜85℃と−40〜25℃の共振周波数の温度係数の絶対値差が2ppm/℃と高くなった。 From Table 2, sample No. 2 with a low CaTiO 3 coarse grain addition amount of 5% by mass and a CaTiO 3 area ratio of less than 3% and 2% is low. For 30, the temperature coefficient τf itself was within the range of −10 to +10 ppm / ° C., but the absolute value difference between the temperature coefficients of the resonance frequencies of 25 to 85 ° C. and −40 to 25 ° C. was as high as 2 ppm / ° C.

また、CaTiO粗粒の添加量が45質量%と多く、CaTiO面積率が15%を超え20%と高い試料No.35については、CaTiO粗粒の添加量が多すぎるために焼結性が低下し機械的強度が低下しており、かつ共振周波数の温度係数τfも高くなった。 In addition, the amount of CaTiO 3 coarse particles added was as high as 45% by mass, and the area ratio of CaTiO 3 exceeded 15% and was as high as 20%. Regarding No. 35, since the addition amount of CaTiO 3 coarse particles was too large, the sinterability was lowered and the mechanical strength was lowered, and the temperature coefficient τf of the resonance frequency was also increased.

これらと比較して試料No.31〜34については、焼結性の低下もなく、良好な温度係数τfと25〜85℃と−40〜25℃の共振周波数の温度係数の絶対値差を示した。   Compared to these, sample No. As for 31 to 34, there was no decrease in sinterability, and an excellent temperature coefficient τf and an absolute value difference in temperature coefficients of resonance frequencies of 25 to 85 ° C. and −40 to 25 ° C. were shown.

1:誘電体共振器
2:金属ケース
3:入力端子
4:出力端子
5:誘電体磁器
6:載置台
1: Dielectric resonator 2: Metal case 3: Input terminal 4: Output terminal 5: Dielectric porcelain 6: Mounting table

Claims (5)

組成式をαLa・βAl・γCaO・δTiO(ただし、3≦x≦4)と表した場合に、モル比α,β,γ,δが下記式を満足する成分100モル部に対して、バリウムの含有量が酸化物換算で0.001モル部以上0.009モル部以下であり、かつ単独のCaTiO結晶を含むことを特徴とする誘電体セラミックス。
0.16≦α≦0.21
0.16≦β≦0.22
0.29≦γ≦0.36
0.29≦δ≦0.37
(ただし、α+β+γ+δ=1)
When the composition formula is expressed as αLa 2 O x · βAl 2 O 3 · γCaO · δTiO 2 (where 3 ≦ x ≦ 4), the molar ratio α, β, γ, δ satisfies the following formula: 100 mol A dielectric ceramic characterized in that the content of barium is 0.001 mol part or more and 0.009 mol part or less in terms of oxide with respect to parts, and contains a single CaTiO 3 crystal.
0.16 ≦ α ≦ 0.21
0.16 ≦ β ≦ 0.22
0.29 ≦ γ ≦ 0.36
0.29 ≦ δ ≦ 0.37
(However, α + β + γ + δ = 1)
表面における前記CaTiO結晶の割合が、面積率で3%以上15%以下であることを特徴とする請求項1に記載の誘電体セラミックス。 2. The dielectric ceramic according to claim 1, wherein a ratio of the CaTiO 3 crystal on the surface is 3% or more and 15% or less in terms of area ratio. リートベルト法によって算出される前記CaTiO結晶の格子定数のa、bおよびcが下記式を満足することを特徴とする請求項1または2に記載の誘電体セラミックス。
5.409≦a≦5.415
5.408≦b≦5.416
7.643≦c≦7.656
The dielectric ceramic according to claim 1 or 2, wherein the lattice constants a, b, and c of the CaTiO 3 crystal calculated by a Rietveld method satisfy the following formula.
5.409 ≦ a ≦ 5.415
5.408 ≦ b ≦ 5.416
7.643 ≦ c ≦ 7.656
ボイド率が4%以下であることを特徴とする請求項1乃至3のいずれかに記載の誘電体セラミックス。   4. The dielectric ceramic according to claim 1, wherein a void ratio is 4% or less. 請求項1乃至請求項4のいずれかに記載の誘電体セラミックスを誘電体材料に用いたことを特徴とする誘電体共振器。   5. A dielectric resonator comprising the dielectric ceramic according to claim 1 as a dielectric material.
JP2009136772A 2009-06-08 2009-06-08 Dielectric ceramics and dielectric resonator Active JP5349146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009136772A JP5349146B2 (en) 2009-06-08 2009-06-08 Dielectric ceramics and dielectric resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009136772A JP5349146B2 (en) 2009-06-08 2009-06-08 Dielectric ceramics and dielectric resonator

Publications (2)

Publication Number Publication Date
JP2010280550A JP2010280550A (en) 2010-12-16
JP5349146B2 true JP5349146B2 (en) 2013-11-20

Family

ID=43537684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009136772A Active JP5349146B2 (en) 2009-06-08 2009-06-08 Dielectric ceramics and dielectric resonator

Country Status (1)

Country Link
JP (1) JP5349146B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3274950B2 (en) * 1994-06-30 2002-04-15 京セラ株式会社 Dielectric ceramic composition and dielectric resonator
KR0155066B1 (en) * 1995-09-07 1998-11-16 김은영 Dielectric ceramic composition for high frequency
JP3559434B2 (en) * 1997-09-30 2004-09-02 京セラ株式会社 Method for producing dielectric porcelain composition
JP4699581B2 (en) * 1999-10-18 2011-06-15 日本特殊陶業株式会社 Microwave dielectric ceramic composition
JP5142700B2 (en) * 2007-03-28 2013-02-13 京セラ株式会社 Dielectric ceramic composition and dielectric resonator

Also Published As

Publication number Publication date
JP2010280550A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
JP5726209B2 (en) Dielectric ceramics and dielectric filter provided with the same
JP2010235337A (en) Dielectric ceramic and dielectric resonator
WO2010074253A1 (en) Dielectric ceramic, dielectric resonator utilizing same, and method for manufacturing dielectric ceramic
JP5142700B2 (en) Dielectric ceramic composition and dielectric resonator
JP2012046374A (en) Dielectric ceramic and resonator
WO2010050514A1 (en) Dielectric ceramic and resonator using the same
JPH11106255A (en) Dielectric ceramic composition and its production
JP2012184122A (en) Dielectric ceramic, and dielectric filter having the same
JPWO2009069707A1 (en) Dielectric ceramics, manufacturing method thereof, and resonator
JP5159961B2 (en) Dielectric ceramics and dielectric filter using the same
JP5349146B2 (en) Dielectric ceramics and dielectric resonator
JP5247561B2 (en) Dielectric ceramics and dielectric resonator
JP5774094B2 (en) Dielectric ceramics and dielectric filter provided with the same
JPH11130528A (en) Dielectric ceramic composition and dielectric resonator produced by using the composition
WO2011052720A1 (en) Dielectric ceramic and resonator
JP2003146752A (en) Dielectric ceramic composition
JPH11130544A (en) Dielectric ceramic composition and its production
JP3830342B2 (en) Dielectric porcelain and dielectric resonator using the same
JP2012046387A (en) Dielectric ceramics and dielectric resonator using the same
JP2013006721A (en) Dielectric ceramic and dielectric filter comprising the same
JP3825203B2 (en) DIELECTRIC CERAMIC COMPOSITION, MANUFACTURING METHOD THEREOF, AND DIELECTRIC RESONATOR USING THE SAME
JP2005170732A (en) Dielectric porcelain composition
JPH11130534A (en) Dielectric composition for producing ceramic
JP2012072005A (en) Dielectric ceramic and resonator
JPH10101423A (en) Piezoelectric porcelain composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130820

R150 Certificate of patent or registration of utility model

Ref document number: 5349146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150