JP2005187240A - Dielectric ceramic composition and its production method - Google Patents

Dielectric ceramic composition and its production method Download PDF

Info

Publication number
JP2005187240A
JP2005187240A JP2003428381A JP2003428381A JP2005187240A JP 2005187240 A JP2005187240 A JP 2005187240A JP 2003428381 A JP2003428381 A JP 2003428381A JP 2003428381 A JP2003428381 A JP 2003428381A JP 2005187240 A JP2005187240 A JP 2005187240A
Authority
JP
Japan
Prior art keywords
compound
dielectric ceramic
ceramic composition
dielectric
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003428381A
Other languages
Japanese (ja)
Other versions
JP4541692B2 (en
Inventor
Masato Yamazaki
正人 山▲崎▼
Yoshito Mizoguchi
義人 溝口
Hirotaka Takeuchi
裕貴 竹内
Katsuya Yamagiwa
勝也 山際
Kazue Obayashi
和重 大林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2003428381A priority Critical patent/JP4541692B2/en
Publication of JP2005187240A publication Critical patent/JP2005187240A/en
Application granted granted Critical
Publication of JP4541692B2 publication Critical patent/JP4541692B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dielectric ceramic composition having excellent ε<SB>r</SB>and Qu, and τ<SB>f</SB>which is within a practically sufficient range, and to provide its production method. <P>SOLUTION: The dielectric ceramic composition includes an SrLa<SB>4</SB>Ti<SB>4</SB>O<SB>15</SB>type crystal structure and contains Sr, La, Ti, and Nb. When the composition is expressed by compositional formula: aSrO-bLaO<SB>3/2</SB>-cTiO<SB>2</SB>-dNbO<SB>5/2</SB>(wherein, a, b, c and d are each molar ratio, and a+b+c+d=1), a is >0 and ≤0.556, b is >0 and ≤0.571, c is >0 and ≤0.444, and d is >0 and ≤0.444. The dielectric ceramic composition is characterized in that ε<SB>r</SB>is ≥35, Qu×f (TE<SB>011</SB>, f is measuring frequency) is ≥10,000 GHz, and τ<SB>f</SB>is -20 to +20 ppm/°C. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、誘電体磁器組成物及びその製造方法に関する。更に詳しくは、本発明は、優れた比誘電率(以下、「ε」という。)及び無負荷品質係数(以下、「Qu」という。)を有し、且つ共振周波数の温度係数(以下、「τ」という。)も実用上十分な範囲にあり、特にマイクロ波やミリ波等の高周波領域においてεが高く、Quが大きい誘電体磁器組成物及びその製造方法に関する。 The present invention relates to a dielectric ceramic composition and a method for producing the same. More specifically, the present invention has an excellent relative dielectric constant (hereinafter referred to as “ε r ”) and a no-load quality factor (hereinafter referred to as “Qu”), and a temperature coefficient of resonance frequency (hereinafter referred to as “Qu”). "Τ f ") is also in a practically sufficient range, and particularly relates to a dielectric ceramic composition having a high ε r and a large Qu in a high frequency region such as a microwave and a millimeter wave, and a method for producing the same.

従来より、携帯電話、パーソナル無線機、衛星放送の受信機等の、マイクロ波又はミリ波等の高周波領域において使用される電子機器に搭載されている誘電体共振器及び誘電体フィルタ等の回路基板の材料として、誘電体磁器が多く用いられている。このような誘電体磁器に要求される誘電特性として、εが高く、Quが大きく、且つτの絶対値が小さいこと等が挙げられる。そして、このような誘電体磁器としては、従来から、(Zr、Sn)TiO系誘電体磁器(例えば、特許文献1参照。)、BaTi20(例えば、特許文献2参照。)及びSrLaTi15(例えば、非特許文献1参照。)等が知られている。 Conventionally, circuit boards such as dielectric resonators and dielectric filters mounted on electronic devices used in high frequency regions such as microwaves or millimeter waves, such as mobile phones, personal radios, satellite broadcast receivers, etc. Dielectric porcelain is often used as the material. As the dielectric properties required for such a dielectric ceramic, epsilon r is high, Qu is large and τ that such a small absolute value of f can be mentioned. Conventionally, as such dielectric ceramics, (Zr, Sn) TiO 4 dielectric ceramics (for example, refer to Patent Document 1), Ba 2 Ti 9 O 20 (for example, refer to Patent Document 2). And SrLa 4 Ti 4 O 15 (for example, see Non-Patent Document 1) and the like.

特開昭61−256775号公報JP-A-61-256775 特開昭61−10806号公報JP 61-10806 A M.T.Sebastian.et al., Metals Materials and Processes, vol.13, No.2-4,(2001)p.327-338M.T.Sebastian.et al., Metals Materials and Processes, vol.13, No.2-4, (2001) p.327-338

しかし、(Zr、Sn)TiO系誘電体磁器及びBaTi20は、εが高く、Quも大きいものの、40を越える高いεとすることは困難である。また、SrLaTi15は、εが高いものの、Quが十分ではない。このSrLaTi15は、一般式SrLaTi3+n12+3n(n=1、2、4)で表されるホモロガスシリーズに属し、n=1の場合は、εが高く、τの絶対値が小さいものの、Quの更なる向上が必要とされている。一方、0.8≦n<1の場合は、Quが大きく劣化してしまう傾向にあり、ホモロガスシリーズの磁器では、優れた誘電特性を備える磁器とするためには、製造段階で、SrO、La及びTiOの各々の粉末等の配合量を定比組成になるように厳密に制御し、更には不純物の混入を極力低減させる等の十分な工程管理が必要となる。 However, (Zr, Sn) TiO 4 based dielectric ceramic and Ba 2 Ti 9 O 20 has a high epsilon r, although Qu also large, it is difficult to provide a highly epsilon r exceeding 40. In addition, SrLa 4 Ti 4 O 15 has a high ε r but does not have sufficient Qu. This SrLa 4 Ti 4 O 15 belongs to the homologous series represented by the general formula Sr n La 4 Ti 3 + n O 12 + 3n (n = 1, 2, 4), and when n = 1, ε r is high and τ Although the absolute value of f is small, further improvement of Qu is required. On the other hand, when 0.8 ≦ n <1, there is a tendency that Qu is greatly deteriorated. In the homologous series porcelain, in order to obtain a porcelain having excellent dielectric characteristics, SrO, La is used in the manufacturing stage. Sufficient process control is required, such as strictly controlling the blending amount of each powder of 2 O 3 and TiO 2 to be a stoichiometric composition and further reducing the mixing of impurities as much as possible.

本発明は、上記の状況に鑑みてなされたものであり、優れたε及びQuを有し、且つτも実用上十分な範囲にあり、特に高周波領域においてεが高く、Quが大きい高周波用誘電体磁器組成物を提供することを目的とする。また、本発明は、高い周波数領域で使用可能な高いQ値を有し、しかも、共振周波数の温度係数を0ppm/℃を中心に任意に制御できる誘電体磁器組成物を提供することを目的とする。更に、本発明は、特殊な粉末プロセス、焼結法を用いなくても、優れた誘電特性を有する誘電体磁器組成物の製造方法を提供することを目的とする。 The present invention has been made in view of the above situation, has excellent ε r and Qu, and τ f is also in a practically sufficient range, and particularly has a high ε r and a large Qu in a high frequency region. An object is to provide a dielectric ceramic composition for high frequency use. Another object of the present invention is to provide a dielectric ceramic composition that has a high Q value that can be used in a high frequency region and that can arbitrarily control the temperature coefficient of the resonance frequency around 0 ppm / ° C. To do. Furthermore, an object of the present invention is to provide a method for producing a dielectric ceramic composition having excellent dielectric properties without using a special powder process or sintering method.

本発明の以下のとおりである。
〔1〕Sr、La、Ti及びNbを含有し、組成式aSrO−bLaO3/2−cTiO−dNbO5/2(但し、a、b、c及びdはモル比であり、a+b+c+d=1である。)で表した場合に、該aは0<a≦0.556、該bは0<b≦0.571、該cは0<c≦0.444、及び該dは0<d<0.444であることを特徴とする誘電体磁器組成物。
〔2〕上記aは0.063≦a≦0.313、上記bは0.250≦b≦0.500、上記cは0.188≦c≦0.438、及び上記dは0<d<0.250である上記〔1〕記載の誘電体磁器組成物。
〔3〕SrLaTi15型、LaTi12型、及びSrNb15型の結晶構造のうちの1種又は2種以上含む上記〔1〕又は〔2〕記載の誘電体磁器組成物。
〔4〕Sr、La、Ti及びNbを含有し、組成式xSrLaTi15−yLaTi12−zSrNb15(但し、x、y及びzはモル比であり、x+y+z=1である。)で表した場合に、該xは0≦x<1、該yは0≦y<1、及び該zは0<z<1であることを特徴とする誘電体磁器組成物。
〔5〕上記x、y及びzが、上記x、y及びzが、図1における点A(x=1、y=0、z=0)、点B(x=0.8、y=0、z=0.2)、点C(x=0、y=0.5、z=0.5)、及び点D(x=0.5、y=0.5、z=0)の範囲内(但し、点Aと点Dとを結ぶ直線状の組成は含まない。)にある上記〔4〕記載の誘電体磁器組成物。
〔6〕比誘電率が35以上、無負荷品質係数と該無負荷品質係数の測定周波数との積が10000GHz以上、共振周波数の温度係数が−20〜+20ppm/℃である上記〔1〕乃至〔5〕のいずれかに記載の誘電体磁器組成物。
〔7〕加熱により酸化物となるSr化合物、La化合物、Ti化合物及びNb化合物を混合して混合物を調製し、次いで該混合物を成形し、焼成することにより誘電体磁器組成物を製造する方法であって、上記混合物中の上記Sr化合物、上記La化合物、上記Ti化合物及び上記Nb化合物の含有割合は、上記Sr化合物をSrO、La化合物をLaO3/2、Ti化合物をTiO、Nb化合物をNbO5/2に換算した場合、上記Sr化合物のモル比(a)が0<a≦0.556、上記La化合物のモル比(b)が0<b≦0.571、上記Ti化合物のモル比(c)が0<c≦0.444、及び上記Nb化合物のモル比(d)が0<d<0.444であることを特徴とする誘電体磁器組成物の製造方法。
The present invention is as follows.
[1] Contains Sr, La, Ti and Nb, and has a composition formula aSrO-bLaO 3/2 -cTiO 2 -dNbO 5/2 (where a, b, c and d are molar ratios, and a + b + c + d = 1) A is 0 <a ≦ 0.556, b is 0 <b ≦ 0.571, c is 0 <c ≦ 0.444, and d is 0 <d <. A dielectric ceramic composition characterized by being 0.444.
[2] a is 0.063 ≦ a ≦ 0.313, b is 0.250 ≦ b ≦ 0.500, c is 0.188 ≦ c ≦ 0.438, and d is 0 <d < The dielectric ceramic composition according to [1], which is 0.250.
[3] The above-mentioned [1] or [2], comprising one or more of the crystal structures of SrLa 4 Ti 4 O 15 type, La 4 Ti 3 O 12 type, and Sr 5 Nb 4 O 15 type Dielectric ceramic composition.
[4] Sr, La, and containing Ti and Nb, the composition formula xSrLa 4 Ti 4 O 15 -yLa 4 Ti 3 O 12 -zSr 5 Nb 4 O 15 ( where, x, y and z are molar ratios, x + y + z = 1)), wherein x is 0 ≦ x <1, y is 0 ≦ y <1, and z is 0 <z <1. Composition.
[5] The above x, y, and z are the same as the point A (x = 1, y = 0, z = 0) and the point B (x = 0.8, y = 0) in FIG. , Z = 0.2), point C (x = 0, y = 0.5, z = 0.5), and range of point D (x = 0.5, y = 0.5, z = 0) The dielectric ceramic composition as described in [4] above, wherein the composition does not include a linear composition connecting points A and D.
[6] The above [1] to [[] wherein the relative dielectric constant is 35 or more, the product of the no-load quality factor and the measurement frequency of the no-load quality factor is 10,000 GHz or more, and the temperature coefficient of the resonance frequency is −20 to +20 ppm / ° C. 5] The dielectric ceramic composition according to any one of [5].
[7] A method of producing a dielectric ceramic composition by mixing a Sr compound, La compound, Ti compound and Nb compound which are converted into oxides by heating to prepare a mixture, and then molding and firing the mixture. The content ratio of the Sr compound, La compound, Ti compound and Nb compound in the mixture is as follows. The Sr compound is SrO, the La compound is LaO 3/2 , the Ti compound is TiO 2 and the Nb compound is Nb. When converted to NbO 5/2 , the molar ratio (a) of the Sr compound is 0 <a ≦ 0.556, the molar ratio (b) of the La compound is 0 <b ≦ 0.571, and the molar ratio of the Ti compound. A method for producing a dielectric ceramic composition, wherein the ratio (c) is 0 <c ≦ 0.444, and the molar ratio (d) of the Nb compound is 0 <d <0.444.

本発明の誘電体磁器組成物は、Sr、La、Ti及びNbを含有し、組成式aSrO−bLaO3/2−cTiO−dNbO5/2(但し、a、b、c及びdはモル比であり、a+b+c+d=1である。)で表した場合に、該aは0<a≦0.556、該bは0<b≦0.571、該cは0<c≦0.444、及び該dは0<d<0.444である構成を備えることにより、優れたε及びQuを有し、且つτも実用上十分な範囲にある。
また、本発明の誘電体磁器組成物において、上記a、b、c及びdを0.063≦a≦0.313、0.250≦b≦0.500、0.188≦c≦0.438、0<d<0.250とすると、より優れた誘電特性を有する誘電体磁器組成物とすることができる。
また、本発明の誘電体磁器組成物において、SrLaTi15型、LaTi12型、及びSrNb15型の結晶構造のうちの1種又は2種以上含む構成とすることにより、より優れたε及びQuを有し、且つτも実用上十分な範囲にある誘電体磁器組成物とすることができる。
The dielectric ceramic composition of the present invention contains Sr, La, Ti and Nb, and has a composition formula aSrO-bLaO 3/2 -cTiO 2 -dNbO 5/2 (where a, b, c and d are in molar ratios). And a + b + c + d = 1.) Where a is 0 <a ≦ 0.556, b is 0 <b ≦ 0.571, c is 0 <c ≦ 0.444, and Since d has a configuration in which 0 <d <0.444, it has excellent ε r and Qu, and τ f is also in a practically sufficient range.
In the dielectric ceramic composition of the present invention, the above a, b, c and d may be 0.063 ≦ a ≦ 0.313, 0.250 ≦ b ≦ 0.500, 0.188 ≦ c ≦ 0.438. When 0 <d <0.250, a dielectric ceramic composition having more excellent dielectric properties can be obtained.
In addition, the dielectric ceramic composition of the present invention includes one or more of SrLa 4 Ti 4 O 15 type, La 4 Ti 3 O 12 type, and Sr 5 Nb 4 O 15 type crystal structures. Thus, a dielectric ceramic composition having more excellent ε r and Qu and τ f in a practically sufficient range can be obtained.

他の本発明の誘電体磁器組成物は、Sr、La、Ti及びNbを含有し、組成式xSrLaTi15−yLaTi12−zSrNb15(但し、x、y及びzはモル比であり、x+y+z=1である。)で表した場合に、該xは0≦x<1、該yは0≦y<1、及び該zは0<z≦1である構成を備えることにより、優れたε及びQuを有し、且つτも実用上十分な範囲にある。
また、他の本発明の誘電体磁器組成物において、上記x、y及びzを点A〜点Dの範囲内(但し、点Aと点Dとを結ぶ直線状の組成は含まない。)とすることにより、より優れたε及びQuを有し、且つτも実用上十分な範囲にある誘電体磁器組成物とすることができる。
Another dielectric ceramic composition of the present invention contains Sr, La, Ti and Nb, and has a composition formula xSrLa 4 Ti 4 O 15 -yLa 4 Ti 3 O 12 -zSr 5 Nb 4 O 15 (where x, y and z are molar ratios, and x + y + z = 1.) where x is 0 ≦ x <1, y is 0 ≦ y <1, and z is 0 <z ≦ 1. By having a certain configuration, it has excellent ε r and Qu, and τ f is also in a practically sufficient range.
In another dielectric ceramic composition of the present invention, x, y, and z are within the range of point A to point D (however, the linear composition connecting point A and point D is not included). By doing so, it is possible to obtain a dielectric ceramic composition having more excellent ε r and Qu and τ f in a practically sufficient range.

本発明の誘電体磁器組成物及び他の本発明の誘電体磁器組成物において、εが35以上、QuとQuの測定周波数との積(Qu×f)が10000GHz以上、τが−20〜+20ppm/℃であるものとすると、より優れた誘電特性を有し、高周波用誘電体磁器組成物として好適な誘電体磁器組成物とすることができる。 In the dielectric ceramic composition of the dielectric ceramic composition and other invention of the present invention, epsilon r is 35 or more, the product of the measured frequency of Qu and Qu (Qu × f) is more than 10000 GHz, tau f -20 When it is ˜ + 20 ppm / ° C., a dielectric ceramic composition having more excellent dielectric properties and suitable as a high frequency dielectric ceramic composition can be obtained.

本発明の誘電体磁器組成物の製造方法によれば、特殊な粉末プロセス、焼結法を用いなくても、高周波数領域でも使用可能な高いQuを有し、且つεが比較的大きく、τの絶対値が小さい誘電体磁器組成物を得ることができる。 According to the method for producing a dielectric ceramic composition of the present invention, it has a high Qu that can be used even in a high frequency region without using a special powder process and sintering method, and ε r is relatively large. it can be the absolute value of tau f to obtain a small dielectric ceramic composition.

(1)誘電体磁器組成物
本発明の誘電体磁器組成物は、Sr、La、Ti及びNbを含有し、組成式aSrO−bLaO3/2−cTiO−dNbO5/2(但し、a、b、c及びdはモル比であり、a+b+c+d=1である。)で表した場合に、該aは0<a≦0.556、該bは0<b≦0.571、該cは0<c≦0.444、及び該dは0<d<0.444である。
(1) Dielectric Porcelain Composition The dielectric ceramic composition of the present invention contains Sr, La, Ti and Nb, and has a composition formula aSrO-bLaO 3/2 -cTiO 2 -dNbO 5/2 (where a, b, c, and d are molar ratios, and a + b + c + d = 1.) where a is 0 <a ≦ 0.556, b is 0 <b ≦ 0.571, and c is 0 <c ≦ 0.444, and d is 0 <d <0.444.

上記aは0<a≦0.556、好ましくは0.063≦a≦0.313、特に好ましくは0.163≦a≦0.313である。上記aが0であると、Quが低下するので好ましくない。
上記bは0<b≦0.571、好ましくは0.250≦b≦0.500、更に好ましくは0.250≦b≦0.400である。上記bが0であると、特にQuが大きく低下するので好ましくない。
上記cは0<c≦0.444、好ましくは0.188≦c≦0.438、更に好ましくは0.188≦c≦0.341である。上記cが0であると、Quが低下するので好ましくない。
上記dは0<d<0.444、好ましくは0<d≦0.250、更に好ましくは0.098≦d≦0.250である。上記dが0であると、τの絶対値が負の側において大きくなるので好ましくない。
The above a is 0 <a ≦ 0.556, preferably 0.063 ≦ a ≦ 0.313, particularly preferably 0.163 ≦ a ≦ 0.313. When a is 0, it is not preferable because Qu decreases.
The above b is 0 <b ≦ 0.571, preferably 0.250 ≦ b ≦ 0.500, and more preferably 0.250 ≦ b ≦ 0.400. It is not preferable that b is 0 because Qu is particularly greatly reduced.
The above c is 0 <c ≦ 0.444, preferably 0.188 ≦ c ≦ 0.438, more preferably 0.188 ≦ c ≦ 0.341. If c is 0, it is not preferable because Qu decreases.
The above d is 0 <d <0.444, preferably 0 <d ≦ 0.250, more preferably 0.098 ≦ d ≦ 0.250. When the d is 0, the absolute value of tau f is increased in the negative side is not preferable.

本発明の誘電体磁器組成物は、Sr、La、Ti及びNbを含有し、組成式aSrO−bLaO3/2−cTiO−dNbO5/2で表した場合に、上記a〜dが上記範囲にある限り、その構造について特に限定はない。好ましい構造としては、SrLaTi15型、LaTi12型、及びSrNb15型の結晶構造のうちの1種又は2種以上含む構造である。かかる構成を備えることにより、優れた誘電特性を奏することから好ましい。また、本発明の誘電体組成物において、上記Nbの存在形態についても特に限定はない。通常、上記Nbは、上記のようにSrNb15の形で存在するが、その他、SrNb、SrNbの形で存在していてもよい。 The dielectric ceramic composition of the present invention contains Sr, La, Ti, and Nb, and when the composition formula is represented by aSrO-bLaO 3/2 -cTiO 2 -dNbO 5/2 , the above a to d are in the above range. As long as it is, the structure is not particularly limited. A preferable structure is a structure including one or more of SrLa 4 Ti 4 O 15 type, La 4 Ti 3 O 12 type, and Sr 5 Nb 4 O 15 type crystal structures. By having such a configuration, it is preferable because excellent dielectric properties are exhibited. In the dielectric composition of the present invention, there is no particular limitation on the form of Nb. Normally, the Nb is present in the form of Sr 5 Nb 4 O 15 as described above, but may be present in the form of SrNb 2 O 6 or Sr 2 Nb 2 O 7 .

他の本発明の誘電体磁器組成物は、Sr、La、Ti及びNbを含有し、組成式xSrLaTi15−yLaTi12−zSrNb15(但し、x、y及びzはモル比であり、x+y+z=1である。)で表した場合に、該xは0≦x<1、該yは0≦y<1、及び該zは0<z≦1である。本発明の他の誘電体磁器組成物は、xSrLaTi15−yLaTi12で表される組成にzSrNb15を含有させることにより、優れた誘電特性を奏し、また、xSrLaTi15−yLaTi12で表される組成の誘電体磁器組成物と比較して、より低温で焼成することができる。尚、SrLaTi15、LaTi12及びSrNb15の有無は、X線解析等により確認することができる。 Another dielectric ceramic composition of the present invention contains Sr, La, Ti and Nb, and has a composition formula xSrLa 4 Ti 4 O 15 -yLa 4 Ti 3 O 12 -zSr 5 Nb 4 O 15 (where x, y and z are molar ratios, and x + y + z = 1.) where x is 0 ≦ x <1, y is 0 ≦ y <1, and z is 0 <z ≦ 1. is there. Another dielectric ceramic composition of the present invention exhibits excellent dielectric properties by including zSr 5 Nb 4 O 15 in a composition represented by xSrLa 4 Ti 4 O 15 -yLa 4 Ti 3 O 12 , Further, in comparison with the dielectric ceramic composition of the composition represented by xSrLa 4 Ti 4 O 15 -yLa 4 Ti 3 O 12, more fired at a low temperature. The presence or absence of SrLa 4 Ti 4 O 15 , La 4 Ti 3 O 12 and Sr 5 Nb 4 O 15 can be confirmed by X-ray analysis or the like.

他の本発明の誘電体磁器組成物において、上記x、y及びzは、0≦x<1、0≦y<1、0<z≦1であり、好ましくは0<x<1、0<y<1、及び0<z<1である。更に好ましくは、上記x、y及びzは、図1における点A(x=1、y=0、z=0)、点B(x=0.8、y=0、z=0.2)、点C(x=0、y=0.5、z=0.5)、及び点D(x=0.5、y=0.5、z=0)の範囲内(但し、点Aと点Dとを結ぶ直線状の組成は含まない。)であり、より好ましくは、図1における点A’(x=0.4、y=0.4、z=0.2)、点B’(x=0.3、y=0.3、z=0.4)、点C’(x=0、y=0.5、z=0.5)、及び点D’(x=0.3、y=0.5、z=0.2)の範囲内である。上記x、y及びzを上記範囲とすることにより、よりεが高く、Quが大きく、τの絶対値が小さい誘電体磁器組成物とすることができるので好ましい。 In another dielectric ceramic composition of the present invention, the x, y and z are 0 ≦ x <1, 0 ≦ y <1, 0 <z ≦ 1, and preferably 0 <x <1, 0 <. y <1 and 0 <z <1. More preferably, the x, y, and z are the point A (x = 1, y = 0, z = 0) and the point B (x = 0.8, y = 0, z = 0.2) in FIG. , Point C (x = 0, y = 0.5, z = 0.5) and point D (x = 0.5, y = 0.5, z = 0) (provided that point A and 1 is not included, and more preferably, the point A ′ (x = 0.4, y = 0.4, z = 0.2) and the point B ′ in FIG. (X = 0.3, y = 0.3, z = 0.4), point C ′ (x = 0, y = 0.5, z = 0.5), and point D ′ (x = 0. 3, y = 0.5, z = 0.2). The x, by the y and z in the above range, more epsilon r is high, Qu is large, it is possible to the absolute value of tau f is small dielectric ceramic composition.

また、他の本発明の誘電体磁器組成物は、SrLaTi15、LaTi12及びSrNb15で表される結晶構造以外に、他の結晶構造を有していてもよい。他の結晶構造としては、例えば、ペロブスカイト構造、タングステンブロンズ構造等が挙げられる。 Other dielectric ceramic compositions of the present invention have other crystal structures in addition to the crystal structures represented by SrLa 4 Ti 4 O 15 , La 4 Ti 3 O 12 and Sr 5 Nb 4 O 15. It may be. Examples of other crystal structures include a perovskite structure and a tungsten bronze structure.

本発明の誘電体磁器組成物及び他の本発明の誘電体磁器組成物は、構成元素のNbを含み、且つ各成分のモル比を特定範囲にすることにより、優れた誘電特性を有する。特に、マイクロ波やミリ波等の高周波領域において優れた誘電特性を有する。具体的には、εを35以上、Qu×f(TE011、fは測定周波数である。)を10000以上、τを−20〜+20ppm/℃、好ましくは、εを35以上、Qu×fを10000〜20000GHz、τを−20〜+20ppm/℃とすることができる。 The dielectric ceramic composition of the present invention and other dielectric ceramic compositions of the present invention have excellent dielectric properties by containing Nb as a constituent element and making the molar ratio of each component in a specific range. In particular, it has excellent dielectric properties in a high frequency region such as microwaves and millimeter waves. Specifically, ε r is 35 or more, Qu × f (TE 011 , f is a measurement frequency) is 10000 or more, τ f is −20 to +20 ppm / ° C., preferably ε r is 35 or more, Qu the × f 10000~20000GHz, the tau f can be -20~ + 20ppm / ℃.

本発明の誘電体磁器組成物及び他の本発明の誘電体磁器組成物の構造は特に限定はないが、ペロブスカイト型構造をとることにより、優れたε、Qu及びτを有することとなることから、ペロブスカイト型構造を有する酸化物が含まれていることが好ましい。また、本発明の誘電体磁器組成物及び他の本発明の誘電体磁器組成物は、SrLaTi15型化合物、特にSrLaTi15型層状ペロブスカイト化合物とすることにより、製造時に各々の元素を有する原料を定比組成になるように厳密に制御することなく、優れた誘電特性を備える磁器組成物とすることができる。このSrLaTi15型層状ペロブスカイト化合物は、Sr成分、La成分及びTi成分の各々の原料を混合し、焼成して製造することができる。また、LaTi12で表される複酸化物に、Sr成分及びTi成分の各々の原料を混合し、焼成して製造することができる。 The structures of the dielectric ceramic composition of the present invention and other dielectric ceramic compositions of the present invention are not particularly limited. However, by taking a perovskite structure, the dielectric ceramic composition has excellent ε r , Qu and τ f. Therefore, it is preferable that an oxide having a perovskite structure is included. In addition, the dielectric ceramic composition of the present invention and other dielectric ceramic compositions of the present invention can be made into SrLa 4 Ti 4 O 15 type compounds, particularly SrLa 4 Ti 4 O 15 type layered perovskite compounds at the time of production. A porcelain composition having excellent dielectric properties can be obtained without strictly controlling the raw materials having each element so as to have a stoichiometric composition. This SrLa 4 Ti 4 O 15 type layered perovskite compound can be produced by mixing raw materials of the Sr component, La component and Ti component, followed by firing. Further, the double oxide represented by La 4 Ti 3 O 12, were mixed each materials Sr component and Ti components can be manufactured by firing.

本発明の誘電体磁器組成物及び他の本発明の誘電体磁器組成物の製造方法は特に限定はない。例えば、セラミック原料と有機溶媒とをボールミル等により混合した後、大気雰囲気等において熱処理(仮焼)し、必要に応じて整粒して粉末とし、次いで、この粉末に、バインダ、分散剤、可塑剤及び有機溶媒等を配合し、乾燥し、造粒した後、加圧成形し、この成形体を焼成して製造することができる。尚、熱処理は必ずしも必要ではなく、セラミック原料、バインダ、分散剤、可塑剤及び有機溶媒等を同時に混合した後、成形し、焼成して製造することもできる。本発明の誘電体磁器組成物及び本発明の他の誘電体磁器組成物は、通常は、以下に詳述する本発明の誘電体磁器組成物の製造方法により得られる。   The method for producing the dielectric ceramic composition of the present invention and other dielectric ceramic compositions of the present invention is not particularly limited. For example, a ceramic raw material and an organic solvent are mixed by a ball mill or the like, then heat-treated (calcined) in an air atmosphere or the like, and sized as necessary to obtain a powder. Next, the powder is mixed with a binder, a dispersant, a plasticizer. An agent, an organic solvent, and the like can be blended, dried, granulated, then pressure-molded, and the molded body can be fired for production. Note that heat treatment is not always necessary, and the ceramic raw material, binder, dispersant, plasticizer, organic solvent, and the like can be mixed and then molded and fired. The dielectric ceramic composition of the present invention and the other dielectric ceramic composition of the present invention are usually obtained by the method for producing a dielectric ceramic composition of the present invention described in detail below.

(2)誘電体磁器組成物の製造方法
本発明の誘電体磁器組成物の製造方法では、加熱により酸化物となるSr化合物、La化合物、Ti化合物及びNb化合物を混合して混合物を調製する。
上記加熱により酸化物となるSr化合物、La化合物、Ti化合物及びNb化合物としては、有機金属化合物でもよく、無機金属化合物でもよい。例えば、無機金属化合物としては、酸化物の他、複酸化物、炭酸塩、水酸化物、硝酸塩等が挙げられる。より具体的には、SrCO、La、TiO、及びNb等が挙げられる。また、上記加熱により酸化物となるSr化合物、La化合物、Ti化合物及びNb化合物は各々1種単独でもよく、2種以上を併用してもよい。更に、上記加熱により酸化物となるSr化合物、La化合物、Ti化合物及びNb化合物の形態については特に限定はない。通常は粉末であるが、その他、液状物、ゾル等の使用も可能である。例えば、液状物としては、上記の元素を含む有機金属化合物等の液状物等が挙げられる。更に、粉末は熱処理(仮焼)を行った仮焼粉末でもよく、更には粉末及び仮焼粉末を用いて適宜の方法により造粒し、必要に応じて粒度調整等を行った造粒物でもよい。
(2) Method for Producing Dielectric Porcelain Composition In the method for producing a dielectric porcelain composition of the present invention, a mixture is prepared by mixing Sr compound, La compound, Ti compound and Nb compound that become oxides by heating.
The Sr compound, La compound, Ti compound, and Nb compound that become oxides by the heating may be an organic metal compound or an inorganic metal compound. For example, examples of the inorganic metal compound include oxides, double oxides, carbonates, hydroxides, nitrates, and the like. More specifically, SrCO 3 , La 2 O 3 , TiO 2 , Nb 2 O 5 and the like can be mentioned. In addition, the Sr compound, La compound, Ti compound and Nb compound that become oxides by heating may be used alone or in combination of two or more. Furthermore, there are no particular limitations on the form of the Sr compound, La compound, Ti compound and Nb compound that become oxides by heating. Usually, it is powder, but other liquids, sols, etc. can be used. For example, the liquid material includes liquid materials such as organometallic compounds containing the above elements. Furthermore, the powder may be a calcined powder that has been heat-treated (calcined), and further granulated by an appropriate method using the powder and the calcined powder, and may be a granulated product that has been adjusted in particle size as necessary. Good.

上記混合物中の上記Sr化合物の含有割合(モル比)aは、上記Sr化合物をSrOに換算した場合、0<a≦0.556、好ましくは0.063≦a≦0.313、特に好ましくは0.163≦a≦0.313である。上記aが0であると、Quが低下するので好ましくない。
上記混合物中の上記La化合物の含有割合(モル比)bは、上記La化合物をLaO3/2に換算した場合、0<b≦0.571、好ましくは0.250≦b≦0.500、更に好ましくは0.250≦b≦0.400である。上記bが0であると、特にQuが大きく低下するので好ましくない。
上記混合物中の上記Ti化合物の含有割合(モル比)cは、上記Ti化合物をTiOに換算した場合、0<c≦0.444、好ましくは0.188≦c≦0.438、更に好ましくは0.188≦c≦0.341である。上記cが0であると、Quが低下するので好ましくない。
上記混合物中の上記Nb化合物の含有割合(モル比)dは、上記Nb化合物をNbO5/2に換算した場合、0<d<0.444、好ましくは0<d≦0.250、更に好ましくは0.098≦d≦0.250である。上記dが0であると、τの絶対値が負の側において大きくなるので好ましくない。
The content ratio (molar ratio) a of the Sr compound in the mixture is 0 <a ≦ 0.556, preferably 0.063 ≦ a ≦ 0.313, particularly preferably when the Sr compound is converted to SrO. 0.163 ≦ a ≦ 0.313. When a is 0, it is not preferable because Qu decreases.
The content ratio (molar ratio) b of the La compound in the mixture is 0 <b ≦ 0.571, preferably 0.250 ≦ b ≦ 0.500, when the La compound is converted to LaO 3/2 . More preferably, 0.250 ≦ b ≦ 0.400. It is not preferable that b is 0 because Qu is particularly greatly reduced.
The content ratio (molar ratio) c of the Ti compound in the mixture is 0 <c ≦ 0.444, preferably 0.188 ≦ c ≦ 0.438, more preferably when the Ti compound is converted to TiO 2. Is 0.188 ≦ c ≦ 0.341. If c is 0, it is not preferable because Qu decreases.
The content ratio (molar ratio) d of the Nb compound in the mixture is 0 <d <0.444, preferably 0 <d ≦ 0.250, more preferably when the Nb compound is converted to NbO 5/2. Is 0.098 ≦ d ≦ 0.250. When the d is 0, the absolute value of tau f is increased in the negative side is not preferable.

加熱により酸化物となるSr化合物、La化合物、Ti化合物及びNb化合物を混合する方法について特に限定はない。通常は、ミキサーやボールミル等を用いて混合することができる。また、上記加熱により酸化物となるSr化合物、La化合物、Ti化合物及びNb化合物の他、この種の磁器組成物の製造において一般に使用されるバインダ、分散剤及び可塑剤等の1種又は2種以上を添加することができる。上記バインダとしては、アクリル樹脂、ブチラール樹脂等が挙げられる。上記分散剤としては、ポリアクリル酸塩、アルキルベンゼンスルホン酸塩等が挙げられる。上記可塑剤としては、ジブチルフタレート、ジブチルアジペート等が挙げられる。   There is no particular limitation on the method of mixing the Sr compound, La compound, Ti compound and Nb compound that become oxides by heating. Usually, it can mix using a mixer, a ball mill, etc. In addition to the Sr compound, La compound, Ti compound, and Nb compound that become oxides by heating, one or two of binders, dispersants, plasticizers, and the like that are generally used in the production of this type of porcelain composition The above can be added. Examples of the binder include acrylic resin and butyral resin. Examples of the dispersant include polyacrylates and alkylbenzene sulfonates. Examples of the plasticizer include dibutyl phthalate and dibutyl adipate.

混合方法としては、乾式混合でもよく、有機溶媒を加えた湿式混合でもよい。上記有機溶媒としては、トルエン、メチルエチルケトン、アセトン、及び各種アルコール(メタノール、エタノール、プロパノール、ブタノール、イソプロピルアルコール等)が挙げられる。上記有機溶媒は1種のみでもよく、2種以上を併用することもできる。   The mixing method may be dry mixing or wet mixing with an organic solvent added. Examples of the organic solvent include toluene, methyl ethyl ketone, acetone, and various alcohols (methanol, ethanol, propanol, butanol, isopropyl alcohol, and the like). The organic solvent may be used alone or in combination of two or more.

本発明の誘電体磁器組成物の製造方法において、上記混合物は、上記加熱により酸化物となるSr化合物、La化合物、Ti化合物及びNb化合物、並びに必要に応じて添加したバインダ、分散剤、可塑剤及び有機溶媒等を混合することにより得ることができる。また、上記混合物は、上記加熱により酸化物となるSr化合物、La化合物、Ti化合物及びNb化合物と有機溶媒とをボールミル等により混合した後、大気雰囲気等において熱処理(仮焼)し、必要に応じて整粒して粉末とし、次いで、この粉末に、バインダ、分散剤、可塑剤、有機溶媒及び水等を配合し、必要に応じて乾燥又は造粒をすることにより得ることができる。上記熱処理の温度は特に限定されず、900〜1300℃、特に1000〜1200℃とすることができる。また、上記熱処理の時間も特に限定されず、1〜6時間、特に2〜5時間とすることができる。更に、上記熱処理の雰囲気は特に限定されず、通常は大気雰囲気で行われる。   In the method for producing a dielectric ceramic composition of the present invention, the mixture includes an Sr compound, an La compound, a Ti compound, and an Nb compound that are converted into oxides upon heating, and a binder, a dispersant, and a plasticizer that are added as necessary. And an organic solvent or the like. In addition, the mixture is prepared by mixing the Sr compound, La compound, Ti compound, and Nb compound that are converted into oxides by heating with an organic solvent using a ball mill or the like, and then heat-treating (calcination) in an air atmosphere or the like. The powder can be sized to obtain a powder, and then the powder, a binder, a dispersant, a plasticizer, an organic solvent, water and the like are blended and dried or granulated as necessary. The temperature of the heat treatment is not particularly limited, and can be 900 to 1300 ° C, particularly 1000 to 1200 ° C. The time for the heat treatment is not particularly limited, and may be 1 to 6 hours, particularly 2 to 5 hours. Furthermore, the atmosphere of the heat treatment is not particularly limited, and is usually performed in an air atmosphere.

本発明の誘電体磁器組成物の製造方法では、上記混合物を用いて所望の形状の成形体とし、次いで、この成形体を焼成することにより、誘電体磁器組成物を得る。
上記成形体の形状、大きさ等は特に限定されず、また、その成形方法及び条件も特に限定はない。また、上記成形体を得る際、Sr、La、Ti及びNbの他に誘電特性に影響を及ぼさない限り、他の成分(製造上の不可避的不純物、その他の成分)を含んでいてもよい。上記成形の方法、条件については特に限定はなく、必要に応じては、10〜20MPaの圧力で一軸成形すること等により行うことができ、必要に応じて120〜180MPaの圧力で等方静水圧プレス処理(CIP処理)することができる。
In the method for producing a dielectric ceramic composition of the present invention, a molded body having a desired shape is formed using the above mixture, and then the molded body is fired to obtain a dielectric ceramic composition.
The shape, size, and the like of the molded body are not particularly limited, and the molding method and conditions are not particularly limited. In addition to the Sr, La, Ti, and Nb, when obtaining the molded body, other components (inevitable impurities in production, other components) may be included as long as the dielectric properties are not affected. The molding method and conditions are not particularly limited, and can be performed by uniaxial molding at a pressure of 10 to 20 MPa, if necessary, and isotropic hydrostatic pressure at a pressure of 120 to 180 MPa as necessary. Press processing (CIP processing) can be performed.

上記焼成の方法及び条件は、誘電体磁器組成物を得ることができる限り特に限定はなく、必要に応じて種々の条件とすることができる。例えば、焼成温度は通常、1450〜1700℃、特に1500〜1650℃とすることができる。また、焼成時間は通常、1〜8時間、特に2〜6時間とすることができる。更に、焼成雰囲気は通常、大気雰囲気であるが、アルゴン等の不活性ガス雰囲気や真空中、窒素ガス等の非酸化性雰囲気での焼成も可能である。また、上記焼成は、常圧焼成でもよいが、より緻密な焼結体を得るために、常圧焼成後、HIP処理をすることも可能である。更に、HP(ホットプレス)等の加圧焼結も可能である。尚、上記の方法により得られた成形体について、そのまま焼成を行ってもよいが、必要に応じて脱脂処理をしてもよい。   The firing method and conditions are not particularly limited as long as the dielectric ceramic composition can be obtained, and various conditions can be used as necessary. For example, the firing temperature can usually be 1450 to 1700 ° C, particularly 1500 to 1650 ° C. Also, the firing time is usually 1 to 8 hours, particularly 2 to 6 hours. Furthermore, the firing atmosphere is usually an air atmosphere, but firing in an inert gas atmosphere such as argon or in a non-oxidizing atmosphere such as nitrogen gas in a vacuum is also possible. Moreover, although the said baking may be a normal pressure baking, in order to obtain a denser sintered body, it is also possible to perform a HIP process after a normal pressure baking. Furthermore, pressure sintering such as HP (hot pressing) is also possible. In addition, although the molded object obtained by said method may be baked as it is, you may carry out a degreasing process as needed.

以下、実施例により本発明を具体的に説明する。
実験例1〜32
(1)誘電特性を評価するための試験片の作製
市販のSrCO粉末、La粉末及びTiO粉末、及びNbを原料粉末として用いた。これらの原料粉末を、各々のモル比であるa、b、c及びdが表1に記載した値となるように秤量した。そして、上記各原料粉末をボールミルに投入し、更にエタノールを加えて湿式混合し、スラリーを調製した。次いで、このスラリーを乾燥させ、大気雰囲気、1000〜1200℃で1〜6時間仮焼した。その後、仮焼物、ワックス系バインダ、分散剤及びエタノールをボールミルで粉砕し、混合してスラリーを調製した。次いで、このスラリーを80℃で3時間湯煎乾燥させ、250μmのメッシュを用いて造粒した。その後、造粒物を20MPaの圧力で一軸成形し、更に150MPaの圧力でCIP処理を行い、直径17mm、高さ12mmの円柱状成形体を得た。次いで、この成形体を大気雰囲気、1550℃及び1600℃の各焼成温度で2〜6時間保持して焼成することにより、焼成温度毎に実験例1〜32の誘電体磁器組成物の試験片を作製した。尚、表1中、「#」は本発明の誘電体磁器組成物及び他の本発明の誘電体磁器組成物の範囲外であることを表す。
Hereinafter, the present invention will be described specifically by way of examples.
Experimental Examples 1-32
(1) Preparation of test piece for evaluating dielectric properties Commercially available SrCO 3 powder, La 2 O 3 powder and TiO 2 powder, and Nb 2 O 5 were used as raw material powders. These raw material powders were weighed so that the molar ratios a, b, c and d were as shown in Table 1. And each said raw material powder was thrown into the ball mill, and also ethanol was added and wet-mixed, and the slurry was prepared. Next, the slurry was dried and calcined at 1000 to 1200 ° C. for 1 to 6 hours in an air atmosphere. Thereafter, the calcined product, wax binder, dispersant and ethanol were pulverized with a ball mill and mixed to prepare a slurry. Next, this slurry was dried in a hot water bath at 80 ° C. for 3 hours, and granulated using a 250 μm mesh. Thereafter, the granulated product was uniaxially molded at a pressure of 20 MPa, and further subjected to CIP treatment at a pressure of 150 MPa to obtain a cylindrical molded body having a diameter of 17 mm and a height of 12 mm. Next, this molded body was fired by holding it for 2 to 6 hours at the firing temperatures of 1550 ° C. and 1600 ° C. in the air atmosphere, so that the test pieces of the dielectric ceramic compositions of Experimental Examples 1 to 32 were fired at each firing temperature. Produced. In Table 1, “#” represents that the value is outside the range of the dielectric ceramic composition of the present invention and other dielectric ceramic compositions of the present invention.

Figure 2005187240
Figure 2005187240

(2)誘電特性の評価
上記(1)で作製した実験例1〜32の試験片を、粒度#200のレジンボンド砥石を用いて平行研削した。その後、研削後の試験片を用い、平行導体板型誘電体円柱共振器法(TE011モード)により、測定周波数4〜6GHzにおいて、εr、Qu×f(GHz、fは測定周波数である。)及びτ(ppm/℃)を測定した。尚、τは25〜80℃の温度領域で測定し、τ=(f80−f25)/(f25×ΔT)、ΔT=80−25=55℃によって算出した。この結果を表2に示す。尚、表2中、「#」は本発明の誘電体磁器組成物及び他の本発明の誘電体磁器組成物の範囲外であることを表す。また、表2中、「Qf」は「Qu×f」であることを表す。尚、表2中、「−」は、密度が十分に高くなく、吸水があるため、誘電特性を測定できなかったことを意味する。
(2) Evaluation of dielectric properties The test pieces of Experimental Examples 1 to 32 prepared in the above (1) were subjected to parallel grinding using a resin bond grindstone having a particle size of # 200. Thereafter, ε r , Qu × f (GHz, f is a measurement frequency) at a measurement frequency of 4 to 6 GHz by a parallel conductor plate type dielectric cylindrical resonator method (TE 011 mode) using a ground test piece. ) And τ f (ppm / ° C.). Note that tau f measured in the temperature range of 25~80 ℃, τ f = (f 80 -f 25) / (f 25 × ΔT), was calculated by ΔT = 80-25 = 55 ℃. The results are shown in Table 2. In Table 2, “#” represents that the value is outside the range of the dielectric ceramic composition of the present invention and other dielectric ceramic compositions of the present invention. In Table 2, “Qf” represents “Qu × f”. In Table 2, “−” means that the dielectric properties could not be measured because the density was not sufficiently high and there was water absorption.

Figure 2005187240
Figure 2005187240

(3)実施例の結果
表2より、焼成温度が1550℃の場合、本発明の範囲外である実験例1〜17では、εが35.0〜40.7、τの絶対値が13.5〜20.0ppm/℃であり、更に、Qfも592〜21821GHzとかなりばらつきが認められる。また、実験例1〜17では、ε、Qu及びτのうちのいずれかが優れていても、他が劣ることから、ε、Qu及びτのバランスに劣ることが分かる。
(3) Results of Examples From Table 2, when the firing temperature is 1550 ° C., in Experimental Examples 1 to 17 outside the scope of the present invention, ε r is 35.0 to 40.7, and the absolute value of τ f is It is 13.5 to 20.0 ppm / ° C., and Qf is also considerably different from 592 to 21821 GHz. In Experimental Examples 1 to 17, it can be seen that even if any one of ε r , Qu, and τ f is excellent, the other is inferior, so that the balance of ε r , Qu, and τ f is inferior.

これに対し、本発明の範囲内である実験例18〜32では、εが41.9〜44.3と高く、τの絶対値が0.2〜15ppm/℃と小さく、更に、Qfも11934〜17000GHzと高い値であると共に、ばらつきが小さい。特に、zが0より大きい実験例18〜30では、εが42.6〜44.3、τの絶対値が0.2〜9.0ppm/℃、Qfが12806〜17000GHzであり、より優れたε、Qu及びτを示している。この結果より、本発明の範囲内である実験例18〜32は、本発明の範囲外である実験例1〜17と比べて、ε、Qu及びτのバランスに優れた誘電体磁器組成物であることが分かる。
また、1550℃と1600℃での誘電特性を対比すると、本発明の範囲内である実験例18〜32は、1550℃の方が、1600℃よりもε、Qu及びτのが同等か、あるいは優れており、誘電特性のバランスに優れていることが分かる。しかも、この傾向は、本発明の範囲外である実験例1〜17よりも顕著に認められる。この結果より、本発明の範囲内である実験例18〜32は、本発明の範囲外である実験例1〜17と比べて、より低い温度で誘電特性が高く、バランスに優れていることが分かる。
On the other hand, in Experimental Examples 18 to 32 within the scope of the present invention, ε r is as high as 41.9 to 44.3, the absolute value of τ f is as small as 0.2 to 15 ppm / ° C., and Qf Is a high value of 11934 to 17000 GHz, and variation is small. In particular, the z is greater than 0 Experimental Example 18 to 30, epsilon r is 42.6 to 44.3, the absolute value of tau f is 0.2~9.0ppm / ℃, Qf is 12806~17000GHz, more Excellent ε r , Qu and τ f are shown. As a result, the dielectric ceramic compositions excellent in the balance of ε r , Qu, and τ f in the experimental examples 18 to 32 that are within the scope of the present invention, as compared with the experimental examples 1 to 17 that are outside the scope of the present invention. It turns out that it is a thing.
Further, when comparing the dielectric characteristics at 1550 ° C. and 1600 ° C., in Experimental Examples 18 to 32, which are within the scope of the present invention, are ε r , Qu, and τ f equivalent at 1550 ° C. than at 1600 ° C. Or excellent, and it is understood that the balance of dielectric properties is excellent. And this tendency is recognized notably than Experimental Examples 1-17 which are outside the scope of the present invention. From these results, it can be seen that Experimental Examples 18 to 32, which are within the scope of the present invention, have higher dielectric properties and excellent balance at lower temperatures than Experimental Examples 1 to 17, which are outside the scope of the present invention. I understand.

尚、本発明においては、上記の具体的な実施例に限られず、目的、用途等に応じて本発明の範囲内で種々変更した実施例とすることができる。   In the present invention, the present invention is not limited to the specific embodiments described above, and various modifications can be made within the scope of the present invention depending on the purpose, application, and the like.

本発明の誘電体磁器組成物は、優れたε、Quを有し、τも実用上十分な範囲にある。本発明の誘電体磁器組成物は、例えば、誘電体共振器、誘電体アンテナ、誘電体基板、誘電体導波線路、デュプレクサ、コンデンサ、及び誘電体フィルタ等の電子部品、並びに各種マイクロ波回路のインピーダンス整合部材等に利用することができる。
また、本発明の誘電体磁器組成物は、特に高周波領域においてεが高く、Quが大きいことから、高周波用誘電体磁器組成物として好適に使用することができる。そして、本発明の誘電体磁器組成物は、高周波領域で用いられる誘電体共振器、誘電体アンテナ、誘電体基板、誘電体導波線路、デュプレクサ、コンデンサ、及び誘電体フィルタ等の電子部品、並びに各種マイクロ波回路のインピーダンス整合部材等に利用することができる。
The dielectric ceramic composition of the present invention has excellent ε r and Qu, and τ f is also in a practically sufficient range. The dielectric ceramic composition of the present invention includes, for example, a dielectric resonator, a dielectric antenna, a dielectric substrate, a dielectric waveguide, a duplexer, a capacitor, a dielectric filter, and other electronic components, and various microwave circuits. It can be used for an impedance matching member or the like.
The dielectric ceramic composition of the present invention is particularly high epsilon r in a high frequency range, since a large Qu, can be suitably used as a high frequency dielectric ceramic composition. The dielectric ceramic composition of the present invention includes a dielectric resonator, a dielectric antenna, a dielectric substrate, a dielectric waveguide, a duplexer, a capacitor, and an electronic component such as a dielectric filter used in a high frequency region, and It can be used as an impedance matching member for various microwave circuits.

本発明の誘電体磁器組成物の組成範囲を説明するための三元図である。It is a ternary diagram for explaining the composition range of the dielectric ceramic composition of the present invention.

Claims (7)

Sr、La、Ti及びNbを含有し、組成式aSrO−bLaO3/2−cTiO−dNbO5/2(但し、a、b、c及びdはモル比であり、a+b+c+d=1である。)で表した場合に、該aは0<a≦0.556、該bは0<b≦0.571、該cは0<c≦0.444、及び該dは0<d<0.444であることを特徴とする誘電体磁器組成物。 It contains Sr, La, Ti and Nb, and has the composition formula aSrO-bLaO 3/2 -cTiO 2 -dNbO 5/2 (where a, b, c and d are molar ratios and a + b + c + d = 1). Where a is 0 <a ≦ 0.556, b is 0 <b ≦ 0.571, c is 0 <c ≦ 0.444, and d is 0 <d <0.444. A dielectric porcelain composition comprising: 上記aは0.063≦a≦0.313、上記bは0.250≦b≦0.500、上記cは0.188≦c≦0.438、及び上記dは0<d<0.250である請求項1記載の誘電体磁器組成物。   A is 0.063 ≦ a ≦ 0.313, b is 0.250 ≦ b ≦ 0.500, c is 0.188 ≦ c ≦ 0.438, and d is 0 <d <0.250. The dielectric ceramic composition according to claim 1. SrLaTi15型、LaTi12型、及びSrNb15型の結晶構造のうちの1種又は2種以上含む請求項1又は2記載の誘電体磁器組成物。 The dielectric ceramic composition according to claim 1 or 2, comprising one or more of SrLa 4 Ti 4 O 15 type, La 4 Ti 3 O 12 type, and Sr 5 Nb 4 O 15 type crystal structures. Sr、La、Ti及びNbを含有し、組成式xSrLaTi15−yLaTi12−zSrNb15(但し、x、y及びzはモル比であり、x+y+z=1である。)で表した場合に、該xは0≦x<1、該yは0≦y<1、及び該zは0<z<1であることを特徴とする誘電体磁器組成物。 It contains Sr, La, Ti and Nb, and has a composition formula xSrLa 4 Ti 4 O 15 -yLa 4 Ti 3 O 12 -z Sr 5 Nb 4 O 15 (where x, y and z are molar ratios, and x + y + z = 1 X is 0 ≦ x <1, y is 0 ≦ y <1, and z is 0 <z <1. 上記x、y及びzが、図1における点A(x=1、y=0、z=0)、点B(x=0.8、y=0、z=0.2)、点C(x=0、y=0.5、z=0.5)、及び点D(x=0.5、y=0.5、z=0)の範囲内(但し、点Aと点Dとを結ぶ直線状の組成は含まない。)にある請求項4記載の誘電体磁器組成物。   The x, y, and z are points A (x = 1, y = 0, z = 0), B (x = 0.8, y = 0, z = 0.2), C ( x = 0, y = 0.5, z = 0.5) and within the range of point D (x = 0.5, y = 0.5, z = 0) (however, point A and point D are The dielectric ceramic composition according to claim 4, which does not include a linear composition to be connected. 比誘電率が35以上、無負荷品質係数と該無負荷品質係数の測定周波数との積が10000GHz以上、共振周波数の温度係数が−20〜+20ppm/℃である請求項1乃至5のいずれかに記載の誘電体磁器組成物。   The relative dielectric constant is 35 or more, the product of the no-load quality factor and the measurement frequency of the no-load quality factor is 10,000 GHz or more, and the temperature coefficient of the resonance frequency is -20 to +20 ppm / ° C. The dielectric ceramic composition as described. 加熱により酸化物となるSr化合物、La化合物、Ti化合物及びNb化合物を混合して混合物を調製し、次いで該混合物を成形し、焼成することにより誘電体磁器組成物を製造する方法であって、上記混合物中の上記Sr化合物、上記La化合物、上記Ti化合物及び上記Nb化合物の含有割合は、上記Sr化合物をSrO、La化合物をLaO3/2、Ti化合物をTiO、Nb化合物をNbO5/2に換算した場合、上記Sr化合物のモル比(a)が0<a≦0.556、上記La化合物のモル比(b)が0<b≦0.571、上記Ti化合物のモル比(c)が0<c≦0.444、及び上記Nb化合物のモル比(d)が0<d<0.444であることを特徴とする誘電体磁器組成物の製造方法。 A method for producing a dielectric ceramic composition by mixing an Sr compound, an La compound, a Ti compound and an Nb compound that are converted into oxides by heating, preparing a mixture, and then molding and firing the mixture, The Sr compound, the La compound, the Ti compound, and the Nb compound in the mixture are contained in proportions such that the Sr compound is SrO, the La compound is LaO 3/2 , the Ti compound is TiO 2 , and the Nb compound is NbO 5 / When converted to 2 , the molar ratio (a) of the Sr compound is 0 <a ≦ 0.556, the molar ratio (b) of the La compound is 0 <b ≦ 0.571, and the molar ratio of the Ti compound (c ) Is 0 <c ≦ 0.444, and the molar ratio (d) of the Nb compound is 0 <d <0.444.
JP2003428381A 2003-12-24 2003-12-24 Dielectric porcelain composition Expired - Fee Related JP4541692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003428381A JP4541692B2 (en) 2003-12-24 2003-12-24 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003428381A JP4541692B2 (en) 2003-12-24 2003-12-24 Dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JP2005187240A true JP2005187240A (en) 2005-07-14
JP4541692B2 JP4541692B2 (en) 2010-09-08

Family

ID=34787375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003428381A Expired - Fee Related JP4541692B2 (en) 2003-12-24 2003-12-24 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JP4541692B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10872710B2 (en) 2018-05-30 2020-12-22 Samsung Electronics Co., Ltd. Dielectric composites, and multi-layered capacitors and electronic devices comprising thereof
CN113631509A (en) * 2019-04-08 2021-11-09 株式会社小原 Dielectric inorganic composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50149999A (en) * 1974-05-22 1975-12-01
JPH0483751A (en) * 1990-07-23 1992-03-17 Murata Mfg Co Ltd Dielectric ceramic composition
JP2003055039A (en) * 2001-08-09 2003-02-26 Hitoshi Osato Microwave dielectric composition and production method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50149999A (en) * 1974-05-22 1975-12-01
JPH0483751A (en) * 1990-07-23 1992-03-17 Murata Mfg Co Ltd Dielectric ceramic composition
JP2003055039A (en) * 2001-08-09 2003-02-26 Hitoshi Osato Microwave dielectric composition and production method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10872710B2 (en) 2018-05-30 2020-12-22 Samsung Electronics Co., Ltd. Dielectric composites, and multi-layered capacitors and electronic devices comprising thereof
CN113631509A (en) * 2019-04-08 2021-11-09 株式会社小原 Dielectric inorganic composition

Also Published As

Publication number Publication date
JP4541692B2 (en) 2010-09-08

Similar Documents

Publication Publication Date Title
US20010051584A1 (en) Dielectric ceramic composition and method for producing the same, and device for communication apparatus using the same
Huang et al. Influence of V2O5 additions to NdAlO3 ceramics on sintering temperature and microwave dielectric properties
JP4524411B2 (en) Dielectric porcelain composition
KR101607582B1 (en) Dielectric ceramic composition. dielectric ceramic, electronic component, and communication device
JP3995319B2 (en) Dielectric material and manufacturing method thereof
JP4541692B2 (en) Dielectric porcelain composition
JP2004018365A (en) Composition for microwave dielectric ceramic and method of manufacturing the ceramic
JP4579159B2 (en) High frequency porcelain composition, method for producing the same, and planar high frequency circuit
WO1996008019A1 (en) Dielectric procelain composition and its manufacture
JP2003146752A (en) Dielectric ceramic composition
Chen et al. Microwave dielectric properties and microstructures of La (Mg1/2Ti1/2) O3 with CuO-doped
CN111825445A (en) High-dielectric-constant microwave dielectric ceramic material, preparation and application thereof
JP4383951B2 (en) High frequency dielectric ceramic composition and method for producing the same
JP4494725B2 (en) Dielectric ceramic composition and manufacturing method thereof
JP3214308B2 (en) Dielectric porcelain composition
JP4494756B2 (en) Dielectric ceramic composition and dielectric resonator using the same
JPH06295619A (en) Dielectric porcelain and dielectric oscillator
KR20040078525A (en) Dielectric Ceramic Compositions for High Frequency Applications
KR100823217B1 (en) Dielectric porcelain composition and method for production thereof
JP2009234888A (en) Dielectric porcelain composition
JP3330024B2 (en) High frequency dielectric ceramic composition
JPH0877828A (en) Dielectric ceramic composition and its manufacture
JP2006117448A (en) Dielectric ceramic composition and electronic component using the same
JPH08337468A (en) Dielectric porcelain composition
JPH08337474A (en) Dielectric porcelain composition

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100624

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees