JPH0640725A - Acicular oxide dielectric particles and their production - Google Patents

Acicular oxide dielectric particles and their production

Info

Publication number
JPH0640725A
JPH0640725A JP4216621A JP21662192A JPH0640725A JP H0640725 A JPH0640725 A JP H0640725A JP 4216621 A JP4216621 A JP 4216621A JP 21662192 A JP21662192 A JP 21662192A JP H0640725 A JPH0640725 A JP H0640725A
Authority
JP
Japan
Prior art keywords
rare earth
titanium
earth element
acicular
dielectric particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4216621A
Other languages
Japanese (ja)
Inventor
Toichi Takagi
東一 高城
Hiroshi Inomata
浩 猪又
Kazuhiro Aizawa
相沢一裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP4216621A priority Critical patent/JPH0640725A/en
Publication of JPH0640725A publication Critical patent/JPH0640725A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To provide acicular oxide dielectric particles useful as a material having mechanical characteristics as the reinforcing material of a composite material, etc., besides functional properties as a dielectric and also useful as starting material for a novel composite material having anisotropy in characteristics. CONSTITUTION:The mixture of starting materials contg. a rare earth element and titanium with a flux is heat-treated to produce the objective acicular oxide dielectric particles having >=3 aspect ratio. The oxide contains the rare earth element and titanium as principal components.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、新規な針状の酸化物誘
電体粒子及びその製造方法に関する。針状酸化物誘電体
粒子は、形状が針状であることから各種複合材料の誘電
特性を有する強化材として、その機械的特性と誘電特性
などの機能性を併せ持つ新規な機能材料として有望であ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to novel acicular oxide dielectric particles and a method for producing the same. Since the acicular oxide dielectric particles are acicular in shape, they are promising as a reinforcing material having dielectric properties of various composite materials and as a new functional material having both mechanical properties and dielectric properties. .

【0002】[0002]

【従来技術】従来、酸化物誘電体粉末は誘電体磁器を製
造する原料や樹脂、ガラスなどと複合するための粉末原
料として用いられているが、稀土類元素及びチタンを主
成分とする針状酸化物粒子は知られていない。稀土類元
素及びチタンを主成分とする酸化物には、高周波やマイ
クロ波の領域で優れた誘電特性を有するものが多く、例
えばLn4Ti9O24 、Ln2Ti4O11 、Ln2Ti3O9-x、Ln2Ti2O7
LnTiO3、Ln2TiO5 (Lnは稀土類元素を表す)等の化合物
や固溶体が知られている。これらの物質の比誘電率εr
、品質係数Q(誘電損失tan δの逆数)及び温度係数
τf 等の誘電特性は、その結晶構造と組成、特に稀土類
元素の種類と組成比、及び製造条件等により大きく異な
り、使用目的に応じて選択される。例えば、Ln2Ti2O7
誘電特性は、比誘電率εr が35〜45程度、品質係数Qが
500〜12000 程度、温度係数τf は0 〜-120程度である
ことが知られており、稀土類元素の種類と組成比及び製
造条件によって異なる。また、Ln4Ti9O24 の誘電特性
は、比誘電率εr が35程度、温度係数τf は0 〜+80 程
度であることが知られている。
2. Description of the Related Art Conventionally, oxide dielectric powder has been used as a raw material for manufacturing a dielectric ceramic, a powder raw material for compounding with resin, glass, etc., but needle-shaped powders containing rare earth elements and titanium as main components. No oxide particles are known. Many oxides containing rare earth elements and titanium as main components have excellent dielectric properties in the high frequency and microwave regions, such as Ln 4 Ti 9 O 24 , Ln 2 Ti 4 O 11 and Ln 2 Ti. 3 O 9-x , Ln 2 Ti 2 O 7 ,
Compounds and solid solutions such as LnTiO 3 and Ln 2 TiO 5 (Ln represents a rare earth element) are known. The relative permittivity εr of these substances
, The quality factor Q (the reciprocal of the dielectric loss tan δ) and the temperature coefficient τ f vary greatly depending on the crystal structure and composition, especially the type and composition ratio of rare earth elements, and manufacturing conditions. Selected. For example, regarding the dielectric characteristics of Ln 2 Ti 2 O 7 , the relative permittivity εr is about 35 to 45, and the quality factor Q is
It is known that the temperature coefficient τ f is about 500 to 12000 and the temperature coefficient τ f is about 0 to -120, and it depends on the type and composition ratio of rare earth elements and manufacturing conditions. As for the dielectric properties of Ln 4 Ti 9 O 24 , it is known that the relative permittivity εr is about 35 and the temperature coefficient τf is about 0 to +80.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
如く形状が針状である酸化物誘電体粒子は知られておら
ず、その利用は考えられていなかった。酸化物誘電体粒
子が針状であれば複合材料の原料として用いたときに、
その誘電特性付与の効果ばかりでなく、強化材料として
の効果も同時に付与することができる。また、粒子形状
が針状であるため成形方法などを工夫することにより粒
子を配向させ、特性の異方性を持った材料を製造するこ
とも可能となる。本発明は新規な針状酸化物誘電体粒子
及びその製造方法を提供することを目的としてなされた
ものである。
However, the above-mentioned needle-shaped oxide dielectric particles have not been known, and their use has not been considered. If the oxide dielectric particles are acicular, when used as a raw material for the composite material,
Not only the effect of imparting the dielectric property but also the effect as a reinforcing material can be imparted at the same time. Further, since the particle shape is needle-like, it is possible to orient the particles by devising a molding method or the like to manufacture a material having anisotropic properties. The present invention has been made for the purpose of providing new acicular oxide dielectric particles and a method for producing the same.

【0004】[0004]

【課題を解決するための手段】すなわち、本発明の第一
は、稀土類元素及びチタンを主成分とする針状酸化物粒
子であって、その粒子のアスペクト比が3以上であるこ
とを特徴とする針状酸化物誘電体粒子である。また、第
二の発明は、稀土類元素及びチタン成分とを含有する原
料並びに溶融剤との混合物を熱処理することを特徴とす
るアスペクト比3以上の針状酸化物誘電体粒子の製造方
法である。
That is, the first aspect of the present invention is needle-like oxide particles containing a rare earth element and titanium as main components, and the aspect ratio of the particles is 3 or more. And acicular oxide dielectric particles. The second invention is a method for producing acicular oxide dielectric particles having an aspect ratio of 3 or more, which comprises heat-treating a mixture of a raw material containing a rare earth element and a titanium component and a melting agent. .

【0005】以下、本発明についてさらに詳細に説明す
る。第一の発明にいうアスペクト比とは針状粒子(また
は柱状粒子の場合もありうる)の長軸の短軸に対する長
さの比である。稀土類元素とは一般の定義通りLa、Ce、
Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu
及びY、Scの17種類の元素であり、特に要求される誘電
体の特性によるがLa、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb
及びDyなどが有用である。本発明は稀土類元素及びチタ
ンを主成分とする針状誘電体粒子であるが、この主成分
以外の添加成分としては特に限定されないが、Pb、Sr、
Ca、Zr、Hf、Bi、Mn、Al、Mg、Si、Ge、Te、Ni、Tl、S
b、Co及びCr等を1種以上添加してもよく、その添加量
は酸化物換算で通常25重量%以下が好ましい。
The present invention will be described in more detail below. The aspect ratio referred to in the first aspect of the invention is the ratio of the major axis of the acicular particles (or columnar particles in some cases) to the minor axis. Rare earth elements are La, Ce,
Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu
And Y and Sc, which are 17 kinds of elements, depending on the characteristics of the required dielectric material, such as La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, and Tb.
And Dy are useful. The present invention is a needle-shaped dielectric particles containing a rare earth element and titanium as a main component, but is not particularly limited as an additive component other than this main component, Pb, Sr,
Ca, Zr, Hf, Bi, Mn, Al, Mg, Si, Ge, Te, Ni, Tl, S
One or more kinds of b, Co, Cr and the like may be added, and the addition amount thereof is preferably 25% by weight or less in terms of oxide.

【0006】本発明の針状誘電体粒子中の稀土類元素及
びチタンの組成比は特に限定されるものではなく、所望
の誘電特性によって選択される。具体的には、Ln4Ti9O
24 、Ln2Ti4O11 、Ln2Ti3O9-x、Ln2Ti2O7、LnTiO3、Ln2
TiO5 (Lnは稀土類元素を表す)等の化合物や固溶体が
挙げられる。これらの物質の比誘電率εr 、品質係数Q
(誘電損失 tanδの逆数)及び温度係数τf 等の誘電特
性は、その結晶構造と組成、特に稀土類元素の種類と組
成比、及び製造条件等により大きく異なり、使用目的に
応じて選択される。例えば、Ln2Ti2O7の誘電特性は、比
誘電率εr が35〜45程度、品質係数Qが 500〜12000 程
度、温度係数τf は0 〜-120程度であり、稀土類元素の
種類と組成比及び製造条件によって異なる。また、Ln4T
i9O24 の誘電特性は、比誘電率εr が35程度、温度係数
τf は0 〜+80 程度である。
The composition ratio of the rare earth element and titanium in the acicular dielectric particles of the present invention is not particularly limited and is selected according to desired dielectric properties. Specifically, Ln 4 Ti 9 O
24 , Ln 2 Ti 4 O 11 , Ln 2 Ti 3 O 9-x , Ln 2 Ti 2 O 7 , LnTiO 3 , Ln 2
Examples thereof include compounds such as TiO 5 (Ln represents a rare earth element) and solid solutions. Relative permittivity εr and quality factor Q of these substances
Dielectric properties such as (reciprocal of dielectric loss tan δ) and temperature coefficient τ f greatly differ depending on its crystal structure and composition, particularly the type and composition ratio of rare earth elements, manufacturing conditions, etc., and are selected according to the intended use. For example, the dielectric properties of Ln 2 Ti 2 O 7 are as follows: relative permittivity εr is about 35 to 45, quality factor Q is about 500 to 12000, and temperature coefficient τf is about 0 to -120. It depends on the composition ratio and manufacturing conditions. Also, Ln 4 T
Regarding the dielectric properties of i 9 O 24 , the relative permittivity εr is about 35, and the temperature coefficient τf is about 0 to +80.

【0007】次に第二の発明について説明する。稀土類
元素の原料としては、稀土類元素の酸化物が好ましく、
そのほか炭酸塩などの塩が好ましい。また、目的とする
組成によっては稀土類元素の精製工程で得られる軽稀土
酸化物混合物など何種類かの稀土類元素を含む原料を用
いても良い。また、金属を原料としても良い。何れにし
ても熱処理後に酸化物となり不純物を残留しないものが
好ましい。原料が粉末形態である場合には、その粒度は
細かいものが好ましく、具体的には5μm 以下、好まし
くは1μm 以下のものである。
Next, the second invention will be described. As a raw material for rare earth elements, oxides of rare earth elements are preferable,
In addition, salts such as carbonates are preferable. Further, depending on the composition of interest, a raw material containing several kinds of rare earth elements such as a light rare earth oxide mixture obtained in the step of refining rare earth elements may be used. Alternatively, a metal may be used as a raw material. In any case, it is preferable that it becomes an oxide after heat treatment and no impurities remain. When the raw material is in powder form, the particle size is preferably small, specifically 5 μm or less, preferably 1 μm or less.

【0008】チタンの原料としてはチタンの酸化物、水
酸化物、オキシ酸化物、塩化物、硝酸塩、硫酸塩、シュ
ウ酸塩、ギ酸塩、酢酸塩、アルコキシド等の有機酸塩及
び金属などが挙げられるが、熱処理後に酸化物となり不
純物を残留しないものが好ましい。原料が粉末形態であ
る場合には、その粒度は細かいものが好ましく、具体的
には5μm 以下、好ましくは1μm 以下のものである。
Examples of titanium raw materials include titanium oxides, hydroxides, oxyoxides, chlorides, nitrates, sulfates, oxalates, formates, acetates, organic acid salts such as alkoxides, and metals. However, it is preferable that the oxide becomes an oxide after heat treatment and no impurities remain. When the raw material is in powder form, the particle size is preferably small, specifically 5 μm or less, preferably 1 μm or less.

【0009】添加成分を加える場合に用いる添加成分の
原料としては特に限定されないが、単体、合金、酸化
物、水酸化物、オキシ酸化物、塩化物、硝酸塩、硫酸
塩、シュウ酸塩、ギ酸塩、酢酸塩、アルコキシド等の有
機酸塩、及びこれらの混合物並びに2種以上の成分から
なる複合化合物などが挙げられるが、熱処理後に酸化物
となり不純物を残留しないものが好ましい。原料が粉末
形態である場合には、その粒度は細かいものが好まし
く、具体的には5μm 以下、好ましくは1μm 以下のも
のである。
The raw material of the additive component used when adding the additive component is not particularly limited, but is a simple substance, alloy, oxide, hydroxide, oxyoxide, chloride, nitrate, sulfate, oxalate, formate. Examples thereof include organic acid salts such as acetic acid salts and alkoxides, and mixtures thereof, and complex compounds composed of two or more kinds of components, but those that do not remain as impurities after heat treatment are preferable. When the raw material is in powder form, the particle size is preferably small, specifically 5 μm or less, preferably 1 μm or less.

【0010】本発明で用いる稀土類元素及びチタン成分
を含有する原料としては上記各成分を含有する原料の混
合物で良いが、さらに各成分が均一に分布しており、稀
土類元素及びチタンの少なくとも一部が複合化合物及び
/または固溶体を形成しているものが好ましい。これら
の稀土類元素及びチタンの少なくとも一部が複合化合物
及び/または固溶体を形成している原料の製造方法とし
ては、固相法、共沈法等の液相法及び気相法があり、何
れの方法でも良いが生産性、製造効率の点では固相法が
良い。
The raw material containing the rare earth element and the titanium component used in the present invention may be a mixture of the raw materials containing the above respective components, but the respective components are evenly distributed, and at least the rare earth element and titanium are contained. It is preferable that a part thereof forms a complex compound and / or a solid solution. As a method for producing a raw material in which at least a part of these rare earth elements and titanium form a complex compound and / or a solid solution, there are a solid phase method, a liquid phase method such as a coprecipitation method, and a gas phase method. However, the solid phase method is preferable in terms of productivity and production efficiency.

【0011】固相法としては上記構成成分の原料を粉末
形態で混合し仮焼する方法である。混合はミキサー、ボ
ールミル、振動ミル等を用い乾式、湿式のいずれでもよ
いが、湿式の方が効率がよい。最適仮焼温度は、組成に
よっても異なるが 700℃〜1500℃、好ましくは 900℃〜
1300℃である。仮焼温度 700℃未満では混合粉末の固相
反応が不十分であり、また1500℃を超えると粉末同士の
強固な凝集が進行し粉末が粗大化し粉体特性が悪化し、
溶融剤との混合特性が低下するからである。仮焼処理の
方法は、具体的には通常の電気炉等で仮焼することなど
が挙げられる。
The solid phase method is a method in which the raw materials of the above-mentioned constituents are mixed in a powder form and calcined. Mixing may be performed by a dry method or a wet method using a mixer, a ball mill, a vibration mill or the like, but the wet method is more efficient. The optimum calcination temperature varies depending on the composition, but it is 700 ℃ ~ 1500 ℃, preferably 900 ℃ ~
It is 1300 ° C. If the calcination temperature is less than 700 ° C, the solid-phase reaction of the mixed powder is insufficient, and if it exceeds 1500 ° C, strong agglomeration of the powders progresses and the powder becomes coarse and the powder characteristics deteriorate.
This is because the mixing characteristics with the melting agent deteriorate. Specific examples of the calcination method include calcination in an ordinary electric furnace or the like.

【0012】また、稀土類元素及びチタン成分以外に前
述の添加成分を加える場合には、それら添加成分の酸化
物、炭酸塩などの各種塩類などの添加成分の単独化合物
やいくつかの添加成分からなる複合化合物を粉末や溶液
の形態で上記固相法、液相法、気相法などの工程で用い
るか、または上記手法で製造した稀土類元素及びチタン
成分を含有する原料を溶融剤と混合する際に添加混合し
て用いても良い。ここで稀土類元素及びチタンの配合割
合は前記第一発明の説明で述べた組成比となるように配
合することが好ましい。
When the above-mentioned additional components are added in addition to the rare earth element and the titanium component, a single compound of the additional components such as various salts such as oxides and carbonates of these additional components or some of the additional components are used. Is used in the form of powder or solution in the steps of the solid phase method, the liquid phase method, the gas phase method, or the raw material containing the rare earth element and the titanium component produced by the above method is mixed with the melting agent. You may add and mix it when using it. Here, it is preferable to mix the rare earth element and titanium so that the composition ratio is the composition ratio described in the description of the first invention.

【0013】本発明に用いる溶融剤は、熱処理条件下で
溶融し且つ稀土類元素及びチタン成分と選択的な反応を
起こさないものが好ましく、アルカリ金属の硫酸塩及び
塩化物やガラス相形成成分等が好適である。アルカリ金
属の硫酸塩及び塩化物の具体的例としては、硫酸リチウ
ム、硫酸ナトリウム、硫酸カリウム、塩化リチウム、塩
化ナトリウム、塩化カリウム及びこれらの水和物であ
る。また、ガラス相形成成分の具体例としては、ホウ素
化合物が挙げられ、ホウ素の酸化物、例えば酸化ホウ素
やホウ素の酸素酸、例えばオルトホウ素酸(H3BO3 )、
四ホウ酸(H2B4O7)、メタホウ酸(HBO2)或いはこれら
のアルカリ金属塩、例えば四ホウ酸ナトリウム、四ホウ
酸カリウム、メタホウ酸ナトリウム及びホウ素のアルコ
キシド化合物、例えばホウ素エトキシド(B(OC2H5)3
等の公知の塩類などがある。これらの溶融剤は単独で用
いてもよいし、また2種以上混合してもよい。
The melting agent used in the present invention is preferably one that melts under heat treatment conditions and does not cause a selective reaction with rare earth elements and titanium components, such as alkali metal sulfates and chlorides and glass phase forming components. Is preferred. Specific examples of alkali metal sulfates and chlorides include lithium sulfate, sodium sulfate, potassium sulfate, lithium chloride, sodium chloride, potassium chloride and hydrates thereof. Further, specific examples of the glass phase forming component include boron compounds, boron oxides, such as boron oxide and oxyacids of boron, such as orthoboric acid (H 3 BO 3 ),
Tetraboric acid (H 2 B 4 O 7 ), metaboric acid (HBO 2 ) or their alkali metal salts such as sodium tetraborate, potassium tetraborate, sodium metaborate and alkoxide compounds of boron such as boron ethoxide (B (OC 2 H 5 ) 3 )
There are known salts such as. These melting agents may be used alone or in combination of two or more.

【0014】溶融剤の添加量は少ないと針状酸化物誘電
体粒子の成長が阻害され、針状酸化物誘電体粒子同士の
凝集が起こりやすく、また多量に添加し過ぎても後処理
等が煩雑となり、その添加効果は小さい。したがって、
目的とする針状酸化物誘電体粒子の組成及び使用する溶
融剤の種類などによって最適添加量が異なるが、酸化物
換算の稀土類元素及びチタン成分を含有する原料の重量
に対して25〜 500重量%が好ましく、さらに50〜 300重
量%が好ましい。
If the amount of the melting agent added is small, the growth of the needle-shaped oxide dielectric particles is hindered, and the needle-shaped oxide dielectric particles tend to agglomerate with each other. It becomes complicated and the effect of addition is small. Therefore,
The optimum addition amount varies depending on the composition of the target acicular oxide dielectric particles and the type of melting agent used, etc., but is 25 to 500 relative to the weight of the raw material containing the rare earth element and titanium component in terms of oxide. %, Preferably 50 to 300% by weight.

【0015】稀土類元素及びチタン成分を含有する原料
と溶融剤との混合物方法としては、均一に混合できる方
法であれば特に限定されるものではなく、公知の乾式
法、湿式法いずれの方法によってもおこなうことができ
る。乾式とは乳鉢、ミキサー、ボールミル等の通常の混
合方法で混合することを意味する。また、湿式法とは稀
土類元素及びチタン成分含有原料と溶液形態の溶融剤原
料を混合する方法である。湿式法を用いた場合には熱処
理前に乾燥工程を加えることが好ましい。
The method of mixing the raw material containing the rare earth element and the titanium component with the melting agent is not particularly limited as long as it can be uniformly mixed, and any known dry method or wet method can be used. Can also be done. The dry type means mixing by a usual mixing method such as a mortar, a mixer and a ball mill. The wet method is a method of mixing a raw material containing a rare earth element and a titanium component with a melt raw material in a solution form. When the wet method is used, it is preferable to add a drying step before the heat treatment.

【0016】稀土類元素及びチタン成分を含有する原料
と溶融剤との混合物の最適熱処理温度としては、組成に
よっても異なるが 900〜1600℃、好ましくは1000〜1500
℃である。熱処理温度が 900℃未満では針状酸化物誘電
体の生成反応が促進されず、また1600℃を超えると針状
粒子同士の固着や不純物相の生成が起こりやすく好まし
くない。熱処理には、 Pt など高温で使用可能な金属製
容器、各種セラミックス容器などを用いることができ
る。これらの容器は稀土類元素及びチタン成分を含有す
る原料や溶融剤と反応しにくいものが好ましい。また、
稀土類元素及びチタン成分を含有する原料と溶融剤との
混合物を加圧成形などにより成形したものを熱処理し容
器との反応を抑制することもできる。
The optimum heat treatment temperature of the mixture of the raw material containing the rare earth element and the titanium component and the melting agent varies depending on the composition, but is 900 to 1600 ° C., preferably 1000 to 1500.
℃. If the heat treatment temperature is lower than 900 ° C., the reaction of acicular oxide dielectric formation is not promoted, and if it exceeds 1600 ° C., sticking of acicular particles with each other and generation of an impurity phase are likely to occur, which is not preferable. For the heat treatment, a metal container such as Pt that can be used at high temperature or various ceramic containers can be used. It is preferable that these containers are hard to react with a raw material containing a rare earth element and a titanium component or a melting agent. Also,
It is also possible to suppress the reaction with a container by heat-treating a mixture of a raw material containing a rare earth element and a titanium component and a melting agent, which is molded by pressure molding or the like.

【0017】溶融剤を含む反応生成物から針状酸化物誘
電体粒子を単離する必要がある場合の単離方法には、数
規定程度の熱塩酸、熱硫酸、熱硝酸或いはこれらの混合
物、熱苛性ソーダまたは熱水などを用いて、溶融剤その
他水溶性物質を除去したのち充分に水洗方法が挙げられ
る。また、ガラス相の副生があり、前記方法で除去が困
難である場合には、酸又はアルカリにより水熱処理を行
い溶解除去することもできる。水不溶性の副生物がある
場合には、デカンテーション等の処理で残留物から針状
酸化物誘電体粒子を分離したのち、充分に水洗してもよ
い。
When it is necessary to isolate the needle-shaped oxide dielectric particles from the reaction product containing the melting agent, the isolation method includes hot hydrochloric acid, hot sulfuric acid, hot nitric acid or a mixture thereof of about several normals. A method of sufficiently washing with water after removing the melting agent and other water-soluble substances with hot caustic soda, hot water or the like can be mentioned. When the glass phase is by-produced and it is difficult to remove it by the above method, it can be dissolved and removed by hydrothermal treatment with an acid or an alkali. When there is a water-insoluble by-product, the needle-shaped oxide dielectric particles may be separated from the residue by a treatment such as decantation and then washed sufficiently with water.

【0018】[0018]

【実施例】以下、本発明の実施例について具体的に説明
するが、本発明はこれらの実施例に限定されるものでは
ない。 [実施例1〜8]表1に示す組成となるように稀土類酸
化物粉末(日本イットリウム社製、Nd2O3、Sm2O3 )及
びTiO2粉末(石原産業社製)をボールミルにより20時間
湿式混合した。得られた混合物スラリーを加熱乾燥し
た。次に、仮焼を行なった場合には表1に示す温度で空
気中で2時間仮焼し、仮焼物をボールミルにより10時間
解砕を行なった。仮焼粉末または仮焼を行なわなかった
場合には混合粉末(稀土類元素及びチタン成分を含有す
る原料)に表1に示す溶融剤を酸化物換算の稀土類元素
及びチタン成分を含有する原料の総重量に対して表1に
示す重量%となるように秤量してボールミルにより5時
間乾式混合した。得られた混合物を表1の温度で5時間
熱処理した。この反応生成物を冷却し、酸を加えて煮沸
し、溶融剤を除去したのち充分に水洗乾燥した。得られ
た針状酸化物誘電体粒子の色、太さ、長さ及びアスペク
ト比を表1に示した。また、エックス線回折により結晶
構造を調べた結果を表1に示す。
EXAMPLES Examples of the present invention will be specifically described below, but the present invention is not limited to these examples. [Examples 1 to 8] Rare earth oxide powders (Nd 2 O 3 , Sm 2 O 3 manufactured by Japan Yttrium Co., Ltd.) and TiO 2 powders (manufactured by Ishihara Sangyo Co., Ltd.) having a composition shown in Table 1 were ball milled. Wet mixed for 20 hours. The resulting mixture slurry was heated and dried. Next, when calcination was performed, it was calcinated in the air at the temperature shown in Table 1 for 2 hours, and the calcined product was crushed by a ball mill for 10 hours. If the calcination powder or the calcination powder is not used, the melting agent shown in Table 1 is added to the mixed powder (raw material containing rare earth element and titanium component) to obtain the raw material containing rare earth element and titanium component in terms of oxide. It was weighed so that the weight% shown in Table 1 was based on the total weight, and dry-mixed for 5 hours by a ball mill. The obtained mixture was heat-treated at the temperature shown in Table 1 for 5 hours. The reaction product was cooled, added with an acid and boiled to remove the melting agent, and then thoroughly washed with water and dried. The color, thickness, length and aspect ratio of the obtained acicular oxide dielectric particles are shown in Table 1. Table 1 shows the results of examining the crystal structure by X-ray diffraction.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【発明の効果】本発明によれば、従来にない新規な針状
酸化物誘電体粒子を容易に得ることができる。本発明の
針状酸化物誘電体粒子は誘電体としての機能性に加えて
複合材料の強化材等としての機械的特性も併せ持つ材料
として、また、特性に異方性のある新規な複合材料の原
料として有用であり、従来にない広い利用が期待され
る。
According to the present invention, it is possible to easily obtain novel acicular oxide dielectric particles which have never been obtained. The acicular oxide dielectric particles of the present invention are used as a material having not only functionality as a dielectric but also mechanical properties as a reinforcing material of a composite material, and a novel composite material having anisotropic properties. It is useful as a raw material and is expected to have a wide variety of uses.

【手続補正書】[Procedure amendment]

【提出日】平成4年9月22日[Submission date] September 22, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Correction target item name] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0019】[0019]

【表1】 [Table 1]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 稀土類元素及びチタンを主成分とする針
状酸化物粒子であって、該粒子のアスペクト比が3以上
であることを特徴とする針状酸化物誘電体粒子。
1. An acicular oxide dielectric particle, which is an acicular oxide particle containing a rare earth element and titanium as a main component, and the aspect ratio of the acicular oxide particle is 3 or more.
【請求項2】 稀土類元素及びチタン成分とを含有する
原料並びに溶融剤との混合物を熱処理することを特徴と
する請求項1記載の針状酸化物誘電体粒子の製造方法。
2. The method for producing needle-shaped oxide dielectric particles according to claim 1, wherein a mixture of a raw material containing a rare earth element and a titanium component and a melting agent is heat-treated.
JP4216621A 1992-07-23 1992-07-23 Acicular oxide dielectric particles and their production Pending JPH0640725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4216621A JPH0640725A (en) 1992-07-23 1992-07-23 Acicular oxide dielectric particles and their production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4216621A JPH0640725A (en) 1992-07-23 1992-07-23 Acicular oxide dielectric particles and their production

Publications (1)

Publication Number Publication Date
JPH0640725A true JPH0640725A (en) 1994-02-15

Family

ID=16691307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4216621A Pending JPH0640725A (en) 1992-07-23 1992-07-23 Acicular oxide dielectric particles and their production

Country Status (1)

Country Link
JP (1) JPH0640725A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011046560A (en) * 2009-08-27 2011-03-10 Kyocera Corp Dielectric ceramic and capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011046560A (en) * 2009-08-27 2011-03-10 Kyocera Corp Dielectric ceramic and capacitor

Similar Documents

Publication Publication Date Title
KR100323941B1 (en) Boron nitride and process for preparing the same
CN102369162B (en) Method for producing alkali metal niobate particles, and alkali metal niobate particles
JP3062497B1 (en) Method for producing flaky titanate
Singh et al. Low temperature synthesis of spinel (MgAl2O4)
JP6875353B2 (en) Negative thermal expansion material, its manufacturing method and composite material
Leleckaite et al. Sol‐gel preparation and characterization of codoped yttrium aluminium garnet powders
KR101904579B1 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
US4152280A (en) Molten salt synthesis of modified lead zirconate titanate solid solution powder
CN101595060B (en) Method for producing solid solution fine particle
Hoffmann et al. Melt synthesis of Al 2 TiO 5 containing composites and reinvestigation of the phase diagram Al 2 O 3–TiO 2 by powder X-ray diffraction
JP4735257B2 (en) Method for producing bismuth titanate fine particles
JPH0640725A (en) Acicular oxide dielectric particles and their production
JPS63319299A (en) Aluminum borate whisker and production thereof
JP4752194B2 (en) Method for producing barium titanate fine particles
JPH08133832A (en) Dielectric particle of plate-shaped oxide
JP3176119B2 (en) Acicular dielectric oxide particles and method for producing the same
WO2020004072A1 (en) Negative thermal expansion material, method for manufacturing same, and composite material
JP2022081059A (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP2022081058A (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JPS6011228A (en) Heat-resistant heat-insulating material of octotitanate
JP2005263546A (en) Sintered rare earth sesquichalcogenide compact and method for manufacturing the same, and rare earth sesquichalcogenide powder and method for manufacturing the same
JP7102462B2 (en) Barium titanyl oxalate, its production method and barium titanate production method
Li Fabrication of transparent yttrium aluminum garnet ceramic
JPH05132319A (en) Production of dielectric material powder
JP3105622B2 (en) Aluminum borate-based whisker aggregate and method for producing the same