JPH0512418B2 - - Google Patents

Info

Publication number
JPH0512418B2
JPH0512418B2 JP63090913A JP9091388A JPH0512418B2 JP H0512418 B2 JPH0512418 B2 JP H0512418B2 JP 63090913 A JP63090913 A JP 63090913A JP 9091388 A JP9091388 A JP 9091388A JP H0512418 B2 JPH0512418 B2 JP H0512418B2
Authority
JP
Japan
Prior art keywords
phase
gray
ingot
alloy
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63090913A
Other languages
Japanese (ja)
Other versions
JPH01263241A (en
Inventor
Masami Furuya
Mamoru Matsuo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP9091388A priority Critical patent/JPH01263241A/en
Publication of JPH01263241A publication Critical patent/JPH01263241A/en
Publication of JPH0512418B2 publication Critical patent/JPH0512418B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は陽極酸化処理を施した状態でビルな
どの建造物の外装用などの用途に使用される展伸
用アルミニウム合金およびその製法に関し、特に
陽極酸化処理後の色調が灰色ないし暗灰色のいわ
ゆる濃灰色系を呈する展伸用アルミニウム合金お
よびその製法に関するものである。
[Detailed Description of the Invention] Industrial Application Field This invention relates to a wrought aluminum alloy that is used for the exterior of buildings and other structures after being anodized, and a method for producing the same. The present invention relates to a wrought aluminum alloy that exhibits a gray to dark gray color tone after oxidation treatment, and a method for producing the same.

従来の技術 従来一般に、陽極酸化処理を施した状態でビル
の外装用などに用いられるアルミニウム合金とし
ては、主としてJIS1100合金、JIS1050合金、
JIS5005合金などがあり、これらの色調としては
硫酸浴陽極酸化処理による淡灰色か、自然発色陽
極酸化処理もしくは所謂浅田法発色による褐色系
が代表的であつた。しかしながら最近ではビルの
外観上の重厚さを求める観点から、陽極酸化処理
後に濃灰色系、すなわち灰色〜暗灰色の色調を呈
するアルミニウム合金が強く要求されるようにな
つている。
Conventional technology Conventionally, aluminum alloys that have been anodized and used for building exteriors are mainly JIS1100 alloy, JIS1050 alloy,
There are JIS5005 alloys, etc., and the typical color tones of these are pale gray due to sulfuric acid bath anodizing treatment, or brownish due to natural coloring anodization treatment or the so-called Asada method coloring. However, recently, from the viewpoint of increasing the appearance of buildings, there has been a strong demand for aluminum alloys that exhibit a dark gray color, that is, a gray to dark gray color tone after being anodized.

上述のように灰色ないし暗灰色の色調を陽極酸
化処理後に呈する建材用アルミニウム合金として
はA−Si系のJIS4343合金やそれを改良した合
金が一部では用いられている。
As mentioned above, as aluminum alloys for building materials that exhibit a gray or dark gray color tone after anodizing treatment, A-Si based JIS 4343 alloys and alloys improved therefrom are used in some cases.

しかしながらA−Si系のJIS4343合金やそれ
を改良した合金では、陽極酸化処理後に濃灰色系
の色調を得ることは可能なものの、灰色の色調が
熱の影響を受けやすく、そのため製造ロツト間で
色調が変動し易く、また同一ロツト内でも色調が
変動することがあり、安定して同一色調の濃い灰
色を呈する合金板を製造することは極めて困難で
あつた。またこの種のA−Si系合金は前述の
JIS1100合金やJIS5005合金と比較して陽極酸化処
理後の耐食性が低い欠点もあり、このこともビル
の外装用などに使用されるアルミニウム合金板と
して問題があつた。
However, although it is possible to obtain a dark gray tone after anodizing with A-Si based JIS 4343 alloys and alloys improved from it, the gray tone is easily affected by heat, and as a result, the color tone varies between manufacturing lots. It is extremely difficult to produce an alloy plate that stably exhibits the same dark gray color tone, as the color tone may vary even within the same lot. In addition, this type of A-Si alloy is
Compared to JIS 1100 alloy and JIS 5005 alloy, it also has the disadvantage of lower corrosion resistance after anodizing treatment, which also poses a problem for aluminum alloy sheets used for building exteriors.

ところでJIS1100合金、JIS1050合金、あるいは
JIS5005合金などの如く、A−Fe系の金属間化
合物を晶出する系の合金鋳塊には、しばしば樅の
木組織と称される模様が発生することが知られて
いる。この樅の木組織は、陽極酸化処理後に内部
領域が比較的暗い色調の灰色を呈し、外部領域が
淡い灰色を呈するものであり、鋳塊の場所によつ
て晶出するA−Fe系化合物の種類が異なるこ
とに起因するものであることが知られている。す
なわち、鋳塊中には大別してAmFe、A3
Fe、A6Feの金属間化合物が晶出するが、これ
らはそれぞれの電気化学的性質が異なり、A
mFe相およびA3Fe相は陽極酸化処理中に酸化
されて酸化物として酸化皮膜中に存在するのに対
し、A6Fe相は酸化されずに金属相のまま皮膜
中に存在する。この酸化されないA6Fe相が皮
膜中に存在すれば入射光を吸収して、A3Fe、
AmFe相と比較して暗い色調の灰色を呈する
こととなる。そして一般に前記樅の木組織の外部
領域にはAmFe相が主として存在し、内部領
域にはA6Fe相とA3Fe相が存在するため、
6Fe相を含む内部領域がAmFe相を主体と
する外部領域よりも暗い色調の灰色を呈すること
が知られている。
By the way, JIS1100 alloy, JIS1050 alloy, or
It is known that a pattern called a fir tree structure often occurs in an alloy ingot of a system in which A-Fe intermetallic compounds are crystallized, such as JIS5005 alloy. After anodizing, this fir wood structure exhibits a relatively dark gray color in the inner region and a pale gray color in the outer region, which is due to the presence of A-Fe compounds that crystallize depending on the location of the ingot. It is known that this is due to different types. In other words, the ingot contains AmFe, A3
Intermetallic compounds of Fe and A 6 Fe crystallize, but these have different electrochemical properties and
The mFe phase and the A 3 Fe phase are oxidized during the anodizing treatment and exist as oxides in the oxide film, whereas the A 6 Fe phase is not oxidized and exists in the film as a metal phase. If this unoxidized A 6 Fe phase exists in the film, it will absorb the incident light and produce A 3 Fe,
It exhibits a darker tone of gray than the AmFe phase. Generally, the AmFe phase mainly exists in the outer region of the fir tree structure, and the A 6 Fe phase and A 3 Fe phase exist in the inner region.
It is known that the inner region containing the A 6 Fe phase exhibits a darker tone of gray than the outer region mainly composed of the AmFe phase.

したがつて鋳塊全体が樅の木組織の内部領域の
組織からなるように樅の木組織の内部領域を拡大
させ、実質的に樅の木組織のない鋳塊とすれば、
前述のようなA−Si系の合金でなくとも陽極酸
化処理後に灰色−暗灰色の濃灰色系の色調を呈す
るアルミニウム合金板を得ることができると考え
られる。
Therefore, if the internal area of the fir wood structure is expanded so that the entire ingot consists of the structure of the internal area of the fir wood structure, and the ingot is substantially free of the fir wood structure, then
It is believed that it is possible to obtain an aluminum alloy plate that exhibits a gray-dark gray tone after anodizing treatment even if it is not an A-Si alloy as described above.

一方、本発明者等は既に特公昭58−26431号に
おいて、A−Fe−Si−Mg系のアルミニウム合
金について樅の木組織の内部領域を拡大させて全
体を内部領域の組織とするための組成を提案して
おり、この発明にしたがえば確かに陽極酸化処理
後に灰色〜暗灰色の色調を有する合金板を得るこ
とが可能となり、またこの系の合金では前述のA
−Si合金よりも優れた耐食性を得ることが可能
となる。しかしながらこの提案にしたがつて鋳塊
全体を樅の木組織の内部領域の組織としただけで
は、灰色−暗灰色の色調が安定するとは限らない
のが実情であつた。すなわち、前述のように樅の
木組織の内部領域は暗灰色を呈するA6Fe相の
みならずA3Fe相も晶出するから、A6Fe相
とA3Fe相との比率が変化すれば、その内部領
域の組織といえども灰色の色調に変化があらわれ
てしまい、特に鋳造条件や熱間加工条件によつて
色調が変動してしまうことがある。
On the other hand, the present inventors have already proposed in Japanese Patent Publication No. 58-26431 a composition for expanding the internal region of the fir tree structure and making the entire structure into an internal region structure for an A-Fe-Si-Mg-based aluminum alloy. According to this invention, it is certainly possible to obtain an alloy plate having a gray to dark gray color tone after anodizing treatment, and in this type of alloy, the above-mentioned A
-It is possible to obtain better corrosion resistance than Si alloy. However, in accordance with this proposal, it is not always possible to stabilize the gray-dark gray color tone simply by making the entire ingot have a structure in the inner region of the fir wood structure. That is, as mentioned above, not only the dark gray A 6 Fe phase but also the A 3 Fe phase crystallizes in the internal region of the fir wood structure, so the ratio of the A 6 Fe phase to the A 3 Fe phase changes. For example, even in the structure of the internal region, the gray color tone may change, and the color tone may vary depending on casting conditions and hot working conditions.

そこで本願発明者等はA−Fe−Si−Mg系合
金において陽極酸化処理後の色調が安定して同一
色調の灰色〜暗灰色を呈するアルミニウム合金、
およびその製造方法を開発するべく実験・検討を
重ねた結果、Fe、Siの比率をMgとの関係におい
て厳密に規定すると同時に、鋳塊の鋳造条件を適
切に設定して、鋳造したままの鋳塊のうち最終的
に圧延板の表面となる部分、すなわち鋳塊の表面
から50mmの深さでの部分(表皮部)における全A
−Fe系金属間化合物のうち70%以上をA6Fe
相で占めるようにすることが安定して灰色〜暗灰
色の一定の色調を得るために必要であることが判
明し、既に特開昭61−110741号(特願昭59−
231849号)において提案している。
Therefore, the inventors of the present application have developed an aluminum alloy that exhibits a stable gray to dark gray color tone after anodizing treatment in an A-Fe-Si-Mg based alloy.
As a result of repeated experiments and studies to develop the ingot and its manufacturing method, we determined that the ratio of Fe and Si was strictly defined in relation to Mg, and at the same time, the casting conditions for the ingot were appropriately set, and the as-cast casting was made. Total A in the part of the ingot that will eventually become the surface of the rolled plate, that is, the part at a depth of 50 mm from the surface of the ingot (skin part)
-At least 70% of the Fe-based intermetallic compounds are A 6 Fe
It has been found that it is necessary to stably obtain a constant gray to dark gray color tone by occupying a certain phase.
231849).

発明が解決すべき問題点 前述の特開昭61−110741号の提案に従えば、比
較的安定にA6Fe相を晶出させて、灰色〜暗灰
色の色調のかなりの安定化を図ることが可能であ
る。しかしながら、その提案のA−Fe−Si−
Mg系の成分組成の場合は、鋳造条件によつては
なおA6Fe相とA3Fe相との混在比が変動し、
最終圧延板のロツト内およびロツト間での陽極酸
化処理後の色調が変動することがあることが判明
した。
Problems to be Solved by the Invention According to the proposal of JP-A-61-110741 mentioned above, it is possible to relatively stably crystallize the A 6 Fe phase and to significantly stabilize the gray to dark gray color tone. is possible. However, the proposed A-Fe-Si-
In the case of Mg-based composition, the mixing ratio of A 6 Fe phase and A 3 Fe phase varies depending on the casting conditions.
It has been found that the color tone of the final rolled sheet after anodizing treatment may vary within and between lots.

この発明は以上の事情を背景としてされたもの
で、より一層A6Fe相を安定に晶出させ、これ
により最終圧延板の陽極酸化処理後の灰色〜暗灰
色の色調をより一層安定化するようにしたアルミ
ニウム合金およびその製造方法を提供することを
目的とするものである。
This invention was made against the background of the above circumstances, and aims to further stably crystallize the A 6 Fe phase, thereby further stabilizing the gray to dark gray color tone of the final rolled plate after anodizing treatment. It is an object of the present invention to provide an aluminum alloy and a method for producing the same.

問題点を解決するための手段 本発明者等は、A−Fe(−Mg−Si)系合金
における金属間化合物のうち、A6Fe相が準安
定相であつてこれを安定化させることがA6Fe
相の安定な晶出に有効であると考え、Aと他の
金属Mとの金属間化合物の安定相がA6Mの構
造を持つ相となる成分系を調べた結果、MnがA
6Mn相なる安定相を生成することを見出し、か
つそのA6Mn相がA6Fe相の安定化に有効で
あることを見出した。すなわち、A−Fe−Mg
−Si系にMnを添加することによつてA6Fe中
にMnが混入し、A6Feのうちの一部のFeがMn
で置換えられたA6Fe(Mn)相となり、しかも
そのA6Fe(Mn)相が単なるA6Fe相と比較
して格段に安定であつて、最終圧延板における陽
極酸化処理後の灰色〜暗灰色の色調の安定化に有
効であることを見出し、この発明をなすに至つた
のである。
Means for Solving the Problems The present inventors discovered that among the intermetallic compounds in the A-Fe (-Mg-Si) alloy, the A 6 Fe phase is a metastable phase and that it is impossible to stabilize it. A 6 Fe
Considering that this is effective for stable crystallization of the phase, we investigated the component system in which the stable phase of the intermetallic compound of A and another metal M has the structure of A 6 M.
It was discovered that a stable phase called A 6 Mn phase was produced, and that the A 6 Mn phase was effective in stabilizing the A 6 Fe phase. That is, A-Fe-Mg
- By adding Mn to the Si system, Mn is mixed into A 6 Fe, and some Fe in A 6 Fe is mixed with Mn.
Moreover, the A 6 Fe (Mn) phase is much more stable than the simple A 6 Fe phase, and the final rolled plate has a gray to gray color after anodizing treatment. They discovered that it is effective in stabilizing dark gray tones, and came up with this invention.

そして、上述のようにA−Fe−Mg−Si系に
Mnを適量添加することによつて、特開昭61−
110741号の提案において制限したFe/Si比の制
約や鋳造条件の制約を外しても、なお鋳塊中のA
6Fe(Mn)相を鋳塊中の全体の70%以上とし
て、最終圧延板の陽極酸化処理後に安定に灰色〜
暗灰色の色調を得ることが可能となつたのであ
る。
Then, as mentioned above, in the A-Fe-Mg-Si system
By adding an appropriate amount of Mn, JP-A-61-
Even if the constraints on the Fe/Si ratio and casting conditions that were limited in the proposal of No. 110741 are removed, the amount of A in the ingot still increases.
6 The Fe (Mn) phase accounts for more than 70% of the total in the ingot, and after the final rolled plate is anodized, it becomes a stable gray ~
It became possible to obtain a dark gray tone.

具体的には、第1発明のアルミニウム合金は、
重量比でFe0.4〜1.0%、Si0.05〜0.25%、Mg0.3〜
1.5%、Mn0.7%を越え1.5%以下を含有し、残部
がAおよび不可避的不純物よりなることを特徴
とするものである。
Specifically, the aluminum alloy of the first invention is
Weight ratio: Fe0.4~1.0%, Si0.05~0.25%, Mg0.3~
1.5%, Mn exceeds 0.7% and 1.5% or less, and the remainder consists of A and inevitable impurities.

また第2発明のアルミニウム合金製造方法は、
重量比でFe0.4〜1.0%、Si0.05〜0.25%、Mg0.3〜
1.5%、Mn0.7%を越え1.5%以下を含有し、残部
がAおよび不可避的不純物よりなるアルミニウ
ム合金を半連続鋳造法により鋳造し、次いでその
鋳塊を500〜630℃の温度範囲内で0.5〜12時間加
熱した後、その温度範囲もしくはそれ以下の温度
で熱間加工することを特徴とするものである。
Moreover, the aluminum alloy manufacturing method of the second invention includes:
Weight ratio: Fe0.4~1.0%, Si0.05~0.25%, Mg0.3~
An aluminum alloy containing 1.5% Mn, more than 0.7% and less than 1.5% Mn, and the balance consisting of A and unavoidable impurities is cast by a semi-continuous casting method, and then the ingot is heated within a temperature range of 500 to 630°C. It is characterized by heating for 0.5 to 12 hours and then hot working at a temperature within that temperature range or lower.

作 用 先ずこの発明における合金組成の限定理由につ
いて説明する。
Function First, the reason for limiting the alloy composition in this invention will be explained.

Fe: Feが0.4未満では、陽極酸化処理後に濃灰色を
呈するに寄与するA6Fe(Mn)相の量が少なく
なつて灰色が濃くなつてしまい、一方Feが1.0%
を越えれば耐食性が低下するから、0.4〜1.0%の
範囲とした。
Fe: If Fe is less than 0.4, the amount of A 6 Fe (Mn) phase that contributes to the dark gray color after anodic oxidation decreases and the gray becomes darker, while Fe is 1.0%.
If it exceeds 0.4% to 1.0%, the corrosion resistance will deteriorate, so the content was set in the range of 0.4% to 1.0%.

Si: Siを0.05%未満とするためには高純度地金が必
要となつて経済的でなくなり、一方Siが0.25%を
越えれば陽極酸化処理後の色調が全体的に黄色を
帯びて、この発明で目的とする無彩色の濃灰色系
から外れてしまう。したがつてSiは0.05〜0.25%
の範囲内とした。
Si: In order to keep the Si content below 0.05%, a high-purity metal is required, making it uneconomical.On the other hand, if the Si content exceeds 0.25%, the overall color tone after anodizing becomes yellowish. It deviates from the achromatic dark gray color that is the goal of the invention. Therefore, Si is 0.05-0.25%
was within the range of

Mg: Mgは、熱間圧延時における粗大再結晶粒の生
成によりスジ目不良が生じることを防止する効果
があるが、0.3%未満ではその効果が充分ではな
く、スジ目不良による外観不良が生じ易い。一方
Mgが1.5%を越えればMg−Si系の晶出物が生成
されて、陽極酸化処理後の灰色の色調が安定しな
くなる。したがつてMgは0.3〜1.5%の範囲内と
した。
Mg: Mg has the effect of preventing streak defects due to the formation of coarse recrystallized grains during hot rolling, but if it is less than 0.3%, the effect is not sufficient and poor appearance occurs due to streak defects. easy. on the other hand
If the Mg content exceeds 1.5%, Mg-Si crystallized substances will be generated, and the gray tone after anodizing will become unstable. Therefore, Mg was set within the range of 0.3 to 1.5%.

Mn: Mnは前述のように準安定相であるA6Fe相
をA6Fe(Mn)相として安定化させるために必
要な元素である。Mn添加によつてA6Fe(Mn)
として安定化した相は、熱に対しても安定であつ
て、加熱によりA6Fe(Mn)→A3Fe(Mn)
の変態を生じにくく、したがつて加熱条件の変動
により色調の変動が生じにくい特徴を有する。
Mnが0.7%以下ではA6Feを安定化させる効果
が少なく、一方Mnが1.5%を越えればA6Mnの
初晶が発生するおそれがある。したがつてMnは
0.7%を越え1.5%以下の範囲内とした。
Mn: As mentioned above, Mn is an element necessary to stabilize the metastable A 6 Fe phase as the A 6 Fe (Mn) phase. A 6 Fe (Mn) by Mn addition
The phase stabilized as
It has the characteristic that it is less likely to undergo transformation, and therefore less likely to change color tone due to changes in heating conditions.
If the Mn content is less than 0.7%, the effect of stabilizing A 6 Fe is small, while if the Mn content exceeds 1.5%, primary crystals of A 6 Mn may occur. Therefore, Mn is
It was set to be within the range of more than 0.7% and less than 1.5%.

なお上述のようなFe、Si、Mg、Mnの残部は
実質的にAとすれば良いが、通常のA合金で
は鋳塊の結晶粒微細化のためにTi、あるいはTi
およびBを微量添加することがあり、この発明の
合金でもこれらが微量添加されている場合を含む
ものとする。但しTiが0.10%を越えればTiA3
の初晶が生成されてストリンガーと称される線状
欠陥の原因となるから、Tiは0.10%以下とするこ
とが望ましく、またBを0.03%を越えて添加すれ
ば、ストリンガーと称される線状欠陥が生成され
て外観不良となり易くなるから、Bを添加する場
合は0.03%以下とすることが好ましい。
The balance of Fe, Si, Mg, and Mn mentioned above may be substantially A, but in normal A alloys, Ti or Ti is used to refine the crystal grains of the ingot.
and B may be added in small amounts, and the alloy of this invention also includes cases where these are added in small amounts. However, if Ti exceeds 0.10%, TiA 3
It is desirable to keep Ti at 0.10% or less, and if B is added in excess of 0.03%, it causes linear defects called stringers. When B is added, it is preferably 0.03% or less since it tends to cause shape defects and poor appearance.

次にこの発明の合金の製造方法、すなわち第2
発明の方法における各工程の条件について説明す
る。
Next, the method for manufacturing the alloy of this invention, that is, the second method.
The conditions of each step in the method of the invention will be explained.

先ず前述のような成分組成の合金を常法に従つ
て半連続鋳造(DC鋳造)によつて鋳造する。得
られた鋳塊は、熱間圧延に先立つて加熱するが、
この加熱温度は500〜630℃の温度範囲内とし、ま
たその加熱保持時間は0.5〜12時間とする必要が
ある。すなわち鋳塊加熱温度が500℃未満では均
熱処理効果が充分ではなく、熱間圧延時に粗大な
再結晶を生じて製品板にスジ目不良が生じる。一
方630℃を越える温度では鋳塊が溶解しはじめて
しまう。また、保持時間が0.5時間未満では鋳塊
全体が均一な温度となりにくく、一方12時間以上
加熱しても経済的に不利となるだけである。した
がつて鋳塊加熱の温度、時間は上述のように規定
した。
First, an alloy having the above-mentioned composition is cast by semi-continuous casting (DC casting) according to a conventional method. The obtained ingot is heated prior to hot rolling,
This heating temperature must be within the temperature range of 500 to 630°C, and the heating holding time must be 0.5 to 12 hours. That is, if the ingot heating temperature is less than 500°C, the soaking effect is not sufficient, and coarse recrystallization occurs during hot rolling, resulting in streak defects on the product plate. On the other hand, at temperatures exceeding 630°C, the ingot begins to melt. Furthermore, if the holding time is less than 0.5 hours, it is difficult to achieve a uniform temperature throughout the ingot, while heating for more than 12 hours will only be economically disadvantageous. Therefore, the temperature and time for heating the ingot were specified as described above.

熱間圧延は常法にしたがつて鋳塊加熱温度また
はそれ以下の温度で行なえば良く、またその後の
冷間圧延も常法にしたがつて行なえば良く、これ
らの条件は陽極酸化処理後の表面色調に本質的な
影響を与えない。
Hot rolling may be carried out according to a conventional method at a temperature at or below the ingot heating temperature, and subsequent cold rolling may be carried out according to a conventional method, and these conditions are the same as those after anodizing treatment. Does not essentially affect surface color tone.

なおこの発明の方法は、圧延材のみならず押出
材の製造にも適用できることは勿論である。すな
わち押出材を製造する場合、前述の熱間圧延前の
加熱温度、時間を熱間押出前の加熱温度、時間に
適用すれば良い。
It goes without saying that the method of the present invention can be applied not only to the production of rolled materials but also to the production of extruded materials. That is, when producing an extruded material, the heating temperature and time before hot rolling described above may be applied to the heating temperature and time before hot extrusion.

実施例 第1表に示す化学成分の合金No.1〜4を常法に
したがつて溶製し、半連続鋳造によつて鋳込み温
度700℃、鋳造速度65mm/m
Example Alloys Nos. 1 to 4 having the chemical composition shown in Table 1 were melted according to a conventional method, and were cast by semi-continuous casting at a casting temperature of 700°C and a casting speed of 65 mm/m.

Claims (1)

【特許請求の範囲】 1 重量比でFe0.4〜1.0%、Si0.05〜0.25%、
Mg0.3〜1.5%、Mn0.7%を越え1.5%以下を含有
し、残部がAおよび不可避的不純物よりなるこ
とを特徴とする、陽極酸化処理後の色調が灰色な
いし暗灰色である展伸用アルミニウム合金。 2 重量比でFe0.4〜1.0%、Si0.05〜0.25%、
Mg0.3〜1.5%、Mn0.7%を越え1.5%以下を含有
し、残部がAおよび不可避的不純物よりなるア
ルミニウム合金を半連続鋳造法により鋳造し、次
いでその鋳塊を500〜630℃の温度範囲内で0.5〜
12時間加熱した後、その温度範囲もしくはそれ以
下の温度で熱間加工することを特徴とする、陽極
酸化処理後の色調が灰色ないし暗灰色である展伸
用アルミニウム合金の製造方法。
[Claims] 1. Fe0.4-1.0%, Si0.05-0.25% by weight,
An expanded product containing 0.3 to 1.5% Mg, more than 0.7% and 1.5% or less of Mn, with the remainder consisting of A and unavoidable impurities, and whose color tone is gray or dark gray after anodizing treatment. Aluminum alloy for. 2 Fe0.4-1.0%, Si0.05-0.25% by weight,
An aluminum alloy containing 0.3 to 1.5% Mg, more than 0.7% but less than 1.5% Mn, and the balance consisting of A and unavoidable impurities is cast by a semi-continuous casting method, and then the ingot is heated at 500 to 630℃. 0.5~ within temperature range
A method for producing a wrought aluminum alloy having a gray or dark gray color after anodizing treatment, which comprises heating for 12 hours and then hot working at a temperature within that temperature range or lower.
JP9091388A 1988-04-13 1988-04-13 Aluminum alloy for stretching and its manufacture Granted JPH01263241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9091388A JPH01263241A (en) 1988-04-13 1988-04-13 Aluminum alloy for stretching and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9091388A JPH01263241A (en) 1988-04-13 1988-04-13 Aluminum alloy for stretching and its manufacture

Publications (2)

Publication Number Publication Date
JPH01263241A JPH01263241A (en) 1989-10-19
JPH0512418B2 true JPH0512418B2 (en) 1993-02-18

Family

ID=14011653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9091388A Granted JPH01263241A (en) 1988-04-13 1988-04-13 Aluminum alloy for stretching and its manufacture

Country Status (1)

Country Link
JP (1) JPH01263241A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257135A (en) * 1990-03-06 1991-11-15 Sky Alum Co Ltd Aluminum alloy having black color tone after anodic oxidation treatment and production thereof
JP2544233B2 (en) * 1990-06-04 1996-10-16 スカイアルミニウム株式会社 Aluminum alloy having a blue-gray color tone after anodizing treatment and method for producing the same
JP2544235B2 (en) * 1990-06-12 1996-10-16 スカイアルミニウム株式会社 High strength aluminum alloy wrought material with gray color after anodizing treatment and method for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432113A (en) * 1977-08-18 1979-03-09 Nitsukei Atsuen Kk Method of producing allmnnmg alloy hard plate having deep drawability
JPS5612301A (en) * 1979-07-12 1981-02-06 Matsushita Electric Works Ltd Rat-repelling spray

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432113A (en) * 1977-08-18 1979-03-09 Nitsukei Atsuen Kk Method of producing allmnnmg alloy hard plate having deep drawability
JPS5612301A (en) * 1979-07-12 1981-02-06 Matsushita Electric Works Ltd Rat-repelling spray

Also Published As

Publication number Publication date
JPH01263241A (en) 1989-10-19

Similar Documents

Publication Publication Date Title
US5181969A (en) Rolled aluminum alloy adapted for superplastic forming and method for making
US4836863A (en) Wrought material of aluminum alloy to be anodized gray and process for making the same
JPH0512418B2 (en)
US5110371A (en) Aluminum alloys for forming colored anodic oxide films thereon and method for producing a sheet material of the alloy
JP2858068B2 (en) Light-colored thick aluminum alloy rolled sheet for building materials with stable color tone after anodizing and method for producing the same
JP2606469B2 (en) Aluminum alloy for spontaneous coloring and production method thereof
JPS61272342A (en) Aluminum alloy sheet excelling in formability and baking hardening and its production
JPH07310153A (en) Production of aluminum alloy sheet excellent in strength ductility and stability
JP2544235B2 (en) High strength aluminum alloy wrought material with gray color after anodizing treatment and method for producing the same
JPH0512419B2 (en)
JPH07278716A (en) Aluminum alloy sheet for forming excellent in mechanical property and its production
JPH0256415B2 (en)
JP2544233B2 (en) Aluminum alloy having a blue-gray color tone after anodizing treatment and method for producing the same
JPH08109427A (en) Extruded shape of age hardening type aluminum alloy for coloring into gray and its production
JPH01268837A (en) Aluminum alloy for stretching and its manufacture
JPS6362836A (en) Aluminum-alloy rolled sheet combining high strength with heat resistance and production thereof
JPH07243010A (en) Production of aluminum alloy for coloring into gray
JPH05132731A (en) Aluminum alloy having a gold color tone after anodic oxidation treatment and its production
JPS6054382B2 (en) Al alloy for natural coloring
JP2643632B2 (en) Aluminum alloy wrought material for forming colored oxide film and method for producing the same
JPS6357493B2 (en)
JPH0585630B2 (en)
JPS6056772B2 (en) Manufacturing method of Al alloy for natural color development
JPH0971831A (en) Gray-colored aluminum alloy sheet little in yellowish and reddish color tone after anodic oxidation treatment and its production
JPH0488142A (en) Aluminum alloy having black color tone after anodic oxidation treatment and its manufacture