JPH0512419B2 - - Google Patents

Info

Publication number
JPH0512419B2
JPH0512419B2 JP9091488A JP9091488A JPH0512419B2 JP H0512419 B2 JPH0512419 B2 JP H0512419B2 JP 9091488 A JP9091488 A JP 9091488A JP 9091488 A JP9091488 A JP 9091488A JP H0512419 B2 JPH0512419 B2 JP H0512419B2
Authority
JP
Japan
Prior art keywords
phase
gray
ingot
color tone
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9091488A
Other languages
Japanese (ja)
Other versions
JPH01263242A (en
Inventor
Masami Furuya
Mamoru Matsuo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP9091488A priority Critical patent/JPH01263242A/en
Publication of JPH01263242A publication Critical patent/JPH01263242A/en
Publication of JPH0512419B2 publication Critical patent/JPH0512419B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は陽極酸化処理を施した状態でビルな
どの建造物の外装用などの用途に使用される展伸
用アルミニウム合金およびその製法に関し、特に
陽極酸化処理後の色調が灰色ないし暗灰色のいわ
ゆる濃灰色系の呈する展伸用アルミニウム合金お
よびその製法に関するものである。
[Detailed Description of the Invention] Industrial Application Field This invention relates to a wrought aluminum alloy that is used for the exterior of buildings and other structures after being anodized, and a method for producing the same. The present invention relates to a wrought aluminum alloy that exhibits a so-called dark gray color tone after oxidation treatment, and a method for producing the same.

従来の技術 従来一般に、陽極酸化処理を施した状態でビル
の外装用などに用いられるアルミニウム合金とし
ては、主としてJIS1100合金、JIS1050合金、
JIS5005合金などがあり、これらの色調としては
硫酸浴陽極酸化処理による淡灰色か、自然発色陽
極酸化処理もしくは所謂浅田法発色による褐色系
が代表的であつた。しかしながら最近ではビルの
外観上の重厚さを求める観点から、陽極酸化処理
後に濃灰色系、すなわち灰色〜暗灰色の色調を呈
するアルミニウム合金が強く要求されるようにな
つている。
Conventional technology Conventionally, aluminum alloys that have been anodized and used for building exteriors are mainly JIS1100 alloy, JIS1050 alloy,
There are JIS5005 alloys, etc., and the typical color tones of these are pale gray due to sulfuric acid bath anodizing treatment, or brownish due to natural coloring anodization treatment or the so-called Asada method coloring. However, recently, from the viewpoint of increasing the appearance of buildings, there has been a strong demand for aluminum alloys that exhibit a dark gray color, that is, a gray to dark gray color tone after being anodized.

上述のように灰色ないし暗灰色の色調を陽極酸
化処理後に呈する建材用アルミニウム合金として
はA−Si系のJIS4343合金やそれを改良した合
金が一部では用いられている。
As mentioned above, as aluminum alloys for building materials that exhibit a gray or dark gray color tone after anodizing treatment, A-Si based JIS 4343 alloys and alloys improved therefrom are used in some cases.

しかしながらA−Si系のJIS4343合金やそれ
を改良した合金では、陽極酸化処理後に濃灰色系
の色調を得ることは可能なものの、灰色の色調が
熱の影響を受けやすく、そのため製造ロツト間で
色調が変動し易く、また同一ロツト内でも色調が
変動することがあり、安定して同一色調の濃い灰
色を呈する合金板を製造することは極めて困難で
あつた。またこの種のA−Si系合金は前述の
JIS1100合金やJIS5005合金と比較して陽極酸化処
理後の耐食性が低い欠点もあり、このこともビル
の外装用などに使用されるアルミニウム合金板と
して問題があつた。
However, although it is possible to obtain a dark gray tone after anodizing with A-Si based JIS 4343 alloys and alloys improved from it, the gray tone is easily affected by heat, and as a result, the color tone varies between manufacturing lots. It is extremely difficult to produce an alloy plate that stably exhibits the same dark gray color tone, as the color tone may vary even within the same lot. In addition, this type of A-Si alloy is
Compared to JIS 1100 alloy and JIS 5005 alloy, it also has the disadvantage of lower corrosion resistance after anodizing treatment, which also poses a problem for aluminum alloy sheets used for building exteriors.

ところでJIS1100合金、JIS1050合金、あるいは
JIS5005合金などの如く、A−Fe系の金属間化
合物を晶出する系の合金鋳塊には、しばしば樅の
木組織と称される模様が発生することが知られて
いる。この樅の木組織は、陽極酸化処理後に内部
領域が比較的暗い色調の灰色を呈し、外部領域が
淡い灰色を呈するものであり、鋳塊の場所によつ
て晶出するA−Fe系化合物の種類が異なるこ
とに起因するものであることが知られている。す
なわち、鋳塊中には大別してAmFe、A3
Fe、A6Feの金属間化合物が晶出するが、これ
らはそれぞれの電気化学的性質が異なり、A
mFe相およびA3Fe相は陽極酸化処理中に酸化
されて酸化物として酸化皮膜中に存在するのに対
し、A6Fe相は酸化されずに金属相のまま皮膜
中に存在する。この酸化されないA6Fe相が皮
膜中に存在すれば入射光を吸収して、A3Fe、
AmFe相と比較して暗い色調の灰色を呈する
こととなる。そして一般に前記樅の木組織の外部
領域にはAmFe相が主として存在し、内部領
域にはA6Fe相とA3Fe相が存在するため、
6Fe相を含め内部領域がAmFe相を主体と
する外部領域よりも暗い色調の灰色を呈すること
が知られている。
By the way, JIS1100 alloy, JIS1050 alloy, or
It is known that a pattern called a fir tree structure often occurs in an alloy ingot of a system in which A-Fe intermetallic compounds are crystallized, such as JIS5005 alloy. After anodizing, this fir wood structure exhibits a relatively dark gray color in the inner region and a pale gray color in the outer region, which is due to the presence of A-Fe compounds that crystallize depending on the location of the ingot. It is known that this is due to different types. In other words, the ingot contains AmFe, A3
Intermetallic compounds of Fe and A 6 Fe crystallize, but these have different electrochemical properties and
The mFe phase and the A 3 Fe phase are oxidized during the anodizing treatment and exist as oxides in the oxide film, whereas the A 6 Fe phase is not oxidized and exists in the film as a metal phase. If this unoxidized A 6 Fe phase exists in the film, it will absorb the incident light and produce A 3 Fe,
It exhibits a darker tone of gray than the AmFe phase. Generally, the AmFe phase mainly exists in the outer region of the fir tree structure, and the A 6 Fe phase and A 3 Fe phase exist in the inner region.
It is known that the inner region, including the A 6 Fe phase, exhibits a darker tone of gray than the outer region, which is mainly composed of the AmFe phase.

したがつて鋳塊全体が樅の木組織の内部領域の
組織からなるように樅の木組織の内部領域を拡大
させ、実質的に樅の木組織のない鋳塊とすれば、
前述のようなA−Si系の合金でなくとも陽極酸
化処理後に灰色−暗灰色に濃灰色系の色調を呈す
るアルミニウム合金板を得ることができると考え
られる。
Therefore, if the internal area of the fir wood structure is expanded so that the entire ingot consists of the structure of the internal area of the fir wood structure, and the ingot is substantially free of the fir wood structure, then
It is believed that it is possible to obtain an aluminum alloy plate that exhibits a gray-dark gray tone after anodizing treatment even if it is not an A-Si alloy as described above.

一方、本発明者等は既に特公昭58−26431号に
おいて、A−Fe−Si−Mg系のアルミニウム合
金について樅の木組織の内部領域を拡大させて全
体を内部領域の組織とするための組成を提案して
おり、この発明にしたがえば確かに陽極酸化処理
後に灰色〜暗灰色の色調を有する合金板を得るこ
とが可能となり、またこの系の合金では前述のA
−Si合金よりも優れた耐食性を得ることが可能
となる。しかしながらこの提案にしたがつて鋳塊
全体を樅の木組織の内部領域の組織としただけで
は、灰色−暗灰色の色調が安定するとは限らない
のが実情であつた。すなわち、前述のように樅の
木組織の内部領域は暗灰色を呈するA6Fe相の
みならずA3Fe相も晶出するから、A6Fe相
とA3Fe相との比率が変化すれば、その内部領
域の組織といえども灰色の色調に変化があらわれ
てしまい、特に鋳造条件や熱間加工条件によつて
色調が変動してしまうことがある。
On the other hand, the present inventors have already proposed in Japanese Patent Publication No. 58-26431 a composition for expanding the internal region of the fir tree structure and making the entire structure into an internal region structure for an A-Fe-Si-Mg-based aluminum alloy. According to this invention, it is certainly possible to obtain an alloy plate having a gray to dark gray color tone after anodizing treatment, and in this type of alloy, the above-mentioned A
-It is possible to obtain better corrosion resistance than Si alloy. However, in accordance with this proposal, it is not always possible to stabilize the gray-dark gray color tone simply by making the entire ingot have a structure in the inner region of the fir wood structure. That is, as mentioned above, not only the dark gray A 6 Fe phase but also the A 3 Fe phase crystallizes in the internal region of the fir wood structure, so the ratio of the A 6 Fe phase to the A 3 Fe phase changes. For example, even in the structure of the internal region, the gray color tone may change, and the color tone may vary depending on casting conditions and hot working conditions.

そこで本願発明者等はA−Fe−Si−Mg系合
金において陽極酸化処理後の色調が安定して同一
色調の灰色〜暗灰色を呈するアルミニウム合金、
およびその製造方法を開発するべく実験・検討を
重ねた結果、Fe、Siの比率をMgとの関係におい
て厳密に規定すると同時に、鋳塊の鋳造条件を適
切に設定して、鋳造したままの鋳塊のうち最終的
に圧延板の表面となる部分、すなわち鋳塊の表面
から50mmの深さでの部分(表皮部)における全A
−Fe系金属間化合物のうち70%以上をA6Fe
相で占めるようにすることが安定して灰色〜暗灰
色の一定の色調を得るために必要であることが判
明し、既に特開昭61−110741号(特願昭59−
231849号)において提案している。
Therefore, the inventors of the present application have developed an aluminum alloy that exhibits a stable gray to dark gray color tone after anodizing treatment in an A-Fe-Si-Mg based alloy.
As a result of repeated experiments and studies to develop the ingot and its manufacturing method, we determined that the ratio of Fe and Si was strictly defined in relation to Mg, and at the same time, the casting conditions for the ingot were appropriately set, and the as-cast casting was made. Total A in the part of the ingot that will eventually become the surface of the rolled plate, that is, the part at a depth of 50 mm from the surface of the ingot (skin part)
-At least 70% of the Fe-based intermetallic compounds are A 6 Fe
It has been found that it is necessary to stably obtain a constant gray to dark gray color tone by occupying a certain phase.
231849).

発明が解決すべき問題点 前述の特開昭61−110741号の提案に従えば、比
較的安定にA6Fe相を晶出させて、灰色〜暗灰
色の色調のかなりの安定化を図ることが可能であ
る。しかしながら、その提案のA−Fe−Si−
Mg系の成分組成の場合は、鋳造条件によつては
なおA6Fe相とA3Fe相との混在比が変動し、
最終圧延板のロツト内およびロツト間での陽極酸
化処理後の色調が変動することがあることが判明
した。
Problems to be Solved by the Invention According to the proposal of JP-A-61-110741 mentioned above, it is possible to relatively stably crystallize the A 6 Fe phase and to significantly stabilize the gray to dark gray color tone. is possible. However, the proposed A-Fe-Si-
In the case of Mg-based composition, the mixing ratio of A 6 Fe phase and A 3 Fe phase varies depending on the casting conditions.
It has been found that the color tone of the final rolled sheet after anodizing treatment may vary within and between lots.

この発明は以上の事情を背景としてされたもの
で、工業的な量産規模での製造によつても陽極酸
化処理後に著しく安定して灰色〜暗灰色の色調を
呈し得る展伸用アルミニウム合金およびその製造
方法を提供することを目的とするものである。
The present invention was made against the background of the above-mentioned circumstances, and includes an aluminum alloy for wrought use that can exhibit an extremely stable gray to dark gray color tone after anodizing treatment even when manufactured on an industrial scale. The purpose is to provide a manufacturing method.

問題点を解決するための手段 本発明者等は上述の目的を達成するべく鋭意実
験・検討を重ねた結果。A6Fe相が準安定相で
あつて加熱によつてA3Fe相に比較的変態しや
すいのに対し、Mnを添加すれば準安定相のA6
Fe相をA6Fe(Mn)相として安定化させ得るこ
と、そしてある程度以上のMnを添加することに
よつて、安定なA6Fe(Mn)相を鋳塊全体に均
一に晶出させ得ることを見出した。このようにA
6Fe相を安定なA6Fe(Mn)相として鋳塊全
体に均一に晶出させた場合、樅の木組織の発生が
ないから、Fe、Siの比率とMg量との関係等に厳
密な制限を加えなくても、圧延板表面に安定して
6Fe(Mn)相を存在させて、陽極酸化処理後
の色調を安定して灰色〜暗灰色の色調とすること
が可能と考えられる。但し、Mnをある程度以上
添加すれば、陽極酸化処理後の色調が赤味を帯び
た彩色系となつてしまうことがある。しかるに本
発明者等がさらに研究を重ねた結果、Cuを適量
添加するとともに鋳塊均熱条件を高温加熱とする
ことによつて、陽極酸化処理後の色調が赤味を帯
びたものとなることを有効に防止して、灰色〜暗
灰色の無彩色系の色調を確実に得られることを見
出し、この発明をなすに至つたのである。
Means for Solving the Problems The inventors of the present invention have conducted extensive experiments and studies to achieve the above-mentioned objectives. The A 6 Fe phase is a metastable phase and is relatively easily transformed into the A 3 Fe phase by heating, but when Mn is added, the metastable A 6
The Fe phase can be stabilized as the A 6 Fe (Mn) phase, and by adding a certain amount of Mn, the stable A 6 Fe (Mn) phase can be uniformly crystallized throughout the ingot. I discovered that. Like this A
6 If the Fe phase is uniformly crystallized throughout the ingot as a stable A 6 Fe (Mn) phase, no fir wood structure will occur, so the relationship between the ratio of Fe and Si and the amount of Mg must be strictly controlled. We believe that it is possible to stably make the A 6 Fe (Mn) phase exist on the surface of the rolled sheet without imposing any restrictions, thereby stably achieving a gray to dark gray color tone after anodizing treatment. It will be done. However, if more than a certain amount of Mn is added, the color tone after anodizing treatment may become reddish. However, as a result of further research by the present inventors, it was found that by adding an appropriate amount of Cu and setting the ingot soaking condition to high temperature heating, the color tone after anodizing treatment becomes reddish. They discovered that it is possible to effectively prevent this and reliably obtain an achromatic color tone ranging from gray to dark gray, leading to the creation of this invention.

具体的には、第1発明のアルミニウム合金は、
重量比でFe0.4〜1.5%、Mn0.7〜1.5%、Cu0.05〜
0.40%を含有し、残部がAおよび不可避的不純
物よりなることを特徴とするものである。
Specifically, the aluminum alloy of the first invention is
Weight ratio: Fe0.4~1.5%, Mn0.7~1.5%, Cu0.05~
It is characterized by containing 0.40%, with the remainder consisting of A and inevitable impurities.

また第2発明のアルミニウム合金製造方法は、
重量比でFe0.4〜1.5%、Mn0.7〜1.5%、Cu0.05〜
0.40%を含有し、残部がAおよび不可避的不純
物よりなるアルミニウム合金を半連続鋳造法によ
り鋳造し、次いでその鋳塊を550〜650℃の温度範
囲内で0.5〜12時間加熱した後、その温度範囲も
しくはそれ以下の温度で熱間加工することを特徴
とするものである。
Moreover, the aluminum alloy manufacturing method of the second invention includes:
Weight ratio: Fe0.4~1.5%, Mn0.7~1.5%, Cu0.05~
An aluminum alloy containing 0.40% and the balance consisting of A and unavoidable impurities is cast by a semi-continuous casting method, and then the ingot is heated within a temperature range of 550 to 650°C for 0.5 to 12 hours, and then the temperature It is characterized by hot working at a temperature within or below the range.

作 用 先ずこの発明における合金組成の限定理由につ
いて説明する。
Function First, the reason for limiting the alloy composition in this invention will be explained.

Fe: Feが0.4%未満では、陽極酸化処理後に濃灰色
を呈するに寄与するA6Fe(Mn)相の量が少な
くなつて灰色が濃くなつてしまい、一方Feが1.5
%を越えれば耐食性が低下するから、0.4〜1.5%
の範囲とした。
Fe: If the Fe content is less than 0.4%, the amount of A 6 Fe (Mn) phase that contributes to the dark gray color after anodizing treatment will decrease and the gray color will become dark;
If it exceeds 0.4~1.5%, the corrosion resistance will decrease.
The range of

Mn: Mnは前述のように準安定相であるA6Fe相
をA6Fe(Mn)相として安定化させるために必
要な元素である。Mn添加によつてA6Fe(Mn)
として安定化した相は、熱に対しても安定であつ
て、加熱によりA6Fe(Mn)→A3Fe(Mn)
の変態を生じにくく、したがつて加熱条件の変動
により色調の変動が生じにくい特徴を有する。
0.7%以上のMnを添加すれば陽極酸化処理後の色
調が赤味を帯びる傾向を示すが、この発明では後
述するようにCuを添加しかつ鋳塊均熱温度を550
〜650℃と比較的高温としているため赤色が消失
し、目的とする無彩色の灰色〜暗灰色の色調が得
られる。Mnが0.7%未満では半連続鋳造時に樅の
木組織が生じる場合があり、また色調の変動が生
じやすく、安定性に欠ける。一方Mnが1.5%を越
えればA6Mnの初晶が発生するおそれがある。
したがつてMnは0.7〜1.5%の範囲内とした。
Mn: As mentioned above, Mn is an element necessary to stabilize the metastable A 6 Fe phase as the A 6 Fe (Mn) phase. A 6 Fe (Mn) by Mn addition
The phase stabilized as
It has the characteristic that it is less likely to undergo transformation, and therefore less likely to change color tone due to changes in heating conditions.
If 0.7% or more of Mn is added, the color tone after anodizing treatment tends to become reddish, but in this invention, as described later, Cu is added and the ingot soaking temperature is set to 550.
Because the temperature is relatively high at ~650°C, the red color disappears and the desired achromatic gray to dark gray tone is obtained. If the Mn content is less than 0.7%, a fir tree structure may occur during semi-continuous casting, and the color tone tends to fluctuate, resulting in a lack of stability. On the other hand, if Mn exceeds 1.5%, primary crystals of A 6 Mn may occur.
Therefore, Mn was set within the range of 0.7 to 1.5%.

Cu: Cuは陽極酸化処理後の色調を調整するために
必要元素である。Mnが0.7%以上となればA6
Fe(Mn)相が主体となつて前述のように赤味を
帯びた色調となるが、Cuを添加ししかも鋳塊に
対する高温の均熱を組合せれば、その現象が抑制
されて、無彩色系の灰色〜暗灰色の色調が達成さ
れる。ここでCuが0.05%未満では上述の作用が得
られず、一方0.40%を越えれば耐食性が低下し、
黄味色を帯びた色調となつてしまう。したがつて
Cuは0.05〜0.40%の範囲内とした。
Cu: Cu is an element necessary to adjust the color tone after anodizing treatment. A6 if Mn is 0.7% or more
The Fe (Mn) phase is the main component, resulting in a reddish color tone as mentioned above, but if Cu is added and the ingot is soaked at a high temperature, this phenomenon can be suppressed and the color becomes achromatic. A system of gray to dark gray tones is achieved. Here, if Cu is less than 0.05%, the above-mentioned effect cannot be obtained, while if it exceeds 0.40%, corrosion resistance will decrease,
The color becomes yellowish. Therefore
Cu was within the range of 0.05 to 0.40%.

なお上述のようなFe、Mn、Cuの残部は実質的
にAとすれば良いが、通常のA合金では鋳塊
の結晶粒微細化のためにTi、あるいはTiおよび
Bを微量添加することがあり、この発明の合金で
もこれらが微量添加されている場合を含むものと
する。但しTiが0.10%を越えればTiA3の初晶
が生成されてストリンガーと称される線状欠陥の
原因となるから、Tiは0.10%以下とすることが望
ましく、またBを0.03%を越えて添加すれば、ス
トリンガーと称される線状欠陥が生成されて外観
不良となり易くなるから、Bを添加する場合は
0.03%以下とすることが好ましい。
Note that the balance of Fe, Mn, and Cu mentioned above may be substantially A, but in normal A alloys, a small amount of Ti or Ti and B may be added to refine the crystal grains of the ingot. However, the alloy of the present invention includes cases where these are added in small amounts. However, if Ti exceeds 0.10%, primary crystals of TiA 3 will be generated and cause linear defects called stringers, so Ti should preferably be kept at 0.10% or less, and B should not exceed 0.03%. If B is added, linear defects called stringers are likely to be generated, resulting in poor appearance.
The content is preferably 0.03% or less.

次にこの発明の合金の製造方法、すなわち第2
発明の方法における各工程の条件について説明す
る。
Next, the method for manufacturing the alloy of this invention, that is, the second method.
The conditions of each step in the method of the invention will be explained.

先ず前述のような成分組成の合金を常法に従つ
て半連続鋳造(DC鋳造)によつて鋳造する。得
られた鋳塊は、熱間圧延に先立つて加熱するが、
この加熱温度は550〜650℃の温度範囲内とし、ま
たその加熱保持時間は0.5〜12時間とする必要が
ある。このように加熱条件を定めた理由は次の通
りである。すなわち、前述のように鋳塊段階では
Mnの添加によつてA6Fe(Mn)相が熱的に安
定化するが、ハンターカラーシステムによる色調
を表わすL値,a値、b値のうち、赤味を帯びた
彩度をあらわすa値は、第1図に示すように均熱
処理なしの場合はMn量の増加とともに大きくな
る。これに対しCuを添加したこの発明の合金に
おいては550〜650℃の範囲内の温度で均熱処理を
行なつた場合、Mn0.7%以上で無彩色系の色調と
なることが判明した。但し、保持時間が0.5時間
未満では鋳塊全体が均一な温度となりにくく、そ
のため上述のような効果が充分に得られず、一方
12時間以上加熱しても経済的に不利となるだけで
ある。したがつて鋳塊加熱の温度、時間は上述の
ように規定した。
First, an alloy having the above-mentioned composition is cast by semi-continuous casting (DC casting) according to a conventional method. The obtained ingot is heated prior to hot rolling,
This heating temperature must be within the temperature range of 550 to 650°C, and the heating holding time must be 0.5 to 12 hours. The reason why the heating conditions were determined in this manner is as follows. In other words, as mentioned above, at the ingot stage
The addition of Mn thermally stabilizes the A 6 Fe (Mn) phase, but among the L value, a value, and b value that represent the color tone according to the Hunter color system, the a value that represents reddish saturation is As shown in FIG. 1, the value increases as the Mn content increases in the case without soaking treatment. On the other hand, when the alloy of the present invention to which Cu is added is soaked at a temperature within the range of 550 to 650°C, it has been found that an achromatic color tone occurs when Mn is 0.7% or more. However, if the holding time is less than 0.5 hours, it is difficult to achieve a uniform temperature throughout the ingot, and therefore the above-mentioned effects cannot be obtained sufficiently.
Heating for more than 12 hours is only economically disadvantageous. Therefore, the temperature and time for heating the ingot were specified as described above.

熱間圧延は常法にしたがつて鋳塊加熱温度また
はそれ以下の温度で行なえば良く、またその後の
冷間圧延も常法にしたがつて行なえば良く、これ
らの条件は陽極酸化処理後の表面色調に本質的な
影響を与えない。
Hot rolling may be carried out according to a conventional method at a temperature at or below the ingot heating temperature, and subsequent cold rolling may be carried out according to a conventional method, and these conditions are the same as those after anodizing treatment. Does not essentially affect surface color tone.

なおこの発明の方法は、圧延板のみならず押出
材の製造にも適用できることは勿論である。すな
わち押出材を製造する場合、前述の熱間圧延前の
加熱温度、時間を熱間押出前の加熱温度、時間に
適用すれば良い。
It goes without saying that the method of the present invention can be applied not only to the production of rolled plates but also to the production of extruded materials. That is, when producing an extruded material, the heating temperature and time before hot rolling described above may be applied to the heating temperature and time before hot extrusion.

実施例 第1表に示す化学成分の合金No.1〜5を常法に
したがつて溶製し、半連続鋳造によつて鋳込み温
度700℃、鋳造速度65mm/m
Example Alloys Nos. 1 to 5 having the chemical composition shown in Table 1 were melted according to a conventional method, and were semi-continuously cast at a casting temperature of 700°C and a casting speed of 65 mm/m.

Claims (1)

【特許請求の範囲】 1 重量比でFe0.4〜1.5%、Mn0.7〜1.5%、
Cu0.05〜0.40%を含有し、残部がAおよび不可
避的不純物よりなることを特徴とする、陽極酸化
処理後の色調が灰色ないし暗灰色である展伸用ア
ルミニウム合金。 2 重量比でFe0.4〜1.5%、Mn0.7〜1.5%、
Cu0.05〜0.40%を含有し、残部がAおよび不可
避的不純物よりなるアルミニウム合金を半連続鋳
造法により鋳造し、次いでその鋳塊を550〜650℃
の温度範囲内で0.5〜12時間加熱した後、その温
度範囲もしくはそれ以下の温度で熱間加工するこ
とを特徴とする、陽極酸化処理後の色調が灰色な
いし暗灰色である展伸用アルミニウム合金の製造
方法。
[Claims] 1. Fe0.4 to 1.5%, Mn 0.7 to 1.5% by weight,
An aluminum alloy for wrought, which has a gray to dark gray color after anodizing treatment, and is characterized by containing 0.05 to 0.40% of Cu, with the remainder consisting of A and unavoidable impurities. 2 Fe0.4-1.5%, Mn0.7-1.5% by weight,
An aluminum alloy containing 0.05 to 0.40% Cu with the balance consisting of A and unavoidable impurities is cast by a semi-continuous casting method, and then the ingot is heated to 550 to 650°C.
An aluminum alloy for wrought use that has a gray to dark gray color after anodizing treatment, and is characterized by being heated within a temperature range of 0.5 to 12 hours and then hot worked at a temperature within that temperature range or lower. manufacturing method.
JP9091488A 1988-04-13 1988-04-13 Aluminum alloy for expansion and its production Granted JPH01263242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9091488A JPH01263242A (en) 1988-04-13 1988-04-13 Aluminum alloy for expansion and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9091488A JPH01263242A (en) 1988-04-13 1988-04-13 Aluminum alloy for expansion and its production

Publications (2)

Publication Number Publication Date
JPH01263242A JPH01263242A (en) 1989-10-19
JPH0512419B2 true JPH0512419B2 (en) 1993-02-18

Family

ID=14011682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9091488A Granted JPH01263242A (en) 1988-04-13 1988-04-13 Aluminum alloy for expansion and its production

Country Status (1)

Country Link
JP (1) JPH01263242A (en)

Also Published As

Publication number Publication date
JPH01263242A (en) 1989-10-19

Similar Documents

Publication Publication Date Title
CA1216411A (en) Process for producing strip suitable for can lid manufacture
US5913989A (en) Process for producing aluminum alloy can body stock
JPS58224142A (en) Aluminum alloy plate with superior formability and its manufacture
US4836863A (en) Wrought material of aluminum alloy to be anodized gray and process for making the same
JP2606469B2 (en) Aluminum alloy for spontaneous coloring and production method thereof
JPS61272342A (en) Aluminum alloy sheet excelling in formability and baking hardening and its production
JPH0512419B2 (en)
JPH0512418B2 (en)
JP2002543288A5 (en)
US5110371A (en) Aluminum alloys for forming colored anodic oxide films thereon and method for producing a sheet material of the alloy
JPH01268837A (en) Aluminum alloy for stretching and its manufacture
JPS6054382B2 (en) Al alloy for natural coloring
JPS6056772B2 (en) Manufacturing method of Al alloy for natural color development
JPS6054381B2 (en) Al alloy for natural color development
JPH10230346A (en) Finish treatment for silicon steel produced by direct casting method
JPH07243010A (en) Production of aluminum alloy for coloring into gray
JPH0488142A (en) Aluminum alloy having black color tone after anodic oxidation treatment and its manufacture
JPH0256415B2 (en)
JPH038501A (en) Production of aluminum sheet having excellent surface gloss
JPS6357493B2 (en)
JPH0585630B2 (en)
JPH0971831A (en) Gray-colored aluminum alloy sheet little in yellowish and reddish color tone after anodic oxidation treatment and its production
JPH05132731A (en) Aluminum alloy having a gold color tone after anodic oxidation treatment and its production
JP3080396B2 (en) Aluminum alloy for natural coloring
KR20010016565A (en) nature color development anodic oxidation capsula get for aluminium alloy board plank manufacture process