JP2544235B2 - High strength aluminum alloy wrought material with gray color after anodizing treatment and method for producing the same - Google Patents

High strength aluminum alloy wrought material with gray color after anodizing treatment and method for producing the same

Info

Publication number
JP2544235B2
JP2544235B2 JP2153709A JP15370990A JP2544235B2 JP 2544235 B2 JP2544235 B2 JP 2544235B2 JP 2153709 A JP2153709 A JP 2153709A JP 15370990 A JP15370990 A JP 15370990A JP 2544235 B2 JP2544235 B2 JP 2544235B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
anodizing treatment
color tone
temperature
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2153709A
Other languages
Japanese (ja)
Other versions
JPH0445241A (en
Inventor
守 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP2153709A priority Critical patent/JP2544235B2/en
Publication of JPH0445241A publication Critical patent/JPH0445241A/en
Application granted granted Critical
Publication of JP2544235B2 publication Critical patent/JP2544235B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Extrusion Of Metal (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は陽極酸化処理を施して使用される用途の高
強度アルミニウム合金展伸材、特にビルのカーテンウォ
ールや建築外装材、内装材などの建材、あるいは器物、
容器、電気計測機器筐体、銘板等に押出形材や圧延材と
して使用される高強度アルミニウム合金展伸材およびそ
の製造方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a high-strength aluminum alloy wrought material for use in which anodizing treatment is applied, particularly a building material such as a building curtain wall, building exterior material, interior material, Or something,
The present invention relates to a high-strength aluminum alloy wrought material used as an extruded shape material or a rolled material for a container, an electric measuring instrument housing, a name plate, and the like, and a method for manufacturing the same.

従来の技術 一般にカーテンウォールや建築外装材、内装材などの
建材、あるいは器物、容器、電気計測機器筐体、銘板な
どに使用されるアルミニウム合金の展伸材、すなわち押
出形材や圧延材は、耐食性の観点から陽極酸化処理を施
して用いられることが多い。これらの用途の陽極酸化処
理用アルミニウム合金としては、陽極酸化処理後の色調
が淡灰色系からシルバー系のものが多く、このような合
金の圧延材としては一般にJIS 1050合金、1100合金、50
05合金等が使用されることが多く、また押出形材例えば
サッシとしては6063合金等が使用されることが多い。ま
た灰色系のものとしては圧延材、押出形材とともにAl−
1〜4%Si合金が一般的である。このほか、陽極酸化処
理後の色調が灰色のアルミニウム合金としては、Al−Fe
系合金や、Al−Fe−Mg−Mn系の合金が提案されている。
なお陽極酸化処理法としては、経済性および耐食性の点
から従来一般に硫酸電解浴を用いた陽極酸化処理が多用
されている。
Conventional technology In general, curtain walls, building exterior materials, building materials such as interior materials, or wrought aluminum alloy materials used for vessels, containers, electrical measuring instrument housings, name plates, etc., that is, extruded shape materials and rolled materials, From the viewpoint of corrosion resistance, it is often used after being anodized. As anodized aluminum alloys for these applications, the color tone after anodization is often light gray to silver, and as rolled materials of such alloys, generally JIS 1050 alloy, 1100 alloy, 50
05 alloys are often used, and extruded profiles such as sashes are often 6063 alloys. In addition, as a gray type, Al-
1 to 4% Si alloy is common. In addition, as an aluminum alloy with a gray color tone after anodizing treatment, Al-Fe
Based alloys and Al-Fe-Mg-Mn alloys have been proposed.
As an anodizing method, an anodizing method using a sulfuric acid electrolytic bath has been generally used conventionally from the viewpoint of economy and corrosion resistance.

発明が解決しようとする課題 各種の色調のうちでも、灰色系の色調は落ち着いた質
感を与えるところから、建材等の用途においても灰色系
の色調が要求されることが多い。
Problems to be Solved by the Invention Among various color tones, the gray color tone gives a soothing texture, so that the gray color tone is often required also in applications such as building materials.

しかしながら、Al−Si系のアルミニウム合金は、デス
マット性が悪く、陽極酸化処理後の表面が粉吹きざみと
なる問題があり、また陽極酸化処理後の色調も、灰色系
とは言えども黄色味もしくは赤味が強く、もう少しあっ
さりした無彩色の灰色が望まれることが多い。
However, Al-Si-based aluminum alloy has poor desmutting property, and there is a problem that the surface after anodizing treatment is powdery, and the color tone after anodizing treatment is yellowish or grayish although it is grayish. It is often desired to have an achromatic gray color with a strong reddish color.

一方Al−Fe系の合金やAl−Fe−Mg−Mn系の合金の場合
は、前述のようなAl−Si系合金の欠点を補うことができ
るが、サッシ等の押出形材としては強度が不足するため
適用できず、また圧延材としても高強度が要求される場
合は不適当となる問題がある。
On the other hand, in the case of Al-Fe-based alloys and Al-Fe-Mg-Mn-based alloys, the drawbacks of Al-Si-based alloys as described above can be compensated, but as extruded shape members such as sashes, the strength is high. There is a problem that it cannot be applied because it is insufficient, and is unsuitable when high strength is required as a rolled material.

この発明は以上の事情を背景としてなされたもので、
陽極酸化処理後の色調として、黄色味や赤味を帯びてい
ない灰色、すなわち無彩色の灰色の色調を安定して得る
ことができ、しかも充分な高強度を有するアルミニウム
合金展伸材およびその製造方法を提供することを目的と
するものである。
This invention was made against the background of the above circumstances.
As a color tone after anodizing treatment, a gray color not having a yellowish or reddish tone, that is, an achromatic gray color tone can be stably obtained, and an aluminum alloy wrought material having sufficient high strength and its production It is intended to provide a method.

課題を解決するための手段 本発明者等は前述の課題を解決する手段について種々
実験・検討を重ねた結果、合金成分を適切に調節してMn
析出物を制御することにより、陽極酸化皮膜を無彩色の
灰色とすると同時に高強度を得ることができることを見
出し、この発明をなすに至った。
Means for Solving the Problems The inventors of the present invention have conducted various experiments and studies on the means for solving the above-mentioned problems, and as a result, appropriately adjust the alloy components to obtain Mn.
The inventors have found that by controlling the precipitates, the anodic oxide film can be made an achromatic gray color and at the same time high strength can be obtained, and the present invention has been completed.

具体的には、請求項1の発明のアルミニウム合金展伸
材は、Mn 0.5〜2.0wt%、Mg 0.5〜2.0wt%、Zn 1.0〜5.
5wt%を含有し、かつ結晶粒微細化剤としてTi 0.003〜
0.15wt%を単独でもしくはB 1〜100ppmと組合わされて
含有し、残部がAlおよびその他の不可避的不純物よりな
ることを特徴とするものであって、このような成分組成
とすることによって、陽極酸化処理後の色調として無彩
色の灰色を得、しかも高強度を得ることが可能となった
ものである。
Specifically, the aluminum alloy wrought material of the invention of claim 1 has Mn 0.5 to 2.0 wt%, Mg 0.5 to 2.0 wt%, and Zn 1.0 to 5.
It contains 5wt% and Ti 0.003〜 as a grain refiner.
0.15 wt% is contained alone or in combination with B 1 to 100 ppm, and the balance is made up of Al and other unavoidable impurities. It is possible to obtain an achromatic gray color and high strength as the color tone after the oxidation treatment.

また請求項2の発明は、展伸材のうち特に押出形材を
製造する方法についてのものであり、前記同様な成分組
成の合金をDC鋳造法によって鋳造した後、鋳塊を400〜6
00℃の範囲内の温度に0.5〜24時間加熱し、その後熱間
押出を行なってその熱間押出直後に20℃/min以上の冷却
速度で冷却することによって、陽極酸化処理後の色調が
無彩色の灰色でかつ高強度を有するアルミニウム合金押
出形材を得ている。
Further, the invention of claim 2 relates to a method for manufacturing extruded shape material among wrought materials, in which an alloy having the same composition as the above is cast by a DC casting method, and then an ingot is made to have a size of 400 to 6
By heating to a temperature in the range of 00 ℃ for 0.5 to 24 hours, then performing hot extrusion and cooling immediately after the hot extrusion at a cooling rate of 20 ℃ / min or more, there is no color tone after anodizing treatment. An extruded aluminum alloy profile that is colored gray and has high strength is obtained.

さらに請求項3の発明は、展伸材のうち特に圧延材を
製造する方法についてのものであり、前記同様な成分組
成の合金をDC鋳造法により鋳造した後、鋳塊を400〜600
℃の範囲内の温度で0.5〜24時間加熱し、その後熱間圧
延、もしくは熱間圧延および冷間圧延を行ない、熱間圧
延の後もしくは冷間圧延の後に350〜600℃の範囲内の温
度に加熱して20℃/min以上の冷却速度で冷却することに
より、陽極酸化処理後の色調が無彩色の灰色でかつ高強
度を有する圧延材を得ている。
Further, the invention of claim 3 relates to a method for producing a rolled material among the wrought materials, in which an alloy having the same composition as the above is cast by a DC casting method, and then an ingot is made to have a thickness of 400 to 600.
Heat at a temperature in the range of ℃ for 0.5 to 24 hours, and then perform hot rolling, or hot and cold rolling, and a temperature in the range of 350 to 600 ℃ after hot rolling or after cold rolling. By heating to 20 ° C./min or more and cooling at a cooling rate of 20 ° C./min or more, a rolled material having an achromatic gray color after anodizing treatment and having high strength is obtained.

作用 先ずこの発明のアルミニウム合金展伸材における成分
組成限定理由を説明する。
Action First, the reasons for limiting the component composition in the wrought aluminum alloy material of the present invention will be explained.

Mn: MnはAl−Mn系の金属間化合物を生成して、陽極酸化処
理後の色調を決定するに重要な元素であり、本発明者等
は、Mnを含有する析出物(Al6Mn、AlMnSi、AlMnFe、AlM
nFeCr等)の種類とサイズが陽極酸化皮膜の色調を無彩
色の灰色とするに重要であることを見出した。すなわち
MnはMgと共存することによって所定のサイズのMn系析出
物の析出が達成されて陽極酸化皮膜が灰色系の色調とな
る。Mn量が0.5wt%未満では充分な灰色化が達成され
ず、一方Mn量が2.0wt%を越えれば灰色化は可能である
が、DC鋳造時に初晶の金属間化合物が生成されてしま
う。そこでMn量は0.5〜2.0wt%の範囲内に限定した。
Mn: Mn is an important element for forming an Al-Mn-based intermetallic compound and determining the color tone after anodizing treatment, and the present inventors have found that Mn-containing precipitates (Al 6 Mn, AlMnSi, AlMnFe, AlM
It was found that the type and size of (nFeCr, etc.) are important for making the color tone of the anodized film achromatic gray. Ie
When Mn coexists with Mg, precipitation of Mn-based precipitates of a predetermined size is achieved, and the anodized film has a grayish color tone. If the amount of Mn is less than 0.5 wt%, sufficient graying cannot be achieved, while if the amount of Mn exceeds 2.0 wt%, graying is possible, but primary crystal intermetallic compounds are formed during DC casting. Therefore, the Mn content is limited to the range of 0.5 to 2.0 wt%.

Mg: MgはMnの析出を促進し、所定のサイズのMn系析出物を
生成させるに必要な元素である。特にDC鋳造のように薄
膜連続鋳造と比較して鋳造時の冷却速度が遅く、Mnの強
制固溶量が少ない場合には、ある程度のMgを含有させな
ければMn系析出物のサイズが陽極酸化処理後に無彩色の
灰色の色調を得るに適した状態とはならない。またMgの
添加はMnの析出を促進するが、析出物の形態は変えない
ため、陽極酸化処理後の色調が黄色味を帯びることを回
避し、無彩色の灰色を得るに最適である。さらにMgはZn
と共存してMnZn2を生成し、強度向上に寄与する。ここ
で、Mg量が0.5wt%未満では強度向上の効果が得られ
ず、しかもMnの析出を促進して陽極酸化処理後に無彩色
の灰色の色調を得る効果が充分に得られない。一方Mg量
が2.0wt%を越えれば、陽極酸化処理後の色調が濃色化
しすぎて、むしろ黒色となってしまい、また熱間加工性
を劣化させ、特に熱間押出の生産性を低下させる。そこ
でMg量は0.5〜2.0wt%の範囲内とした。
Mg: Mg is an element necessary to promote the precipitation of Mn and generate Mn-based precipitates of a predetermined size. Especially when the cooling rate during casting is slow compared to thin film continuous casting like DC casting and the amount of forced solid solution of Mn is small, the size of Mn-based precipitates is anodized unless some Mg is contained. After processing, it is not in a state suitable for obtaining an achromatic gray tone. Further, addition of Mg promotes precipitation of Mn, but does not change the form of the precipitate, so that it is suitable for obtaining an achromatic gray color by avoiding a yellowish color tone after anodizing treatment. Furthermore, Mg is Zn
Coexists with and produces MnZn 2 and contributes to strength improvement. Here, if the amount of Mg is less than 0.5 wt%, the effect of improving the strength cannot be obtained, and further, the effect of promoting the precipitation of Mn and obtaining an achromatic gray color tone after the anodizing treatment cannot be sufficiently obtained. On the other hand, when the amount of Mg exceeds 2.0 wt%, the color tone after anodizing treatment becomes too dark and becomes rather black, and the hot workability deteriorates, especially the productivity of hot extrusion decreases. . Therefore, the amount of Mg is set within the range of 0.5 to 2.0 wt%.

Zn: ZnはMgと共存して強度を向上させるに有効な元素であ
る。ここで、ZnはMnの析出を促進させるが、Mnの析出物
の形態に本質的な影響を与えないから、陽極酸化処理後
の無彩色の灰色の色調に影響を与えずに強度向上が可能
となる。Zn量が1.0wt%未満では強度向上の効果が得ら
れず、一方5.5wt%を越えれば鋳造が困難となり、また
熱間変形抵抗が増大して熱間加工性も悪くなるから、Zn
は1.0〜5.5wt%の範囲内とした。
Zn: Zn is an element that coexists with Mg and is effective in improving strength. Here, Zn promotes the precipitation of Mn, but since it does not essentially affect the morphology of the precipitate of Mn, it is possible to improve the strength without affecting the tone of achromatic gray after anodizing. Becomes If the Zn content is less than 1.0 wt%, the effect of improving strength cannot be obtained, while if it exceeds 5.5 wt%, casting becomes difficult, and the hot deformation resistance increases and the hot workability deteriorates.
Was in the range of 1.0 to 5.5 wt%.

Ti,B: これらは結晶粒を微細化して、圧延板のキメ、ストリ
ークスを防止する効果があり、Tiを単独で、あるいはTi
とBを組合せて添加する。Tiが0.003wt%未満では上記
の効果が得られず、一方Tiが0.15wt%を越えればTiAl3
の粗大金属間化合物が生成されるおそれがあるから、Ti
は0.003〜0.15wt%の範囲内とする。BはTiと共存して
微細化効果を発揮する。Tiと組合されて添加する場合の
Bの添加量が1ppm未満では上記の効果が得られず、一方
100ppmを越えれば粗大TiB2粒子による線状欠陥が発生す
るから、B量は1〜100ppmの範囲内とする。
Ti, B: These have the effect of refining the crystal grains and preventing the texture and streaks of the rolled sheet. Ti alone or Ti
And B are added in combination. If Ti is less than 0.003 wt%, the above effect cannot be obtained, while if Ti exceeds 0.15 wt%, TiAl 3
Since coarse intermetallic compounds of
Is in the range of 0.003 to 0.15 wt%. B coexists with Ti and exhibits a refinement effect. When the amount of B added in combination with Ti is less than 1 ppm, the above effect cannot be obtained.
If it exceeds 100 ppm, linear defects due to coarse TiB 2 particles will occur, so the amount of B should be in the range of 1 to 100 ppm.

以上の各元素のほかは、基本的にはAlおよびその他の
不可避的不純物とすれば良い。ここで不可避的不純物と
しては、Fe,Si,Cr,Cu,Zrなどがあるが、このうちFe,Si,
Cr,Cuは陽極酸化処理後の色調にある程度の影響を与え
るから、少量に規制することが好ましい。すなわちFeは
鋳造時に晶出する金属間化合物の種類により色調を灰色
からクリーム色まで変化させてしまうため、Fe量が多け
れば鋳造時の偏析によりストリークス模様を生じさせて
しまうおそれがある。そこでFe量は0.7wt%未満とする
ことが望ましい。またSiはMnの析出を助長させるが、Si
を多量に含有すれば、析出物の種類がαAlMn(Fe)Siと
なり易く、この場合陽極酸化処理後の色調として灰色が
薄くなり、黄色味が強くなる。そこでSi量は0.2wt%未
満に規制することが望ましい。さらにCrも陽極酸化処理
後の色調に変化を与え、Cr量が0.2wt%以上となれば陽
極酸化処理後の色調に黄色味が強くなり、しかも粗大金
属間化合物を生じて好ましくない。そこでCr量は0.2wt
%未満に規制することが好ましい。またCuも陽極酸化処
理後の色調に変化を与え、Cu量が0.5wt%以上となれば
黄色味が強くなるとともに、鋳造性も悪化する。そこで
Cu量は0.5wt%未満に規制することが好ましい。一方Zr
は陽極酸化処理後の色調に本質的な影響を与えないが、
0.3wt%を越えれば粗大化合物が生成されるおそれがあ
るから、不純物としてZrは0.3wt%以下とすることが好
ましい。
In addition to the above elements, basically, Al and other unavoidable impurities may be used. Here, inevitable impurities include Fe, Si, Cr, Cu, Zr, etc.
Since Cr and Cu have some influence on the color tone after anodizing treatment, it is preferable to regulate the amount to a small amount. That is, since Fe changes the color tone from gray to cream depending on the type of intermetallic compound crystallized during casting, if the Fe content is large, segregation during casting may cause a streak pattern. Therefore, it is desirable that the Fe content be less than 0.7 wt%. Moreover, Si promotes the precipitation of Mn.
If a large amount of is included, the type of precipitates tends to be αAlMn (Fe) Si, and in this case, the gray tone becomes lighter and the yellow tint becomes stronger as the color tone after the anodizing treatment. Therefore, it is desirable to control the Si content to less than 0.2 wt%. Further, Cr also changes the color tone after the anodizing treatment, and when the amount of Cr is 0.2 wt% or more, the color tone after the anodizing treatment becomes more yellowish and a coarse intermetallic compound is produced, which is not preferable. So the Cr content is 0.2wt
It is preferable to regulate it to less than%. Cu also changes the color tone after anodizing, and if the Cu content is 0.5 wt% or more, the yellow tint becomes strong and the castability deteriorates. Therefore
It is preferable to regulate the Cu content to less than 0.5 wt%. On the other hand Zr
Has no essential effect on the color tone after anodizing,
If it exceeds 0.3 wt%, a coarse compound may be produced, so Zr is preferably 0.3 wt% or less as an impurity.

また一般にMgを含有する系のアルミニウム合金におい
ては、溶湯の酸化防止のために微量のBeを添加すること
が多いが、この発明の合金の場合もBeを添加することは
特に支障はない。この場合のBe添加量は500ppm以下が一
般的である。
Further, generally, in a magnesium-containing aluminum alloy, a small amount of Be is often added to prevent the oxidation of the molten metal, but in the case of the alloy of the present invention, addition of Be does not cause any particular problem. In this case, the amount of Be added is generally 500 ppm or less.

以上のような成分組成のアルミニウム合金とすること
によって、最終展伸材、すなわち押出形材もしくは圧延
材に対して陽極酸化処理を施した後の色調として黄色味
や赤味を帯びていない無彩色の灰色の色調を得ることが
できる。
By using an aluminum alloy having the above-described composition, the final wrought material, that is, an extruded shape material or rolled material, is an achromatic color that does not have a yellowish or reddish tint as a color tone after anodizing treatment. You can get a gray tone of.

次に請求項2、請求項3に記載の発明の方法、すなわ
ち製造方法について述べる。
Next, the method of the invention described in claims 2 and 3, that is, the manufacturing method will be described.

先ず前述のような成分組成の合金の溶湯を常法に従っ
て溶製し、DC鋳造法(半連続鋳造法)によって鋳塊とす
る。次いでその鋳塊に対し、400℃〜600℃の範囲内の温
度で0.5〜24時間の加熱を施す。この鋳塊加熱は、一般
的な鋳塊組織均質化のために必要であるばかりでなく、
陽極酸化処理後の色調として無彩色灰色の色調を与える
ために必要な工程である。すなわちこの鋳塊加熱によっ
て、Mn系析出物であるAl6Mn,Al6(MnFe)等の析出を促
進させて、これらのMn系析出物による陽極酸化処理後の
無彩色灰色の発色に寄与する。鋳塊加熱温度が400℃未
満ではMn系析出物の析出が少なく、陽極酸化処理後の色
調として赤味を帯びた色調となってしまい、一方、600
℃を越えれば共晶融解のおそれがある。また鋳塊加熱時
間が0.5時間未満では前述の効果が充分に得られず、一
方24時間を越える長時間の加熱は経済性の低下を招くだ
けである。したがって鋳塊加熱の条件は、400〜600℃の
範囲内の温度で0.5〜24時間とした。
First, a melt of an alloy having the above-described component composition is melted according to a conventional method, and an ingot is formed by a DC casting method (semi-continuous casting method). Then, the ingot is heated at a temperature in the range of 400 ° C to 600 ° C for 0.5 to 24 hours. This ingot heating is not only required for general ingot structure homogenization,
This step is necessary to give an achromatic gray color tone as the color tone after the anodizing treatment. That is, the heating of the ingot promotes the precipitation of Mn-based precipitates such as Al 6 Mn, Al 6 (MnFe), and contributes to the development of a neutral gray color after the anodizing treatment by these Mn-based precipitates. . If the ingot heating temperature is less than 400 ° C, the precipitation of Mn-based precipitates is small, and the color tone becomes reddish as the color tone after anodizing treatment.
If it exceeds ℃, there is a risk of eutectic melting. Further, if the ingot heating time is less than 0.5 hours, the above-mentioned effect is not sufficiently obtained, while heating for a long time exceeding 24 hours only causes a decrease in economic efficiency. Therefore, the conditions for heating the ingot were 0.5 to 24 hours at a temperature in the range of 400 to 600 ° C.

上述のような鋳塊加熱後には、請求項2の発明の方法
の場合は熱間押出を適用して、押出形材を得、また請求
項3の発明の方法の場合は熱間圧延を適用しさらに必要
に応じて冷間圧延を適用して、圧延材を得る。そこで鋳
塊加熱後の工程については、押出形材を得る場合と圧延
材を得る場合とに分けて説明する。
After heating the ingot as described above, hot extrusion is applied in the case of the method of the invention of claim 2 to obtain an extruded profile, and hot rolling is applied in the case of the method of the invention of claim 3. Then, if necessary, cold rolling is applied to obtain a rolled material. Therefore, the steps after heating the ingot will be described separately for the case of obtaining an extruded shape and the case of obtaining a rolled material.

A:押出形材を得る場合 この場合には、前述のような条件での鋳塊加熱の後、
ただちに熱間押出を行なっても良いが、通常は熱間押出
に先立って再加熱するのが一般的である。この熱間押出
前の再加熱は、一般に短時間の誘導加熱が適用される
が、陽極酸化処理後の色調に影響を与えないように、鋳
塊加熱温度以下の温度を選択することが適当である。
A: When obtaining an extruded profile In this case, after heating the ingot under the above conditions,
Although hot extrusion may be carried out immediately, it is common to reheat prior to hot extrusion. For this reheating before hot extrusion, induction heating for a short time is generally applied, but it is appropriate to select a temperature below the ingot heating temperature so as not to affect the color tone after anodizing treatment. is there.

熱間押出は常法に従って行なえば良いが、押出温度は
350〜600℃とすることが好ましい。この熱間押出は、押
出成形と同時に溶体化を行なう役割を果たすが、押出温
度が350℃未満では溶体化が不充分となって最終的に充
分な強度が得られなくなるおそれがあり、一方600℃を
越える高温では共晶融解が生じるおそれがあるばかりで
なく、押出形材表面に粗大再結晶が生じて陽極酸化処理
後の表面に粗大再結晶が生じて陽極酸化処理後の表面に
模様が生じてしまうおそれがある。
Hot extrusion may be performed according to a conventional method, but the extrusion temperature is
The temperature is preferably 350 to 600 ° C. This hot extrusion plays a role of solutionizing at the same time as extrusion molding, but if the extrusion temperature is less than 350 ° C., the solutionation may be insufficient and finally sufficient strength may not be obtained. Not only is there a possibility that eutectic melting will occur at temperatures above ℃, but coarse recrystallization will occur on the surface of the extruded profile and coarse recrystallization will occur on the surface after anodizing treatment, resulting in a pattern on the surface after anodizing. May occur.

熱間押出直後は20℃/min以上の冷却速度で急冷して焼
入れを行なう。すなわち所謂ダイクエンチを行なう。こ
のように押出直後に急冷することによって、押出のまま
の室温時効で高強度を得ることが可能となる。この冷却
速度が20℃/min未満では充分な温度が得られないから、
冷却速度は20℃/min以上とする必要がある。但し、合金
の成分組成によっては熱間押出のままでは充分な高強度
が得られないこともあり、その場合には例えば120℃×1
2時間程度の人工時効処理を施してT5テンパー材として
も良く、あるいはまた熱間押出−冷却後に再度溶体化処
理−焼入れを施してT4テンパー材もしくはT6テンパー材
としても良い。この場合の溶体化処理の条件は、後述す
る圧延材についてのバッチ式加熱炉による溶体化処理の
場合と同様に350〜600℃×5分以上の加熱とすれば良
く、また焼入れも後述の圧延材の場合と同様に20℃/min
以上の冷却速度とすれば良い。なお以上のようにして得
られた押出形材は、引続いてストレッチによる歪矯正を
施しても良い。
Immediately after hot extrusion, quenching is performed by quenching at a cooling rate of 20 ° C / min or more. That is, so-called die quench is performed. Thus, by rapidly cooling immediately after extrusion, it becomes possible to obtain high strength by aging at room temperature as it is extruded. If this cooling rate is less than 20 ° C / min, a sufficient temperature cannot be obtained,
The cooling rate should be 20 ° C / min or more. However, depending on the component composition of the alloy, it may not be possible to obtain sufficiently high strength with hot extrusion, in which case, for example, 120 ° C x 1
The T5 temper material may be subjected to artificial aging treatment for about 2 hours, or it may be subjected to hot solution extrusion-cooling and then solution treatment-quenching to obtain the T4 temper material or the T6 temper material. The conditions of the solution treatment in this case may be heating at 350 to 600 ° C. × 5 minutes or more as in the case of the solution treatment in a batch type heating furnace for rolled materials described later, and quenching is also performed by the rolling described below. 20 ° C / min as for material
The above cooling rate may be used. The extruded profile obtained as described above may be subsequently subjected to strain correction by stretching.

B:圧延材を得る場合 この場合には、前述のような条件での鋳塊加熱の後、
ただちに熱間圧延を行なうか、または鋳塊加熱後に一旦
冷却してから再加熱して熱間圧延を行なう。再加熱温度
および熱間圧延温度は、陽極酸化処理後の色調に本質的
に影響を与えないように、前述の鋳塊加熱温度の範囲内
かそれより低い温度とすることが好ましい。
B: When obtaining a rolled material In this case, after heating the ingot under the conditions as described above,
Immediately hot rolling is performed, or after ingot heating, cooling is performed and then reheating is performed to perform hot rolling. The reheating temperature and the hot rolling temperature are preferably set to a temperature within the range of the aforementioned ingot heating temperature or lower so as not to substantially affect the color tone after the anodizing treatment.

熱間圧延により得られた圧延板は、そのままで所望の
最終板厚が得られている場合はそのまま溶体化処理−焼
入れを行ない、またそうでない場合は、引続いて冷間圧
延を行なって、最終板厚としてから溶体化処理−焼入れ
を行なう。冷間圧延を行なう場合は、必要に応じて、熱
間圧延と冷間圧延との間あるいは冷間圧延の中途におい
て300〜500℃×0.5 〜24時間程度の中間焼鈍を行なっ
ても良い。
The rolled plate obtained by hot rolling, if the desired final plate thickness is obtained as it is, perform solution treatment-quenching as it is, and if not, subsequently perform cold rolling, After the final plate thickness, solution treatment-quenching is performed. When performing cold rolling, intermediate annealing at 300 to 500 ° C. × 0.5 to 24 hours may be performed between hot rolling and cold rolling or in the middle of cold rolling, if necessary.

溶体化処理の温度は350〜600℃の範囲内とする。溶体
化処理温度が350℃未満では溶体化が不充分となって最
終的に充分な高強度が得られず、一方600℃を越えれば
共晶融解のおそれがあり、また陽極酸化処理後の色調の
安定性の点からも溶体化処理温度は鋳塊加熱温度より低
い温度とすることが好ましい。ここで、溶体化処理−焼
入れには、切り板を溶体化処理した後急冷するバッチ式
の溶体化加熱炉を用いても良く、あるいはコイルを連続
的に膜戻しながら炉中を通板させる連続溶体化焼入れ炉
もしくは連続焼鈍炉を用いても良い。またこの溶体化処
理においては、材料の温度が前述の350〜600℃の範囲内
の温度に到達すれば良く、特に保持時間をとる必要はな
いが、品質の安定性の向上の観点からは、バッチ式の加
熱炉の場合は5分以上保持することが、また連続炉の場
合は10秒以上保持することが望ましい。溶体化処理後の
焼入れは、20℃/min以上の冷却速度が必要である。冷却
速度が20℃/minでは、焼入れの効果が不充分で、最終的
に充分な高強度が得られない。
The solution treatment temperature is within the range of 350 to 600 ° C. If the solution heat treatment temperature is less than 350 ° C, solution heat treatment will be insufficient and eventually high strength will not be obtained. On the other hand, if it exceeds 600 ° C, eutectic melting may occur, and the color tone after anodizing treatment may be poor. From the viewpoint of stability, the solution treatment temperature is preferably lower than the ingot heating temperature. Here, in the solution treatment-quenching, a batch-type solution heating furnace in which a cut plate is solution-treated and then rapidly cooled may be used, or continuous coiling is performed by continuously passing the coil back through the furnace. A solution hardening quenching furnace or a continuous annealing furnace may be used. Further, in this solution treatment, it is sufficient that the temperature of the material reaches the temperature within the range of 350 to 600 ° C. described above, and it is not necessary to take a holding time, but from the viewpoint of improving the quality stability, In the case of a batch type heating furnace, it is desirable to hold it for 5 minutes or longer, and in the case of a continuous furnace, it is desirable to hold it for 10 seconds or longer. Quenching after the solution treatment requires a cooling rate of 20 ° C / min or more. If the cooling rate is 20 ° C / min, the effect of quenching is insufficient, and finally high enough strength cannot be obtained.

上述のようにして製造された圧延板は、切り板の場合
は必要に応じて単板レベラー、ストレッチ等により歪矯
正するのが通常である。またコイルの場合は、より高強
度が必要であるならばさらに冷間圧延を行なっても良
く、いずれにしてもその後歪矯正のためにコイルのまま
レベリングを行なうかまたは切断後ストレッチを行なう
のが通常である。さらに、強度向上のために例えば120
℃×12時間程度の人工時効処理を施しても良い。
In the case of a cut plate, the rolled plate manufactured as described above is usually strain-corrected by a single plate leveler, stretch or the like, if necessary. Further, in the case of a coil, if higher strength is required, cold rolling may be further performed. In any case, after that, leveling as a coil or stretch after cutting is performed for straightening the strain. It is normal. Furthermore, for strength improvement, for example, 120
You may give artificial aging treatment of about 12 hours at ℃.

以上のようにAの工程により得られた押出形材、ある
いはBの工程により得られた圧延材は、陽極酸化処理を
施すことによって、黄色味や赤味を帯びていない灰色、
すなわち無彩色灰色の色調を安定して得ることができ
る。
As described above, the extruded shape material obtained in the step A or the rolled material obtained in the step B is anodized to obtain a gray color which is not yellowed or reddish,
That is, it is possible to stably obtain an achromatic gray tone.

次に以上のような押出形材もしくは圧延材に対して、
陽極酸化処理を施して実際に無彩色灰色の色調を得るた
めのプロセスを説明する。
Next, for the extruded shape material or rolled material as described above,
A process for performing anodizing treatment to actually obtain an achromatic gray tone will be described.

陽極酸化処理にあたっては、予め表面の汚れおよび表
面の欠陥を除去しておくため、脱脂およびエッチングを
行なうのが一般的である。エッチングは、苛性ソーダ系
のアルカリエッチングを行なうのが通常である。そして
陽極酸化処理自体は、H2SO4濃度が10〜25vol%の硫酸浴
を用い、浴温度10〜30℃、電流密度1.5A/dm2以上2.5A/d
m2未満で行ない、膜厚10〜30μmの陽極酸化皮膜を生成
させる。
In the anodic oxidation treatment, degreasing and etching are generally performed in order to remove surface stains and surface defects in advance. The etching is usually a caustic soda-based alkali etching. And for the anodizing treatment itself, a sulfuric acid bath with a H 2 SO 4 concentration of 10 to 25 vol% is used, the bath temperature is 10 to 30 ° C., the current density is 1.5 A / dm 2 or more and 2.5 A / d.
It is performed under m 2 to form an anodized film with a thickness of 10 to 30 μm.

ここで、硫酸浴のH2SO4濃度が10vol%未満では生成さ
れる陽極酸化皮膜の多孔度が減少して浴電圧が高くな
る。一方H2SO4濃度が25vol%を越えれば、表面が荒れて
陽極酸化皮膜が柔かくなる。また浴温度が10℃未満では
所要の膜厚を得るために長時間の処理を要して不経済と
なり、一方30℃を越えれば陽極酸化処理後の耐食性が低
下してしまう。さらに電流密度は、2.5A/dm2以上では処
理に多大な電力を要し、実用的でなく、一方1.5A/dm2
満では、陽極酸化処理後の色調が薄くなって灰色が得ら
れなくなる、また生成される陽極酸化皮膜の膜厚が10μ
m未満では充分な耐食性が得られず、一方30μmを越え
るまで厚くすることは経済的でない。
Here, when the H 2 SO 4 concentration of the sulfuric acid bath is less than 10 vol%, the porosity of the anodic oxide film formed is reduced and the bath voltage is increased. On the other hand, when the H 2 SO 4 concentration exceeds 25 vol%, the surface becomes rough and the anodic oxide film becomes soft. If the bath temperature is less than 10 ° C, it takes a long time to obtain the required film thickness, which is uneconomical. On the other hand, if the bath temperature exceeds 30 ° C, the corrosion resistance after anodizing is deteriorated. Furthermore, if the current density is 2.5 A / dm 2 or more, a large amount of power is required for the treatment, which is not practical, while if it is less than 1.5 A / dm 2 , the color tone after anodizing treatment becomes light and gray cannot be obtained. Also, the thickness of the anodic oxide film formed is 10μ.
If it is less than m, sufficient corrosion resistance cannot be obtained, while it is not economical to increase the thickness to more than 30 μm.

以上のような硫酸浴による陽極酸化処理によって、無
彩色灰色の色調を得ることができる。なおここで陽極酸
化処理後の色調については、ハンターの色差式(JIS Z
8730参照)による明度指数Lとクロマティクネス指数a,
bの値によって評価することができる。すなわち、明度
指数のL値は高いほど白く、一方クロマティクネス指数
は着色度についてのものであってそのa値は高いほど赤
味が強く、b値は高いほど黄味が強いことをあらわす。
そしてこの発明で目的とする無彩色の灰色の色調とは、
L値、a値、b値が、 40<L<65、−2<a<+2、−2<b<+2 を満たす色調と定義することができ、より望ましいL値
の範囲は、45<L<65である。
By the anodizing treatment with the sulfuric acid bath as described above, an achromatic gray color tone can be obtained. For the color tone after the anodizing treatment, refer to the Hunter color difference formula (JIS Z
8730), the lightness index L and the chromaticness index a,
It can be evaluated by the value of b. That is, the higher the L value of the lightness index is, the whiter it is, while the chromaticness index is about the coloring degree, the higher the a value is, the stronger the reddish color is, and the higher the b value is, the stronger the yellowish color is.
And the achromatic gray tone that is the objective of this invention is
L value, a value, b value can be defined as a color tone that satisfies 40 <L <65, -2 <a <+2, -2 <b <+2, and a more desirable L value range is 45 <L. <65.

実 施 例 [実施例1] 第1表に示す合金No.1〜5の溶湯を常法にしたがって
溶製し、半連続鋳造法(DC鋳造法)によって450mm×120
0mm×4000mmのスラブを鋳造した。得られた各スラブに
ついて面削後、第2表の条件No.1〜6に示すような種々
の条件で鋳塊加熱を行ない、同じく第2表中に示す温度
で熱間圧延を開始して板厚4mmの熱延板とした。次いで
板厚2mmまで冷間圧延した。その後、連続焼鈍炉により
溶体化処理−焼入れを行なった。溶体化処理の条件は50
0℃×10sec保持とし、焼入れは強制空冷により30℃/sec
の冷却速度とした。その後レベリングを行なってから切
断し、さらにストレッチにより平坦化した。
Example [Example 1] The molten alloy Nos. 1 to 5 shown in Table 1 were melted according to a conventional method, and 450 mm x 120 by a semi-continuous casting method (DC casting method).
A 0 mm x 4000 mm slab was cast. After chamfering each of the obtained slabs, ingot heating was performed under various conditions as shown in Condition Nos. 1 to 6 in Table 2, and hot rolling was started at the temperature shown in Table 2 as well. A hot rolled sheet having a sheet thickness of 4 mm was used. Then, it was cold-rolled to a plate thickness of 2 mm. Then, solution annealing and quenching were performed in a continuous annealing furnace. The conditions for solution treatment are 50
Hold at 0 ℃ × 10sec, quenching is 30 ℃ / sec by forced air cooling
Cooling rate. Then, after leveling, it cut | disconnected and flattened by the stretch.

その後、各板について10%NaOH水溶液でエッチング
し、水洗後硝酸でデスマット処理を行なった。次いでH2
SO4濃度15vol%の硫酸浴を用いて、浴温20℃、電流密度
1.5A/dm2で陽極酸化処理を行ない、それぞれ膜厚20μm
の陽極酸化皮膜を生成させた。
Then, each plate was etched with a 10% NaOH aqueous solution, washed with water, and then desmutted with nitric acid. Then H 2
Use a sulfuric acid bath with SO 4 concentration of 15 vol%, bath temperature 20 ℃, current density
Anodizing at 1.5 A / dm 2 and film thickness of 20 μm each
Of the anodic oxide film was generated.

各板の陽極酸化皮膜の表面色調について、スガ試験機
製カラーメーターSM−3−MCHを用いて調べた。色調
は、ハンターの色差式による明度指数Lおよびクロマテ
ィクネス指数a,bを用いて評価した。その結果を第3表
に示す。また各板の強度(引張り強さおよび耐力)を調
べたのでその結果も第3表中に示す。
The surface color tone of the anodized film of each plate was examined using a color meter SM-3-MCH manufactured by Suga Test Instruments. The color tone was evaluated using the lightness index L and the chromaticness index a and b according to Hunter's color difference formula. The results are shown in Table 3. The strength (tensile strength and proof stress) of each plate was examined, and the results are also shown in Table 3.

第3表から明らかなように、この発明の成分組成範囲
内の合金No.1、No.2について、この発明のプロセス条件
No.1、No.2に従って製造した圧延板は、いずれも陽極酸
化処理後の色調が無彩色の灰色となっており、しかも高
強度を有することが判明した。
As is clear from Table 3, for alloys No. 1 and No. 2 within the compositional range of the present invention, the process conditions of the present invention
It was found that the rolled plates manufactured according to No. 1 and No. 2 all had an achromatic gray color after anodizing and had high strength.

[実施例2] 第4表に示す合金No.6の溶湯を常法に従って溶製し、
半連続鋳造法(DC鋳造法)によって直径8インチのビレ
ットに鋳造した。得られたビレットについて、550℃×1
0時間の鋳塊加熱を施した後、500℃で熱間押出を行な
い、断面寸法3mm×50mmの板を押出し、その押出直後に
強制空冷して、30℃/secの冷却速度で急冷した。得られ
た押出板について、実施例1と同様10%NaOHによるエッ
チング、水洗、硝酸デスマット処理を行ない、さらに実
施例1と同じ条件で陽極酸化処理を行ない、色調と強度
を調べた。その結果を第5表に示す。
Example 2 A molten alloy No. 6 shown in Table 4 was melted according to a conventional method,
It was cast into a billet having a diameter of 8 inches by a semi-continuous casting method (DC casting method). About the obtained billet, 550 ℃ × 1
After heating the ingot for 0 hours, hot extrusion was performed at 500 ° C. to extrude a plate having a cross-sectional dimension of 3 mm × 50 mm, forced air cooling immediately after the extrusion, and rapid cooling at a cooling rate of 30 ° C./sec. The extruded plate thus obtained was subjected to etching with 10% NaOH, washing with water and desmutting with nitric acid as in Example 1, and further anodizing under the same conditions as in Example 1 to examine the color tone and strength. Table 5 shows the results.

第5表から明らかなように、押出材の場合にも、この
発明の条件を満たすことにより、陽極酸化処理後に無彩
色の灰色の色調が得られ、かつ高強度が得られることが
判明した。
As is clear from Table 5, even in the case of an extruded material, it was found that by satisfying the conditions of the present invention, an achromatic gray tone and high strength can be obtained after anodizing treatment.

発明の効果 以上の実施例からも明らかなように、請求項1の発明
のアルミニウム合金展伸材は、陽極酸化処理によって黄
色味や赤味を帯びていない灰色、すなわち無彩色灰色の
色調を安定して得ることができ、しかも高強度を有して
いる。また請求項2、請求項3の方法によれば、前述の
ように陽極酸化処理後に無彩色灰色の色調を呈しかつ高
強度を有するアルミニウム合金押出形材もしくは圧延材
を実際に量産的規模で容易に製造することができる。
EFFECTS OF THE INVENTION As is clear from the above examples, the aluminum alloy wrought product of the invention of claim 1 stabilizes the color tone of gray without yellowish or reddish, that is, achromatic gray by the anodizing treatment. It has a high strength. Further, according to the methods of claims 2 and 3, it is easy to actually produce an aluminum alloy extruded shape material or rolled material having an achromatic gray color tone and high strength after anodizing treatment on a mass-production scale. Can be manufactured.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Mn 0.5〜2.0wt%、Mg 0.5〜2.0wt%、Zn
1.0〜5.5wt%を含有し、かつ結晶粒微細化剤としてTi
0.003〜0.15wt%を単独でもしくはB 1〜100ppmと組合わ
されて含有し、残部がAlおよびその他の不可避的不純物
よりなることを特徴とする陽極酸化処理後の色調が灰色
の高強度アルミニウム合金展伸材。
1. Mn 0.5 to 2.0 wt%, Mg 0.5 to 2.0 wt%, Zn
It contains 1.0 to 5.5 wt% and Ti as a grain refiner.
A high-strength aluminum alloy with a gray tone after anodization characterized by containing 0.003 to 0.15 wt% alone or in combination with B 1 to 100 ppm, the balance being Al and other unavoidable impurities. Drawn material.
【請求項2】Mn 0.5〜2.0wt%、Mg 0.5〜2.0wt%、Zn
1.0〜5.5wt%を含有し、かつ結晶粒微細化剤としてTi
0.003〜0.15wt%を単独でもしくはB 1〜100ppmと組合わ
されて含有し、残部がAlおよびその他の不可避的不純物
よりなる合金をDC鋳造法により鋳造した後、鋳塊に対し
て400〜600℃の範囲内の温度で0.5〜24時間加熱する処
理を施し、その後熱間押出を行なってその熱間押出直後
に20℃/min以上の冷却速度で冷却することを特徴とす
る、陽極酸化処理後の色調が灰色の高強度アルミニウム
合金展伸材の製造方法。
2. Mn 0.5 to 2.0 wt%, Mg 0.5 to 2.0 wt%, Zn
It contains 1.0 to 5.5 wt% and Ti as a grain refiner.
An alloy containing 0.003 to 0.15 wt% alone or in combination with B 1 to 100 ppm, with the balance being Al and other unavoidable impurities, cast by DC casting method, then 400-600 ° C against the ingot After the anodizing treatment, which is characterized by performing a treatment of heating at a temperature within the range of 0.5 to 24 hours, followed by hot extrusion and cooling immediately after the hot extrusion at a cooling rate of 20 ° C / min or more. Of high strength aluminum alloy wrought material with a gray color tone.
【請求項3】Mn 0.5〜2.0wt%、Mg 0.5〜2.0wt%、Zn
1.0〜5.5wt%を含有し、かつ結晶粒微細化剤としてTi
0.003〜0.15wt%を単独でもしくはB 1〜100ppmと組合わ
されて含有し、残部がAlおよびその他の不可避的不純物
よりなる合金をDC鋳造法により鋳造した後、鋳塊に対し
て400〜600℃の範囲内の温度で0.5〜24時間加熱する処
理を施し、その後熱間圧延、もしくは熱間圧延および冷
間圧延を行ない、熱間圧延もしくは冷間圧延の後に350
〜600℃の範囲内の温度に加熱して20℃/min以上の冷却
速度で冷却することを特徴とする、陽極酸化処理後の色
調が灰色の高強度アルミニウム合金展伸材の製造方法。
3. Mn 0.5 to 2.0 wt%, Mg 0.5 to 2.0 wt%, Zn
It contains 1.0 to 5.5 wt% and Ti as a grain refiner.
An alloy containing 0.003 to 0.15 wt% alone or in combination with B 1 to 100 ppm, with the balance being Al and other unavoidable impurities, cast by DC casting method, then 400-600 ° C against the ingot Heat treatment at a temperature within the range of 0.5 to 24 hours, then hot rolling, or hot rolling and cold rolling, and after hot rolling or cold rolling 350
A method for producing a high-strength aluminum alloy wrought material having a gray tone after anodizing, characterized by heating to a temperature in the range of to 600 ° C and cooling at a cooling rate of 20 ° C / min or more.
JP2153709A 1990-06-12 1990-06-12 High strength aluminum alloy wrought material with gray color after anodizing treatment and method for producing the same Expired - Lifetime JP2544235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2153709A JP2544235B2 (en) 1990-06-12 1990-06-12 High strength aluminum alloy wrought material with gray color after anodizing treatment and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2153709A JP2544235B2 (en) 1990-06-12 1990-06-12 High strength aluminum alloy wrought material with gray color after anodizing treatment and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0445241A JPH0445241A (en) 1992-02-14
JP2544235B2 true JP2544235B2 (en) 1996-10-16

Family

ID=15568385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2153709A Expired - Lifetime JP2544235B2 (en) 1990-06-12 1990-06-12 High strength aluminum alloy wrought material with gray color after anodizing treatment and method for producing the same

Country Status (1)

Country Link
JP (1) JP2544235B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10815551B2 (en) 2015-12-10 2020-10-27 Huawei Technologies Co., Ltd. Aluminum alloy material and housing made of aluminum alloy material

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2711970B2 (en) * 1992-10-13 1998-02-10 スカイアルミニウム 株式会社 High-strength aluminum alloy wrought material having a matte dark gray to black color after anodizing and a method for producing the same
JP2711969B2 (en) * 1992-10-13 1998-02-10 スカイアルミニウム 株式会社 High-strength aluminum alloy wrought material having a matte dark gray to black color after anodizing and a method for producing the same
JP2009209426A (en) * 2008-03-05 2009-09-17 Sumitomo Light Metal Ind Ltd Aluminum alloy material for housing
JP6639635B2 (en) * 2017-03-03 2020-02-05 ノベリス・インコーポレイテッドNovelis Inc. High strength corrosion resistant aluminum alloy for use as finstock and method of making the same
CN109860560A (en) * 2019-02-12 2019-06-07 上海交通大学 Aluminium-air cell aluminium anodes electrode material and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01263241A (en) * 1988-04-13 1989-10-19 Sky Alum Co Ltd Aluminum alloy for stretching and its manufacture
JPH0234741A (en) * 1988-07-22 1990-02-05 Furukawa Alum Co Ltd Aluminum alloy for automobile bumper and its manufacture
JPH0270044A (en) * 1988-09-06 1990-03-08 Mitsubishi Alum Co Ltd Manufacture of cast aluminum-alloy bar for hot forging

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10815551B2 (en) 2015-12-10 2020-10-27 Huawei Technologies Co., Ltd. Aluminum alloy material and housing made of aluminum alloy material

Also Published As

Publication number Publication date
JPH0445241A (en) 1992-02-14

Similar Documents

Publication Publication Date Title
JP2544235B2 (en) High strength aluminum alloy wrought material with gray color after anodizing treatment and method for producing the same
JPH0347937A (en) Aluminum alloy material having white color tone after subjected to anodic oxidation treatment
JPH09143602A (en) Aluminum alloy sheet in which anodically oxidized film develops into achromatic light gray
JP4040787B2 (en) Aluminum alloy rolled plate with stable gray color after anodization and method for producing the same
JP2711970B2 (en) High-strength aluminum alloy wrought material having a matte dark gray to black color after anodizing and a method for producing the same
JP2858068B2 (en) Light-colored thick aluminum alloy rolled sheet for building materials with stable color tone after anodizing and method for producing the same
JP3200523B2 (en) Age-hardened aluminum alloy extruded profile for gray coloring and method for producing the same
JPH07100837B2 (en) Aluminum alloy for wrought and its manufacturing method
JP2544233B2 (en) Aluminum alloy having a blue-gray color tone after anodizing treatment and method for producing the same
JPH0971831A (en) Gray-colored aluminum alloy sheet little in yellowish and reddish color tone after anodic oxidation treatment and its production
JPH05279820A (en) Production of aluminum alloy sheet excellent in formability
JP2524884B2 (en) Aluminum alloy material with dark gray color after anodizing treatment and method for producing the same
JP2711969B2 (en) High-strength aluminum alloy wrought material having a matte dark gray to black color after anodizing and a method for producing the same
JPH05132731A (en) Aluminum alloy having a gold color tone after anodic oxidation treatment and its production
JPH03100145A (en) Production of aluminum alloy plate having white color tone after anodic oxidation treatment
KR100230685B1 (en) Method of gray and ivory coloring for aluminum product by sulfuric acid electrolytic treatment and its product
JP3644817B2 (en) Method for producing rolled aluminum alloy sheet with gray color after anodizing treatment
KR100677030B1 (en) A cast-iron ware making method of a nature development aluminum alloy goods which has a brown color
JP2643632B2 (en) Aluminum alloy wrought material for forming colored oxide film and method for producing the same
JPS6237704B2 (en)
KR930007948B1 (en) Process for making grey houshold dishes of al-alloys and it&#39;s products
JPH0488142A (en) Aluminum alloy having black color tone after anodic oxidation treatment and its manufacture
JPH08253831A (en) Aluminum alloy sheet for anodic oxidation, excellent in uniformity of color tone, and tis production
JPH08311589A (en) Aluminum alloy material for reddish beige-colored anodic oxidation coating and its production
JPH07243010A (en) Production of aluminum alloy for coloring into gray