JPH05121985A - Manufacture of piezoelectric vibrator - Google Patents

Manufacture of piezoelectric vibrator

Info

Publication number
JPH05121985A
JPH05121985A JP27912591A JP27912591A JPH05121985A JP H05121985 A JPH05121985 A JP H05121985A JP 27912591 A JP27912591 A JP 27912591A JP 27912591 A JP27912591 A JP 27912591A JP H05121985 A JPH05121985 A JP H05121985A
Authority
JP
Japan
Prior art keywords
substrate
piezoelectric vibrator
crystal
electrode
implemented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27912591A
Other languages
Japanese (ja)
Inventor
Sadatsugu Miura
禎次 三浦
Yoshio Maeda
佳男 前田
Yasuto Nose
保人 野瀬
Yoshinori Ubusaka
芳則 生坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP27912591A priority Critical patent/JPH05121985A/en
Publication of JPH05121985A publication Critical patent/JPH05121985A/en
Pending legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To easily manufacture a subminiature vibrator with an excellent characteristic by adhering two substrates, incorporating and enclosing closely a piezoelectric element chip and cutting the adhered substrates. CONSTITUTION:After an oxide film 13 is formed on a silicon wafer 11, a photo resist 14 is coated to the wafer and it is etched to form a throughhole 4 and a cavity 16 containing a crystal vibrator. After a surface insulation film 17 is formed by oxidation, the oxide film on the adhered face is removed and a 1st substrate 12 is formed. Then an electrode wiring 18 for the crystal vibrator is implemented to the rear side of the substrate 12, conductive paste 19 is dropped on the surface of the substrate 12, a crystal vibration chip 5 is connected tentatively, curing processing is implemented in a high temperature dryer and the connection is finished. The substrate 12 and a 2nd substrate 20 are inserted between the sets of electrodes provided with a heater and after they are heated to a prescribed temperature, a voltage is applied and adhering processing is implemented and the wafer is cut by a dicer with high precision. Thus, the miniaturization of the crystal vibrator is easily realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧電振動子の製造方法
に関し、産業用あるいは民生用の電子回路基板に実装す
る電子部品として使用するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a piezoelectric vibrator, which is used as an electronic component mounted on an industrial or consumer electronic circuit board.

【0002】[0002]

【従来の技術】近年、マイクロコンピュータ技術の発達
により、産業分野から民生分野まで広範かつ高度な応用
が行われている。その主要技術の1つにデジタル回路技
術があり、信号クロック発生のための部品としての基準
信号発生のための高精度発振器への需要が増している。
さて、高精度発振器としては、腕時計用の低周波圧電振
動子からパソコンや各種通信機器などのための高周波圧
電振動子などが実用化されている。とりわけ後者の高周
波圧電振動子としては、周波数精度がPPMオーダーと
高いAT振動子への需要が飛躍的に伸びており、従来の
ディスク形状圧電振動子の金属缶封止に替って、他の電
子部品と同様な実装を可能とする表面実装形の超小型圧
電振動子が望まれている。
2. Description of the Related Art In recent years, due to the development of microcomputer technology, it has been applied in a wide range of advanced fields from the industrial field to the consumer field. One of the main technologies is digital circuit technology, and the demand for a high-precision oscillator for generating a reference signal as a component for generating a signal clock is increasing.
As high-precision oscillators, low-frequency piezoelectric vibrators for wristwatches to high-frequency piezoelectric vibrators for personal computers and various communication devices have been put to practical use. In particular, as the latter high-frequency piezoelectric vibrator, the demand for AT vibrators whose frequency accuracy is high on the order of PPM is growing rapidly, and in place of the conventional metal can encapsulation of disk-shaped piezoelectric vibrators, other There is a demand for a surface-mount type microminiature piezoelectric vibrator that can be mounted similarly to electronic components.

【0003】[0003]

【発明が解決しようとする課題】本発明は、前記従来の
圧電振動子に比して超小型かつ特性の優れた振動子を容
易に作るものである。
DISCLOSURE OF THE INVENTION The present invention is to easily manufacture a vibrator which is ultra-small in size and excellent in characteristics as compared with the conventional piezoelectric vibrator.

【0004】[0004]

【課題を解決するための手段】本発明はかかる問題を解
決するために、圧電振動子片を密閉内蔵するために、第
1の基板と第2の基板とを接合するもので、接合基板を
切断することにより圧電振動子を得るものである。
In order to solve such a problem, the present invention joins a first substrate and a second substrate in order to hermetically contain a piezoelectric vibrator piece. The piezoelectric vibrator is obtained by cutting.

【0005】以下本発明の詳細を実施例に説明する。The details of the present invention will be described below with reference to examples.

【0006】[0006]

【実施例】(実施例1)本発明の圧電振動子の一例とし
て水晶振動子の斜視図を図1に示し、ウエハバッチ式水
晶振動子の製造方法を図2に説明する。外形4インチ厚
さ500ミクロン面方位(100)面からなるシリコン
ウエハ11を用い、以下の工程により第1の基板12を
形成する。即ち、シリコンウエハを全面酸化して酸化膜
13を形成したのち、ホトレジスト14を塗布してホト
マスクによるホトエッチングを行い、電極配線のための
スルーホール15および水晶振動子片収納のためのキャ
ビティ部16の形成を行う。しかるのち再度全面ウエッ
ト酸化を行い表面絶縁膜17を形成したのち、接合面の
酸化膜を全部または一部除去する。この後、前記第1の
基板12の裏面に水晶振動子配線のための電極蒸着を行
いホトエッチング法による電極配線18を行う。この後
第1の基板12表面のスルーホール15近傍に導電性銀
ペースト19を秤量滴下し、幅1.5×長さ5.4×厚
さ0.08(単位mm)の前記水晶振動子片5を仮接続
する。このウエハバッチ基板は高温乾燥機内にて、前記
導電接着材の硬化処理を行い前記水晶振動子電極と前記
配線電極との接続を完了する。また、前記第1の基板と
対向する透明な第2の基板20として、前記第1の基板
と熱膨張係数の接近したガラスからなる第2の基板(そ
の線膨張係数の差異が、後述の陽極接合温度と室温との
間で30%以下)を使用する。該第2の基板は、ホトマ
スクによるホトエッチングによりキャビティを形成す
る。前記第1の基板と前記第2の基板とはアライメンン
トマークによる位置合わせを行い、加熱装置を備える一
組の電極板の間に狭持される。前記第1の基板と前記第
2の基板とを陽極接合するために、前記加熱装置を加熱
昇温し前記基板の温度が200ないし400゜Cの所定
の温度に達したとき、前記第1の基板に接する電極に正
電位を、前記第2の基板に接する電極に負電位を印加す
る。前記正電位と負電位との電位差を200〜1000
ボルトの任意の値に設定し陽極接合を開始する。電圧印
加直後には前記第1の基板と前記第2の基板との間隙を
容量とする充電電流と、界面間を移動するイオン電流と
が流れ、その値は時間の経過と共に減少する。その電流
値が所定の値より小さくなった時に陽極接合の終点と
し、処理を終了する。陽極接合法は接着等の接合法と比
べて接合強度が大きいために小面積での接合により実用
強度が得られる。ダイヤモンドホイールを装着するダイ
シング装置において、周速70m/秒において切削速度
1〜10mm/秒による精密切断ができる。なお、切削
によるダイヤモンドホイールの消耗を低減するために、
被切削物と前記ダイヤモンドホイールとの間に電圧を印
加し、ガラス中のイオンの溶出を抑えることにより前記
ダイヤモンドホイールの耐久寿命を増すことが出来る。
このようにして形成した水晶振動子を図1に示す。図1
の水晶振動子のA−A’断面図およびB−B’断面図を
図3に示す。水晶振動子は、シリコン基板1を第1の基
板とし、ガラス基板を第2の基板となし、シリコン基板
のキャビティ2の上に設置した水晶振動子片と、水晶振
動子片からの電極を取り出すための貫通孔4を備えシリ
コン基板1の側面にサイド電極3(第1の電極6および
第2の電極7)を有する構造となる。この水晶振動子
は、小型・高寸法精度を特徴としウエハバッチ方式によ
り廉価にて量産することができる。
EXAMPLE 1 A perspective view of a crystal resonator as an example of the piezoelectric vibrator of the present invention is shown in FIG. 1, and a method for manufacturing a wafer batch type crystal resonator will be described with reference to FIG. A first substrate 12 is formed by the following steps using a silicon wafer 11 having an outer shape of 4 inches and a thickness of 500 microns and a plane orientation (100). That is, after the entire surface of a silicon wafer is oxidized to form an oxide film 13, a photoresist 14 is applied and photoetching is performed by a photomask, and a through hole 15 for electrode wiring and a cavity portion 16 for accommodating a crystal resonator piece are provided. Formation. Then, the entire surface is wet-oxidized again to form the surface insulating film 17, and then the oxide film on the bonding surface is completely or partially removed. After that, electrode deposition for the crystal resonator wiring is performed on the back surface of the first substrate 12 to form the electrode wiring 18 by the photoetching method. After that, the conductive silver paste 19 is weighed and dropped in the vicinity of the through hole 15 on the surface of the first substrate 12, and the crystal oscillator piece having a width of 1.5 × a length of 5.4 × a thickness of 0.08 (unit: mm). 5 is temporarily connected. The wafer batch substrate is cured in a high temperature dryer to cure the conductive adhesive, and the connection between the crystal oscillator electrode and the wiring electrode is completed. Further, as the transparent second substrate 20 facing the first substrate, a second substrate made of glass having a thermal expansion coefficient close to that of the first substrate (the difference in the linear expansion coefficient between the first substrate and the second substrate will be described later). 30% or less between the bonding temperature and room temperature) is used. The second substrate forms a cavity by photoetching with a photomask. The first substrate and the second substrate are aligned by alignment marks and sandwiched between a pair of electrode plates equipped with a heating device. In order to perform anodic bonding between the first substrate and the second substrate, the heating device is heated and heated, and when the temperature of the substrate reaches a predetermined temperature of 200 to 400 ° C., the first substrate is heated. A positive potential is applied to the electrode in contact with the substrate, and a negative potential is applied to the electrode in contact with the second substrate. The potential difference between the positive potential and the negative potential is 200 to 1000.
Set the bolt to an arbitrary value and start anodic bonding. Immediately after applying the voltage, a charging current having a capacity in the gap between the first substrate and the second substrate and an ion current moving between the interfaces flow, and the value thereof decreases with the passage of time. When the current value becomes smaller than a predetermined value, the end point of anodic bonding is set, and the process is ended. Since the anodic bonding method has a higher bonding strength than bonding methods such as bonding, practical strength can be obtained by bonding in a small area. A dicing machine equipped with a diamond wheel can perform precision cutting at a peripheral speed of 70 m / sec at a cutting speed of 1 to 10 mm / sec. In order to reduce the wear of the diamond wheel due to cutting,
By applying a voltage between the object to be cut and the diamond wheel and suppressing the elution of ions in the glass, the durable life of the diamond wheel can be increased.
The crystal unit thus formed is shown in FIG. Figure 1
FIG. 3 shows an AA ′ sectional view and a BB ′ sectional view of the quartz oscillator of FIG. In the crystal oscillator, the silicon substrate 1 is used as the first substrate, the glass substrate is used as the second substrate, and the crystal oscillator piece placed on the cavity 2 of the silicon substrate and the electrode from the crystal oscillator piece are taken out. The side electrode 3 (the first electrode 6 and the second electrode 7) is provided on the side surface of the silicon substrate 1 by providing the through hole 4 for This crystal oscillator is characterized by its small size and high dimensional accuracy, and can be mass-produced at a low price by the wafer batch method.

【0007】(実施例2)先の実施例1で説明した水晶
振動子は、第1の基板としてシリコン基板上にシリコン
酸化膜を形成して絶縁膜とし、その上に電気配線するも
のであった。しかしこの方法ではシリコン酸化膜の厚み
が薄いため第1の基板のシリコン層と配線電極との間に
浮遊容量が形成されてしまう。浮遊容量を抑えるため第
1の基板上の電極配線部の面積を極小にするべく電極幅
を細くすると、配線抵抗が増加するという相反する制約
が生じていた。しかし、発振周波数が数十MHzを超え
る周波数帯では、この制約を満足した設計は困難であ
り、浮遊容量を更に小さくすることが必要である。この
ため、本実施例ではシリコン基板上での配線に替わっ
て、ガラス基板上に電極配線を行うものである。以下、
図4に本実施例の水晶振動子の構造を説明する。第1の
基板としてのガラス基板21を放電加工あるいはレーザ
ー加工により微小の貫通穴を形成し、無電解選択メッキ
法によりスルーホールメッキを行いガラス基板21を貫
通する配線電極22を形成する。しかる後に前記水晶振
動子片の電極接続部は、導電性銀ペーストを用いて前記
スルーホール電極と導通接着固定される。また、水晶振
動子の外乱による周波数の乱れを防止するために、水晶
振動子片の振動モードの節部分を支持する受け部23
を、前記配線電極形成工程の中で作る。高周波発振AT
水晶振動子では、この発振振幅が小さいためガラス基板
上に形成した電極厚みで足りるが、振幅の大きくなるよ
り低周波数での発振状態を有する他の水晶振動子片に対
しては図5に示す如き逃げ空間24を設けてもよい。一
方、第2の基板としてのシリコン基板にはエッチング法
により水晶片を収納するための空間としてキャビティ2
を形成する。こうして水晶振動子片を実装した前記ガラ
ス基板21は、シリコン基板25と対向して前述の陽極
接合装置の中に設置され、前記方法と同様にして陽極接
合される。本実施例では、シリコン基板にキャビティを
設けているが、ガラス基板にキャビティを設け、シリコ
ン基板のパターンを無くすことにより基板間のアライメ
ントを不要とし、工程の簡素化を図ることができる。
(Embodiment 2) The crystal unit described in Embodiment 1 above is one in which a silicon oxide film is formed as a first substrate on a silicon substrate to form an insulating film, and electrical wiring is formed thereon. It was However, in this method, since the silicon oxide film is thin, stray capacitance is formed between the silicon layer of the first substrate and the wiring electrode. When the electrode width is reduced to minimize the area of the electrode wiring portion on the first substrate in order to suppress the stray capacitance, there is a contradictory constraint that the wiring resistance increases. However, in the frequency band where the oscillation frequency exceeds several tens of MHz, it is difficult to design satisfying this constraint, and it is necessary to further reduce the stray capacitance. Therefore, in this embodiment, the electrode wiring is performed on the glass substrate instead of the wiring on the silicon substrate. Less than,
The structure of the crystal resonator of this embodiment will be described with reference to FIG. A minute through hole is formed in the glass substrate 21 as the first substrate by electric discharge machining or laser machining, and through hole plating is performed by electroless selective plating to form a wiring electrode 22 penetrating the glass substrate 21. Thereafter, the electrode connecting portion of the crystal oscillator piece is conductively bonded and fixed to the through-hole electrode by using a conductive silver paste. In addition, in order to prevent the disturbance of the frequency due to the disturbance of the crystal unit, the receiving unit 23 that supports the node of the vibration mode of the crystal unit.
In the wiring electrode forming step. High frequency oscillation AT
Since the crystal oscillator has a small oscillation amplitude, the thickness of the electrode formed on the glass substrate is sufficient, but FIG. 5 shows other crystal oscillator pieces having an oscillation state at a lower frequency with a larger amplitude. Such an escape space 24 may be provided. On the other hand, the silicon substrate as the second substrate is provided with a cavity 2 as a space for accommodating the crystal piece by an etching method.
To form. The glass substrate 21 on which the crystal oscillator piece is thus mounted is placed in the above-described anodic bonding apparatus so as to face the silicon substrate 25, and is anodically bonded in the same manner as in the above method. In the present embodiment, the cavity is provided in the silicon substrate, but by providing the cavity in the glass substrate and eliminating the pattern of the silicon substrate, alignment between the substrates is unnecessary, and the process can be simplified.

【0008】(実施例3)本発明の圧電振動子の更に別
の実施例として高精度の水晶振動子として、周波数ドリ
フトの少ないものの製法を述べる。ここでは陽極接合装
置は密閉容器の中に形成されるもので、不活性ガスとし
て窒素ガスやアルゴン・キセノンなどの希ガスあるいは
これらの混合ガスを使用するもので、陽極接合温度に到
達したのち前記ガス中で十分ガス置換を行い、そのガス
圧あるいは減圧状態での陽極接合処理を行い前記第1の
基板としてのガラス基板と前記第2の基板としてのシリ
コン基板とを接合する。この後前述のダイシング装置に
より個別の水晶振動子に切断し所望の形状を得る。不活
性ガス中で陽極接合した水晶振動子は、製造工程におけ
る十分なベーキングと不活性ガスのために密封キャビテ
ィ内での電極の酸化も無く、緩和する応力変化もすくな
いことから、クリスタルインピーダンスダンスが低く、
周波数ドリフトの少ない高精度水晶振動子となる。
(Embodiment 3) As still another embodiment of the piezoelectric vibrator of the present invention, a method of manufacturing a high-precision crystal resonator having a small frequency drift will be described. Here, the anodic bonding apparatus is formed in a closed container and uses a rare gas such as nitrogen gas or argon / xenon or a mixed gas thereof as an inert gas. Sufficient gas replacement is performed in a gas, and anodic bonding is performed under the gas pressure or reduced pressure to bond the glass substrate as the first substrate and the silicon substrate as the second substrate. After that, the above-mentioned dicing device is used to cut into individual crystal oscillators to obtain a desired shape. A crystal oscillator anodically bonded in an inert gas has a crystal impedance dance because there is no oxidation of the electrode in the sealed cavity due to sufficient baking and inert gas in the manufacturing process, and there is little stress change to relax. Low,
It becomes a high-precision crystal unit with little frequency drift.

【0009】(実施例4)本発明の圧電振動子の他の実
施例として接地電極を備えた水晶振動子を図6に示す。
ここではシリコン基板の導通性を利用するもので、シリ
コン酸化膜の上を配線する第1及び第2の電極以外にシ
リコン基板にコンタクトする第3の電極31を形成し、
接地電位と導通させる。この結果、水晶発振器はシール
ドされ浮遊容量の変化の少ない安定した発振特性を得る
ことが出来る。
(Embodiment 4) FIG. 6 shows a quartz resonator having a ground electrode as another embodiment of the piezoelectric resonator of the present invention.
Here, the conductivity of the silicon substrate is used, and in addition to the first and second electrodes for wiring on the silicon oxide film, the third electrode 31 that contacts the silicon substrate is formed.
Conduct electricity to ground potential. As a result, the crystal oscillator is shielded and stable oscillation characteristics with little change in stray capacitance can be obtained.

【0010】以上、実施例に基づき本発明の詳細につい
て水晶振動子を例として説明したが、本圧電素子の収納
容器は本実施例に適用した20MHz以外の周波数領域
の水晶振動子に適用できることは云うまでもなく、かつ
圧電素子は水晶振動子に限るものでもなく、LiTaO
3、LiNbO3などの他の圧電素子にも活用できる。
The details of the present invention have been described above based on the embodiments, taking a crystal oscillator as an example. However, the container for the present piezoelectric element can be applied to a crystal oscillator in a frequency region other than 20 MHz applied to the present embodiment. Needless to say, the piezoelectric element is not limited to the crystal unit, and LiTaO
3, it can be utilized for other piezoelectric elements such as LiNbO3.

【0011】また、使用する底面側部材については両面
ポリッシュを施したものを使用したが、接合面側のみを
ポリッシュし平滑にしたものでもよい。
Further, although the bottom surface side member to be used has been polished on both sides, it may be smoothed by polishing only the joint surface side.

【0012】更に、貫通孔部とサイド電極部との配線は
平面であるものの、エッチングにより溝を形成し、その
溝部に配線用の電極を形成してもよい。
Further, although the wiring between the through hole portion and the side electrode portion is flat, a groove may be formed by etching and an electrode for wiring may be formed in the groove portion.

【0013】最後に、電極用膜としてCr/Au二層膜
を用いたが、Cr,W,Al,Fe,Ni,Ta,Mo
等の単層膜あるいはそれらの多層膜でもよい。
Finally, a Cr / Au bilayer film was used as the electrode film, but Cr, W, Al, Fe, Ni, Ta and Mo were used.
It may be a single layer film such as the above or a multilayer film thereof.

【0014】[0014]

【発明の効果】本発明によれば、表面実装部品として小
型化の進む電子部品の中でその寸法縮小の遅れていた水
晶振動子の小型化を容易に実現するものであり、さらに
また小型化に伴う組立の難度の抗進を解決するもので、
組立精度を向上し応力発生を低減することにより水晶振
動子の発振周波数精度や周波数の経時変化をすくなくす
ることができる。
According to the present invention, it is possible to easily realize miniaturization of a crystal resonator, which has been delayed in size reduction among electronic components which are being miniaturized as surface mount components, and further miniaturized. It solves the difficulty of assembly due to
By improving the assembly accuracy and reducing the stress generation, it is possible to reduce the oscillation frequency accuracy of the crystal unit and the frequency change over time.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による水晶振動子を実装した基板の斜
視図。
FIG. 1 is a perspective view of a substrate on which a crystal resonator according to the present invention is mounted.

【図2】 本発明によるウエハバッチ式水晶振動子の製
造方法を示す図。
FIG. 2 is a diagram showing a method of manufacturing a wafer batch type crystal unit according to the present invention.

【図3】 本発明による図1に示す水晶振動子のA−
A’断面およびB−B’断面を示す断面図。
FIG. 3 is an A- of the crystal unit shown in FIG. 1 according to the present invention.
Sectional drawing which shows an A'section and a BB 'section.

【図4】 本発明によるガラス基板配線の水晶振動子の
別の実施例を示す立面図および平面図。
4A and 4B are an elevation view and a plan view showing another embodiment of the crystal oscillator of the glass substrate wiring according to the present invention.

【図5】 本発明によるガラス基板配線の水晶振動子の
さらに別の実施例を示す立面図および平面図。
5A and 5B are an elevation view and a plan view showing still another embodiment of the crystal oscillator of the glass substrate wiring according to the present invention.

【図6】 本発明による水晶振動子の回路基板へ接地配
線を有する図。
FIG. 6 is a diagram showing ground wiring on the circuit board of the crystal unit according to the present invention.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 キャビティ 3 サイド電極 4 貫通孔 5 水晶振動子片 1 Silicon substrate 2 Cavity 3 Side electrode 4 Through hole 5 Crystal oscillator piece

───────────────────────────────────────────────────── フロントページの続き (72)発明者 生坂 芳則 長野県諏訪市大和3丁目3番5号セイコー エプソン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshinori Ikusaka 3-3-5 Yamato, Suwa, Nagano Seiko Epson Corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 複数の圧電振動子片を実装する第1の基
板と、前記基板と対向する第2の基板とからなり、前記
第1の基板と前記第2の基板とを接合して前記圧電振動
子片を密閉内蔵する接合基板を形成し、前記接合基板を
切断したことを特徴とする圧電振動子の製造方法。
1. A first substrate on which a plurality of piezoelectric vibrator pieces are mounted, and a second substrate facing the substrate, wherein the first substrate and the second substrate are bonded to each other. A method for manufacturing a piezoelectric vibrator, comprising forming a bonded substrate in which a piezoelectric vibrator piece is hermetically contained, and cutting the bonded substrate.
【請求項2】 一方の基板にシリコンウエハを使用し、
前記シリコンウエハの表面に絶縁膜を形成し、前記絶縁
膜の表面に電極パターンを形成した後、前記圧電振動子
片を実装することを特徴とする請求項1記載の圧電振動
子の製造方法。
2. A silicon wafer is used for one of the substrates,
2. The method of manufacturing a piezoelectric vibrator according to claim 1, wherein an insulating film is formed on the surface of the silicon wafer, an electrode pattern is formed on the surface of the insulating film, and then the piezoelectric vibrator piece is mounted.
【請求項3】 一方の基板にシリコンウエハを使用して
選択エッチング手法によりキャビティを形成し、他方の
基板にはガラス基板を用い、前記ガラス基板上に電極パ
ターンを形成した後、圧電振動子片を実装し、前記シリ
コンウエハと前記ガラス基板とを陽極接合したことを特
徴とする請求項1記載の圧電振動子の製造方法。
3. A piezoelectric vibrator piece after forming a cavity on one substrate by a selective etching method using a silicon wafer and using a glass substrate on the other substrate and forming an electrode pattern on the glass substrate. 2. The method for manufacturing a piezoelectric vibrator according to claim 1, wherein the silicon wafer and the glass substrate are mounted by anodic bonding.
【請求項4】 不活性ガスの雰囲気において陽極接合し
たことを特徴とする圧電振動子の製造方法。
4. A method of manufacturing a piezoelectric vibrator, characterized by performing anodic bonding in an atmosphere of an inert gas.
JP27912591A 1991-10-25 1991-10-25 Manufacture of piezoelectric vibrator Pending JPH05121985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27912591A JPH05121985A (en) 1991-10-25 1991-10-25 Manufacture of piezoelectric vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27912591A JPH05121985A (en) 1991-10-25 1991-10-25 Manufacture of piezoelectric vibrator

Publications (1)

Publication Number Publication Date
JPH05121985A true JPH05121985A (en) 1993-05-18

Family

ID=17606780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27912591A Pending JPH05121985A (en) 1991-10-25 1991-10-25 Manufacture of piezoelectric vibrator

Country Status (1)

Country Link
JP (1) JPH05121985A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5647932A (en) * 1993-05-18 1997-07-15 Matsushita Electric Industrial Co., Ltd. Method of processing a piezoelectric device
US6924429B2 (en) 2001-08-17 2005-08-02 Citizen Watch Co., Ltd. Electronic device and production method therefor
JP2006279872A (en) * 2005-03-30 2006-10-12 Kyocera Kinseki Corp Piezoelectric vibrator, manufacturing method therefor, and manufacturing method of piezoelectric oscillator using the piezoelectric vibrator
WO2008009328A1 (en) * 2006-07-15 2008-01-24 Schott Ag Method for encasing electronic components and integrated circuits
JP2011249424A (en) * 2010-05-24 2011-12-08 Daishinku Corp Sealing member of electronic component package, electronic component package, and method of manufacturing sealing member of electronic component package
JP2012257158A (en) * 2011-06-10 2012-12-27 Nippon Dempa Kogyo Co Ltd Manufacturing method of piezoelectric device and piezoelectric device
US11404626B2 (en) 2018-08-17 2022-08-02 Seiko Epson Corporation Vibrator device, method of manufacturing vibrator device, electronic apparatus, and vehicle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5647932A (en) * 1993-05-18 1997-07-15 Matsushita Electric Industrial Co., Ltd. Method of processing a piezoelectric device
US6924429B2 (en) 2001-08-17 2005-08-02 Citizen Watch Co., Ltd. Electronic device and production method therefor
JP2006279872A (en) * 2005-03-30 2006-10-12 Kyocera Kinseki Corp Piezoelectric vibrator, manufacturing method therefor, and manufacturing method of piezoelectric oscillator using the piezoelectric vibrator
WO2008009328A1 (en) * 2006-07-15 2008-01-24 Schott Ag Method for encasing electronic components and integrated circuits
US8017435B2 (en) 2006-07-15 2011-09-13 Wafer-Level Packaging Portfolio Llc Method for packaging electronic devices and integrated circuits
JP2011249424A (en) * 2010-05-24 2011-12-08 Daishinku Corp Sealing member of electronic component package, electronic component package, and method of manufacturing sealing member of electronic component package
JP2012257158A (en) * 2011-06-10 2012-12-27 Nippon Dempa Kogyo Co Ltd Manufacturing method of piezoelectric device and piezoelectric device
US11404626B2 (en) 2018-08-17 2022-08-02 Seiko Epson Corporation Vibrator device, method of manufacturing vibrator device, electronic apparatus, and vehicle

Similar Documents

Publication Publication Date Title
US7067966B2 (en) Piezoelectric device, cellular phone system using the piezoelectric device, and electronic equipment using the piezoelectric device
TWI496415B (en) A piezoelectric vibrator, a piezoelectric vibrator, an oscillator, an electronic device, a radio wave, and a method of manufacturing the piezoelectric vibrating plate
JP5147868B2 (en) Piezoelectric vibrator manufacturing method, piezoelectric vibrator, oscillator, electronic device, and radio timepiece
US20100096953A1 (en) Piezoelectric vibrating pieces and piezoelectric devices comprising same
JP5091261B2 (en) Piezoelectric vibrator manufacturing method, piezoelectric vibrator, oscillator, electronic device, and radio timepiece
US4418299A (en) Face-shear mode quartz crystal vibrators and method of manufacture
US8269568B2 (en) Method for manufacturing piezoelectric vibrator, piezoelectric vibrator, and oscillator
JP4812014B2 (en) Piezoelectric vibrating piece, method for manufacturing piezoelectric vibrating piece, piezoelectric vibrator, oscillator including piezoelectric vibrator, electronic device, and radio timepiece
US8032997B2 (en) Manufacturing method for a piezoelectric vibrator
US8058778B2 (en) Method of manufacturing piezoelectric vibrator, piezoelectric vibrator, oscillator, electronic device, and radio-clock
JP2004214787A (en) Piezoelectric oscillator and manufacturing method thereof
JP4292825B2 (en) Method for manufacturing quartz vibrating piece
US20110226731A1 (en) Crystal substrate etching method, piezoelectric vibrating reed, a piezoelectric vibrator, oscillator, electronic device, and radio-controlled timepiece
US20100308928A1 (en) Piezoelectric vibrator manufacturing method, piezoelectric vibrator, oscillator, electronic device, and radio-controlled watch
JPH05121985A (en) Manufacture of piezoelectric vibrator
JP4241022B2 (en) Quartz vibrating piece, manufacturing method thereof, quartz crystal device using quartz crystal vibrating piece, mobile phone device using quartz crystal device, and electronic equipment using quartz crystal device
JP5910092B2 (en) Piezoelectric vibration element, piezoelectric vibrator, electronic device, and electronic apparatus
US8695186B2 (en) Method for manufacturing piezoelectric vibrator
US8281468B2 (en) Method of manufacturing piezoelectric vibrators
JP5827088B2 (en) Terminal connection structure of electronic parts, package, piezoelectric vibrator, oscillator, electronic equipment and radio clock
JP4196641B2 (en) Ultra-thin piezoelectric device and manufacturing method thereof
JP2004201211A (en) Joining structure of piezoelectric vibrating piece, piezoelectric device, its manufacturing method, and cellular phone unit and electronic equipment using the device
US20110219593A1 (en) Pattern forming method, pattern forming apparatus, piezoelectric vibrator, method of manufacturing piezoelectric vibrator, oscillator, electronic apparatus, and radio-controlled timepiec
JP2002325022A (en) Piezoelectric vibrator and method for manufacturing the same
JP3925796B2 (en) Quartz vibrating piece, manufacturing method thereof, quartz crystal device using quartz crystal vibrating piece, mobile phone device using quartz crystal device, and electronic apparatus using quartz crystal device