JP2002325022A - Piezoelectric vibrator and method for manufacturing the same - Google Patents

Piezoelectric vibrator and method for manufacturing the same

Info

Publication number
JP2002325022A
JP2002325022A JP2001129687A JP2001129687A JP2002325022A JP 2002325022 A JP2002325022 A JP 2002325022A JP 2001129687 A JP2001129687 A JP 2001129687A JP 2001129687 A JP2001129687 A JP 2001129687A JP 2002325022 A JP2002325022 A JP 2002325022A
Authority
JP
Japan
Prior art keywords
piezoelectric
excitation electrode
frequency
vibrator
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001129687A
Other languages
Japanese (ja)
Other versions
JP3543786B2 (en
Inventor
Kuniyoshi Cho
国慶 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2001129687A priority Critical patent/JP3543786B2/en
Publication of JP2002325022A publication Critical patent/JP2002325022A/en
Application granted granted Critical
Publication of JP3543786B2 publication Critical patent/JP3543786B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To accurately and highly precisely measure the frequency of a piezoelectric element piece corresponding to the miniaturization and high frequency and a piezoelectric oscillator at the time of manufacturing the piezoelectric vibrator. SOLUTION: The outline shapes of a plurality of crystal element pieces 22 are worked, and a recessed vibrator 23 is formed in a crystal wafer 21, and then a first exciting electrode 25a and a leading electrode to an outer peripheral reinforcing frame 24 are formed on one main surface 23a. A measuring terminal 28 is electrically and directly connected to the first exciting electrode so that the frequency of the crystal element piece can be measured, and an opposite main surface 23b of the vibrator is wet etched based on the measured result so that the frequency can be roughly adjusted. After the thickness of the vibrator is set, a second exciting electrode 25b and a leading electrode to the outer peripheral reinforcing frame are formed. A crystal vibrator 30 separated from the crystal wafer is mounted on a package 11, and the second exciting electrode is ion beam etched through a sealing hole 17 of a base 12, and then vacuum sealed. Thus, it is possible to finely adjust the frequency of the crystal vibrator, and to prevent the non-uniformity of the film thickness of the both vibrator electrodes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、情報通信機器やコ
ンピュータ等のOA機器、電子時計等の民生機器を含む
様々な電子機器について使用される圧電振動子の製造方
法に関し、特に厚みすべりモードを主振動とする水晶等
の圧電振動片及び圧電振動子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a piezoelectric vibrator used for various electronic devices including OA devices such as information communication devices and computers, and consumer devices such as electronic timepieces. The present invention relates to a method for manufacturing a piezoelectric vibrating piece such as a crystal as a main vibration and a piezoelectric vibrator.

【0002】[0002]

【従来の技術】従来より、情報通信機器やコンピュータ
等のOA機器、民生機器等の様々な電子機器には、例え
ば電子回路のクロック源としての圧電振動子、圧電振動
子とICチップとを同一パッケージ内に封止した発振器
やリアルタイムクロックモジュール等の圧電デバイスが
広く使用されている。そして、最近のこれら電子機器の
小型化、薄型化に伴い、圧電デバイスはより一層の小型
化・薄型化が要求され、また装置の回路基板への実装に
適した表面実装型のものが多く採用されている。
2. Description of the Related Art Conventionally, various electronic devices such as OA devices such as information communication devices and computers, and consumer devices, for example, include a piezoelectric vibrator as a clock source of an electronic circuit, and the same piezoelectric vibrator and IC chip. Piezoelectric devices such as oscillators and real-time clock modules sealed in packages are widely used. With the recent downsizing and thinning of these electronic devices, piezoelectric devices are required to be even smaller and thinner, and surface-mount type devices suitable for mounting devices on circuit boards are often used. Have been.

【0003】更に携帯電話等による情報通信分野では、
情報伝送の大容量化及び高速化に伴う通信周波数の高周
波化、システムの高速化に対応して、従来よりも高い9
0〜200MHz程度の周波数で動作する圧電振動子が
要求されている。ATカットの水晶振動片等を用いた厚
みすべりモードを主振動とする圧電振動子は、周波数が
それとは反比例の関係にある圧電振動片の板厚により決
定されるから、圧電振動子の高周波化には、水晶その他
の圧電材料からなる振動片の振動部の厚さを薄くする必
要がある。そこで、例えば特開平11−355094号
公報、特開平11−205062号公報、再公表WO9
8/038736号特許公報に記載されるように、薄い
振動部とその外周に厚い補強枠を一体に構成して機械的
強度を向上させ、取扱い及び実装を容易にして振動片の
欠けや割れ等を無くしつつ、高周波化を実現できる所謂
逆メサ型の圧電振動子が提案されている。
[0003] In the field of information communication by mobile phones and the like,
In response to the increase in the communication frequency and the speed of the system due to the increase in the capacity and the speed of the information transmission, 9
There is a demand for a piezoelectric vibrator operating at a frequency of about 0 to 200 MHz. The frequency of a piezoelectric vibrator whose main vibration is in the thickness-shear mode using an AT-cut crystal vibrating piece is determined by the thickness of the piezoelectric vibrating piece, whose frequency is inversely proportional to that. Therefore, it is necessary to reduce the thickness of the vibrating portion of the vibrating piece made of quartz or another piezoelectric material. Therefore, for example, Japanese Patent Application Laid-Open No. 11-355094, Japanese Patent Application Laid-Open No. 11-205062,
As described in Japanese Patent Publication No. 8/038736, a thin vibrating portion and a thick reinforcing frame are integrally formed on the outer periphery of the vibrating portion to improve mechanical strength, to facilitate handling and mounting, and to cause chipping or cracking of the vibrating piece. A so-called inverted mesa type piezoelectric vibrator capable of realizing a high frequency while eliminating the problem has been proposed.

【0004】図6は、従来方法により逆メサ型ATカッ
ト水晶振動片を製造する工程の一例を示している。先
ず、所定寸法の水晶ウエハ1を用意し、適当な水晶用エ
ッチング液でエッチングし、所望の振動片の外形形状を
有する多数の水晶素子片2を加工する(図6(A))。
次に、各水晶素子片2の中央部分を表裏両面から水晶用
エッチング液で所定の深さまでハーフエッチングして薄
肉化し、振動部3の凹陥形状及びその外周の補強枠4を
形成する(図6(B))。振動部3の凹陥形状は、ウェ
ットエッチング以外にドライエッチング等の物理的加工
やサンドブラスト等の機械的な研磨加工で形成すること
ができる。次に、各水晶素子片2の周波数を測定する
(図6(C))。
FIG. 6 shows an example of a process for manufacturing an inverted-mesa type AT-cut quartz-crystal vibrating piece by a conventional method. First, a crystal wafer 1 having a predetermined size is prepared and etched with an appropriate crystal etching solution to process a large number of crystal element pieces 2 having desired external shapes of the resonator element (FIG. 6A).
Next, the central portion of each crystal element piece 2 is half-etched to a predetermined depth from both front and back surfaces to a predetermined depth with a crystal etching solution to form a recessed shape of the vibrating portion 3 and a reinforcing frame 4 on the outer periphery thereof (FIG. 6). (B)). The concave shape of the vibrating part 3 can be formed by physical processing such as dry etching or mechanical polishing such as sand blasting in addition to wet etching. Next, the frequency of each crystal element piece 2 is measured (FIG. 6C).

【0005】図7は、水晶ウエハ1の各水晶素子片につ
いて周波数を測定する要領を示している。同図に示すよ
うに、各振動部3に対応する位置に対向電極5を有する
電極板6の上に水晶ウエハ1を載せ、各振動部3の上方
にその主面3aとの間に数十μm程度の僅かなギャップ
をもって測定端子7を配置し、周波数計8等からなる測
定装置で周波数を測定する。この測定結果に基づいて、
振動部3の表裏両主面3a、3bを更にウェットエッチ
ングして周波数の粗調整を行い、振動部3の厚さを要求
される所定の周波数範囲に合わせ込む(図6(D))。
この後、ウエハの状態でスパッタリングにより各水晶素
子片2の表裏両面にそれぞれ電極膜を成膜し、かつフォ
トリソグラフィ技術を用いて励振電極9及びそれからの
引出電極を形成することにより、水晶振動片10が得ら
れる(図6(E))。また、水晶素子片2を水晶ウエハ
1から分離した後で励振電極9及び引出電極を形成する
ことにより、水晶振動片10を得ることもできる。
FIG. 7 shows how to measure the frequency of each crystal element piece of the crystal wafer 1. As shown in the figure, a quartz wafer 1 is placed on an electrode plate 6 having a counter electrode 5 at a position corresponding to each vibrating part 3 and several tens of The measuring terminal 7 is arranged with a slight gap of about μm, and the frequency is measured by a measuring device including a frequency meter 8 or the like. Based on this measurement,
The front and back main surfaces 3a and 3b of the vibrating portion 3 are further wet-etched to roughly adjust the frequency, and the thickness of the vibrating portion 3 is adjusted to a required predetermined frequency range (FIG. 6D).
Thereafter, an electrode film is formed on each of the front and back surfaces of each crystal element piece 2 by sputtering in a wafer state, and the excitation electrode 9 and an extraction electrode therefrom are formed by using photolithography technology. 10 is obtained (FIG. 6E). Further, by forming the excitation electrode 9 and the extraction electrode after separating the crystal element piece 2 from the crystal wafer 1, the crystal vibrating piece 10 can be obtained.

【0006】図8は、このようにして得られた水晶振動
片10を水晶ウエハ1から分離し、それぞれパッケージ
11に封止して完成した水晶振動子を示している。同図
のパッケージ11は、絶縁材料薄板を積層した矩形箱状
のベース12と、その上端に例えばシーム溶接でシール
リング13を介して接合した金属製の蓋14とから構成
され、水晶振動片10は、前記引出電極を設けた基端部
10aにおいてベース12底面の接続端子15上に導電
性接着剤16で片持ちに実装される。また、ベース12
の底面にパッケージ内に通じる封止用孔17が貫設され
ている場合には、水晶振動片10をベース12に実装し
かつ該ベースに蓋14を接合した後で封止用孔17をシ
ール材18で閉塞する前に、封止用孔17を介して振動
部3の励振電極をイオンビームエッチングすることによ
り、周波数の微調整を行うことができる。
FIG. 8 shows a crystal resonator completed by separating the crystal resonator element 10 obtained in this manner from the crystal wafer 1 and sealing them in packages 11. The package 11 shown in FIG. 1 includes a rectangular box-shaped base 12 on which insulating material thin plates are laminated, and a metal lid 14 joined to the upper end of the base 12 via a seal ring 13 by, for example, seam welding. Is mounted on the connection terminal 15 on the bottom surface of the base 12 at the base end portion 10a where the extraction electrode is provided with a conductive adhesive 16 in a cantilever manner. In addition, base 12
In the case where a sealing hole 17 communicating with the inside of the package is formed in the bottom surface of the package, the quartz vibrating piece 10 is mounted on the base 12 and the lid 14 is joined to the base, and then the sealing hole 17 is sealed. Before closing with the material 18, fine adjustment of the frequency can be performed by ion beam etching the excitation electrode of the vibrating section 3 through the sealing hole 17.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述し
た従来の方法では、非接触で圧電素子片の共振周波数を
測定するため、測定端子7と振動部3の隣接する主面3
aとのギャップからエネルギの漏れが生じるので、特に
高周波数の場合に測定が不安定になり易く、正確な測定
が難しいという問題がある。例えば図9は、このような
逆メサ構造のATカット水晶素子片について上述したよ
うに周波数を測定した結果の一例を示している。この図
から、主振動(基本波)以外に大きな高調波成分が近接
して検出され、その影響が大きいことが分かる。
However, in the conventional method described above, since the resonance frequency of the piezoelectric element piece is measured in a non-contact manner, the measuring terminal 7 and the adjacent main surface 3 of the vibrating portion 3 are measured.
Since energy leaks from the gap with a, there is a problem that the measurement tends to be unstable especially at a high frequency, and that accurate measurement is difficult. For example, FIG. 9 shows an example of the result of measuring the frequency of the AT-cut crystal element piece having such an inverted mesa structure as described above. From this figure, it can be seen that a large harmonic component other than the main vibration (fundamental wave) is detected in close proximity, and its influence is large.

【0008】更に、測定端子7は通常、励振電極9に対
応する先端形状を有するが、これが振動部主面3aのど
の位置に配置されるかによって、周波数の測定が不安定
になり、主振動(基本波)の特定が、それに近接して検
出される高調波の影響で困難になる虞がある。特に圧電
素子片が小型化されるに連れて、測定端子7を振動部3
の所望の位置に正確に配置することは難しくなる。
Further, the measuring terminal 7 usually has a tip shape corresponding to the excitation electrode 9. Depending on the position of the tip on the main surface 3a of the vibrating portion, the measurement of the frequency becomes unstable, and There is a possibility that the specification of the (fundamental wave) becomes difficult due to the influence of harmonics detected in proximity thereto. In particular, as the piezoelectric element piece is miniaturized, the measuring terminal 7 is
It is difficult to accurately arrange them at desired positions.

【0009】また、励振電極9は、理想的には振動部3
の表裏主面3a、3bで互いに膜厚を均等に形成する
と、周波数のばらつきや振動特性の低下が無いので好ま
しい。しかしながら、上述した従来の方法では、前記両
主面に同じ膜厚の励振電極9を形成した後で一方の前記
励振電極をエッチングすることにより周波数を調整する
ので、最終的に表裏主面3a、3bで励振電極9の膜厚
が均等でなくなり、周波数のばらつきを生じ易いという
問題がある。
Further, the excitation electrode 9 is ideally
It is preferable to form the film thickness evenly on the front and back main surfaces 3a and 3b because there is no variation in frequency and no reduction in vibration characteristics. However, in the above-described conventional method, the frequency is adjusted by forming the excitation electrodes 9 having the same thickness on the both main surfaces and then etching one of the excitation electrodes. In 3b, there is a problem that the thickness of the excitation electrode 9 is not uniform, and the frequency tends to vary.

【0010】そこで本発明は、上述した従来の問題点に
鑑みてなされたものであり、その目的は、特に厚み滑り
振動モードの圧電振動片及び圧電振動子の製造におい
て、圧電振動子の小型化及び高周波化に対応して、圧電
素子片の周波数を正確にかつ高精度に測定し得る方法を
提供することにある。
Accordingly, the present invention has been made in view of the above-mentioned conventional problems, and has as its object to reduce the size of the piezoelectric vibrator, especially in the manufacture of a piezoelectric vibrating piece and a piezoelectric vibrator in a thickness-shear vibration mode. It is another object of the present invention to provide a method capable of accurately and accurately measuring the frequency of a piezoelectric element piece in response to a higher frequency.

【0011】また、本発明の目的は、圧電振動片の振動
部の表裏主面に形成される励振電極の膜厚を均等にし、
周波数のばらつきを解消し得る圧電振動片及び圧電振動
子の製造方法を提供することにある。
Another object of the present invention is to make the thickness of the excitation electrodes formed on the front and back main surfaces of the vibrating portion of the piezoelectric vibrating reed uniform,
An object of the present invention is to provide a piezoelectric vibrating reed and a method of manufacturing a piezoelectric vibrator that can eliminate frequency variations.

【0012】[0012]

【課題を解決するための手段】本発明によれば、上記目
的を達成するために、所定の外形及び寸法を有する圧電
素子片を準備し、該圧電素子片の振動部の第1の主面に
第1の励振電極を形成し、該第1の励振電極を用いて圧
電素子片の共振周波数を測定し、その測定結果に応じて
圧電素子片の振動部の第2の主面をエッチングすること
により圧電素子片の共振周波数を調整し、圧電素子片の
振動部の第2の主面に第2の励振電極を形成する過程を
含むことを特徴とする圧電振動片の製造方法が提供され
る。
According to the present invention, in order to achieve the above object, a piezoelectric element piece having a predetermined outer shape and dimensions is prepared, and a first main surface of a vibrating portion of the piezoelectric element piece is provided. Forming a first excitation electrode, measuring the resonance frequency of the piezoelectric element using the first excitation electrode, and etching the second main surface of the vibrating portion of the piezoelectric element according to the measurement result. Thus, there is provided a method of manufacturing a piezoelectric vibrating reed, comprising the steps of adjusting the resonance frequency of the piezoelectric element reed and forming a second excitation electrode on the second main surface of the vibrating portion of the piezoelectric element reed. You.

【0013】圧電素子片の周波数を測定する際に、その
測定端子を励振電極に直接接触させ又は電気的に接続す
ることができるので、従来技術におけるようなエネルギ
の漏れや測定端子の位置ずれによる不安定な測定を解消
させることができるので、より正確で高精度な周波数測
定が可能になる。しかも、圧電素子片の周波数を調整す
るためには、振動部の一方の主面のみをエッチングすれ
ばよいので、その処理は従来よりも簡単でかつ短い時間
で済み、制御し易いので、高精度に周波数を合わせ込む
ことができる。
When measuring the frequency of the piezoelectric element piece, the measuring terminal can be brought into direct contact with or electrically connected to the excitation electrode, so that energy leakage or displacement of the measuring terminal as in the prior art can occur. Since unstable measurement can be eliminated, more accurate and highly accurate frequency measurement can be performed. Moreover, in order to adjust the frequency of the piezoelectric element piece, only one main surface of the vibrating portion needs to be etched, so that the processing is simpler and shorter than in the past, and the control is easy, so that high accuracy is achieved. Can be adjusted to the frequency.

【0014】或る実施例では、第2の励振電極をエッチ
ングして圧電素子片の共振周波数を調整する過程を更に
含むことにより、圧電素子片の周波数を高精度に微調整
することができる。
In one embodiment, the frequency of the piezoelectric element piece can be finely adjusted with high accuracy by further including the step of adjusting the resonance frequency of the piezoelectric element piece by etching the second excitation electrode.

【0015】この場合に、更に、所望の周波数に基づい
て決定される励振電極の膜厚基準値に関して、第1の励
振電極をそれより薄く形成しかつ第2の励振電極をそれ
より厚く形成すると、第2の励振電極をエッチングする
ことによって両方の励振電極の膜厚をより均等にできる
ので、より高精度な周波数の調整と同時に、周波数のば
らつきを解消することができる。
In this case, with respect to the film thickness reference value of the excitation electrode determined based on the desired frequency, it is preferable that the first excitation electrode is formed thinner and the second excitation electrode is formed thicker. By etching the second excitation electrode, the thickness of both excitation electrodes can be made more uniform, so that the frequency can be adjusted with higher accuracy and the variation in frequency can be eliminated.

【0016】或る実施例では、圧電素子片がATカット
水晶素子片である。圧電素子片には、従来公知の様々な
圧電材料を使用できるが、特にATカットの水晶材料は
エッチングレートが略一定でエッチングが制御し易く、
振動部の主面を均一にかつ所望の厚さに加工できるの
で、好ましい。
In one embodiment, the piezoelectric element piece is an AT-cut quartz element piece. Conventionally known various piezoelectric materials can be used for the piezoelectric element piece. In particular, the AT-cut quartz material has a substantially constant etching rate and is easy to control the etching.
This is preferable because the main surface of the vibrating portion can be uniformly processed to a desired thickness.

【0017】本発明の別の側面によれば、上述した本発
明の方法により製造された圧電振動片をパッケージ内に
気密に封止することにより、高精度に周波数を調整で
き、小型化・高周波化に適した圧電振動子を製造する方
法が提供される。
According to another aspect of the present invention, the piezoelectric vibrating reed manufactured by the above-described method of the present invention is hermetically sealed in a package, so that the frequency can be adjusted with high precision, and miniaturization and high frequency can be achieved. The present invention provides a method for manufacturing a piezoelectric vibrator suitable for employment.

【0018】或る実施例では、パッケージのベースに圧
電振動片を実装し、該ベースに蓋を接合して圧電振動片
を封止することにより、表面実装型の圧電振動子を構成
することができる。
In one embodiment, a surface-mounted type piezoelectric vibrator is formed by mounting a piezoelectric vibrating reed on a base of a package, bonding a lid to the base, and sealing the piezoelectric vibrating reed. it can.

【0019】この場合、圧電振動片をベースに実装した
後に、圧電振動片の第2の励振電極をエッチングするこ
とにより、その共振周波数を調整する過程を更に有する
と、圧電振動子の周波数を高精度に微調整することがで
きる。
In this case, after the piezoelectric vibrating reed is mounted on the base, the second excitation electrode of the piezoelectric vibrating reed is etched to further adjust the resonance frequency, so that the frequency of the piezoelectric vibrator is increased. Can be fine-tuned to accuracy.

【0020】更に、所望の周波数に基づいて決定される
励振電極の膜厚基準値に関して、第1の励振電極をそれ
より薄く形成しかつ第2の励振電極をそれより厚く形成
することにより、第2の励振電極のエッチングで両励振
電極の膜厚をより均等にできるので、圧電振動子の周波
数をより高精度に調整できることに加えて、周波数のば
らつきが解消される。
Further, with respect to the film thickness reference value of the excitation electrode determined based on a desired frequency, the first excitation electrode is formed thinner and the second excitation electrode is formed thicker. Since the thicknesses of the two excitation electrodes can be made more uniform by etching the two excitation electrodes, the frequency of the piezoelectric vibrator can be adjusted with higher accuracy, and the frequency variation is eliminated.

【0021】別の実施例では、ベースがパッケージの内
部に通じる封止用孔を有し、圧電振動片をベースに実装
しかつ蓋をベースに接合した後で封止用孔を閉塞する前
に、該封止用孔を介して第2の励振電極をドライエッチ
ングすることにより、その共振周波数を調整する過程を
更に有すると、蓋をベースに接合する際の影響を排除し
て周波数を高精度に調整でき、かつパッケージを真空に
又は所定のガス雰囲気に封止することができる。
In another embodiment, the base has a sealing hole communicating with the inside of the package, and after the piezoelectric vibrating reed is mounted on the base and the lid is joined to the base, before the sealing hole is closed. The method further includes a step of adjusting the resonance frequency by dry-etching the second excitation electrode through the sealing hole, thereby eliminating the influence of joining the lid to the base and achieving high-precision frequency. And the package can be sealed in a vacuum or in a predetermined gas atmosphere.

【0022】或る実施例では、圧電振動片がATカット
水晶振動片であり、特にATカットの水晶材料はエッチ
ングレートが略一定でエッチングが制御し易く、振動部
の主面を均一にかつ所望の厚さに加工できるので、好ま
しい。
In one embodiment, the piezoelectric vibrating reed is an AT-cut quartz vibrating reed. In particular, the AT-cut quartz material has a substantially constant etching rate and is easy to control the etching. It is preferable because it can be processed to a thickness of.

【0023】[0023]

【発明の実施の形態】以下に、本発明による圧電振動片
及び圧電振動子の製造方法について、その好適な実施例
を添付図面に基づいて詳細に説明する。尚、本実施例で
は、圧電素子片及び圧電振動片に圧電材料として従来多
用されている水晶を使用し、また各図において、同じ構
成要素には同じ参照番号を付すことにする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a method for manufacturing a piezoelectric vibrating reed and a piezoelectric vibrator according to the present invention will be described below in detail with reference to the accompanying drawings. In the present embodiment, quartz which has been widely used as a piezoelectric material is used for the piezoelectric element piece and the piezoelectric vibrating piece, and the same reference numerals are given to the same components in each drawing.

【0024】図1は、本発明の方法を適用して図8に示
す逆メサ型ATカット水晶振動子を製造する工程の好適
な実施例を示している。先ず、従来の工程と同様に所定
寸法の水晶ウエハ21を用意し、例えばフッ化水素酸と
フッ化アンモニウムとの混合液からなる水晶用エッチン
グ液でエッチングし、所望の振動片の外形形状を有する
多数の水晶素子片22を加工する(図1(A))。次
に、各水晶素子片22の中央部分を表裏両面から上述し
た水晶用エッチング液で所定の深さまでハーフエッチン
グして薄肉化し、振動部23の凹陥形状及びその外周の
補強枠24を形成する(図1(B))。
FIG. 1 shows a preferred embodiment of a process of manufacturing the inverted-mesa type AT-cut quartz resonator shown in FIG. 8 by applying the method of the present invention. First, a quartz wafer 21 having a predetermined size is prepared in the same manner as in the conventional process, and is etched using, for example, an etching solution for quartz made of a mixed solution of hydrofluoric acid and ammonium fluoride to have a desired external shape of the resonator element. A large number of crystal element pieces 22 are processed (FIG. 1A). Next, the central portion of each crystal element piece 22 is half-etched from the front and back surfaces to a predetermined depth with the above-mentioned crystal etching solution to a predetermined depth to reduce the thickness, thereby forming the concave shape of the vibrating portion 23 and the reinforcing frame 24 on the outer periphery thereof ( FIG. 1 (B)).

【0025】前記エッチング液には、振動片の外形形状
の加工には高いエッチングレートのものを、振動部の凹
陥形状の加工には、振動部23の厚さをより精密に制御
するために低いエッチングレートのものをそれぞれ用い
るのが好ましい。また、振動部23の凹陥形状は、本実
施例のウェットエッチングによる化学的加工以外に、ド
ライエッチング等の物理的加工やサンドブラスト等の機
械的な研磨加工で、所望の厚さに薄く形成することがで
きる。
The etching liquid has a high etching rate for processing the outer shape of the vibrating piece, and has a low etching rate for processing the concave shape of the vibrating portion in order to more precisely control the thickness of the vibrating portion 23. It is preferable to use those having an etching rate. The recessed shape of the vibrating part 23 may be formed to a desired thickness by physical processing such as dry etching or mechanical polishing such as sand blasting in addition to the chemical processing by wet etching in the present embodiment. Can be.

【0026】次に、各水晶素子片22の一方の表面に電
極材料をスパッタリングするなどして電極膜を成膜しか
つフォトリソグラフィ技術を用いて、振動部23の一方
の主面23aに第1の励振電極25aを及びそれから前
記外周補強枠へ引出電極を形成する(図1(C))。こ
の後、水晶素子片22の周波数を測定する(図1
(D))。
Next, an electrode film is formed on one surface of each crystal element piece 22 by sputtering an electrode material or the like, and the first main surface 23a of the vibrating portion 23 is formed on the first main surface 23a of the vibrating portion 23 by photolithography. Of the excitation electrode 25a and a lead electrode from the excitation electrode 25a to the outer peripheral reinforcing frame (FIG. 1C). Thereafter, the frequency of the crystal element piece 22 is measured (FIG. 1).
(D)).

【0027】図2は、図1(D)において水晶振動片の
周波数を測定する要領を概略的に示している。同図に示
すように、各振動部23の第1の励振電極25aに対応
する位置に対向電極26を有する電極板27の上に水晶
ウエハ21を載せ、かつ各水晶素子片22について測定
端子28を直接第1の励振電極25aに又はそれからの
引出電極に電気的に接続し、従来と同様に周波数計29
等からなる測定装置で測定する。図3は、このようにし
て周波数を測定した結果の一例を示している。本発明に
よれば、測定端子28を第1の励振電極25aに電気的
に直接接続して測定するので、図3に示すように高調波
成分の影響が無くなり、それにより主振動(基本波)を
容易に検出でき、その周波数を正確に測定することがで
きる。
FIG. 2 schematically shows the procedure for measuring the frequency of the crystal resonator element in FIG. 1 (D). As shown in the figure, a quartz wafer 21 is placed on an electrode plate 27 having a counter electrode 26 at a position corresponding to a first excitation electrode 25a of each vibrating part 23, and a measuring terminal 28 is attached to each quartz element piece 22. Is electrically connected directly to the first excitation electrode 25a or to an extraction electrode from the first excitation electrode 25a.
It measures with the measuring device which consists of. FIG. 3 shows an example of the result of measuring the frequency in this manner. According to the present invention, since the measurement is performed by electrically connecting the measurement terminal 28 directly to the first excitation electrode 25a, the influence of the harmonic component is eliminated as shown in FIG. Can be easily detected, and its frequency can be measured accurately.

【0028】次に、この測定結果に基づいて、振動部2
3の反対側の主面23bを更にウェットエッチングする
ことにより周波数の粗調整を行い、振動部23の厚さを
要求される所定の周波数範囲に合わせ込む(図1
(E))。この後、同様にウエハの状態で各水晶素子片
22の反対面に電極材料をスパッタリングするなどして
電極膜を成膜しかつフォトリソグラフィ技術を用いて、
振動部23の他方の主面23bに、第1の励振電極25
aと対をなす第2の励振電極25bを及びそれから前記
外周補強枠へ引出電極を形成することにより、周波数を
高精度に調整した所望の水晶振動片30が得られる(図
1(F))。また、従来技術に関連して上述したよう
に、各水晶素子片22を水晶ウエハ21から分離した後
で、励振電極25a又は25b及びそれらの引出電極を
形成することもできる。
Next, based on the measurement result, the vibrating section 2
The frequency is roughly adjusted by further wet-etching the main surface 23b on the side opposite to 3 to adjust the thickness of the vibrating portion 23 to a required predetermined frequency range (FIG. 1).
(E)). Thereafter, an electrode film is formed by, for example, sputtering an electrode material on the opposite surface of each crystal element piece 22 in a wafer state, and using photolithography technology,
A first excitation electrode 25 is provided on the other main surface 23 b of the vibrating section 23.
By forming a second excitation electrode 25b paired with a and an extraction electrode from the second excitation electrode 25b to the outer peripheral reinforcing frame, a desired crystal vibrating piece 30 whose frequency is adjusted with high precision can be obtained (FIG. 1F). . Further, as described above in relation to the prior art, the excitation electrodes 25a or 25b and their extraction electrodes can be formed after each crystal element piece 22 is separated from the crystal wafer 21.

【0029】また、本発明によれば、所望の周波数に関
して振動部23の厚さから励振電極の膜厚を計算して基
準値toとし、先に振動部23の一方の主面23aに形
成する第1の励振電極25aの膜厚taを膜厚の基準値
toよりも薄く、好適にはその約1/2(=to/2)に
する。そして、他方の主面23bに形成する第2の励振
電極25bの膜厚tbは、前記膜厚の基準値toよりも厚
くする。好適には、図4(A)に示すように、後の周波
数調整によって水晶素子片の周波数のばらつき及び励振
電極の膜厚のばらつきを吸収できる厚みをαとして、t
b=(to/2)+αにする。厚く形成した第2の励振電
極25bは、後述する水晶振動子の周波数を微調整する
過程において、図4(B)に示すように、tb′=to/
2の厚さまでドライエッチングされる。尚、前記膜厚基
準値の計算に使用する振動部23の厚さは、水晶ウエハ
21の厚さ及びそのエッチング量から正確にかつ容易に
知ることができる。
Further, according to the present invention, the thickness of the excitation electrode is calculated from the thickness of the vibrating portion 23 for a desired frequency and is set as a reference value to, and is first formed on one main surface 23a of the vibrating portion 23. The thickness ta of the first excitation electrode 25a is smaller than the reference value to of the film thickness, preferably, about 1/2 (= to / 2). The film thickness tb of the second excitation electrode 25b formed on the other main surface 23b is set to be larger than the reference value to of the film thickness. Preferably, as shown in FIG. 4 (A), α is a thickness that can absorb the variation in the frequency of the crystal element piece and the variation in the thickness of the excitation electrode by the subsequent frequency adjustment, and t represents the thickness.
b = (to / 2) + α. In the process of finely adjusting the frequency of the crystal resonator, which will be described later, the second excitation electrode 25b having a large thickness, as shown in FIG.
Dry etching to a thickness of 2. The thickness of the vibrating portion 23 used for calculating the film thickness reference value can be accurately and easily known from the thickness of the quartz wafer 21 and the etching amount thereof.

【0030】このようにして得られた水晶振動片30は
水晶ウエハ21から分離され、図8に関連して上述した
ように、絶縁材料薄板を積層しかつ底面に封止用孔17
を貫設した矩形箱状のベース12と金属製の蓋14とか
らなるパッケージ11内にそれぞれ封止される。水晶振
動片30は、第2の励振電極25bを下側にして、前記
引出電極を設けた基端部30aにおいてベース12底面
の接続端子15上に導電性接着剤16で片持ちに実装さ
れる。ベース12の上端に例えばシーム溶接でシールリ
ング13を介して蓋14を接合した後、図5(A)に示
すように封止用孔17を介して第2の励振電極25bを
ドライエッチング、例えばイオンビームエッチングす
る。従って、封止用孔17は、第2の励振電極25bの
位置に対応してベース12底面の略中央に配置するのが
好ましい。
The crystal vibrating piece 30 thus obtained is separated from the crystal wafer 21 and, as described above with reference to FIG.
Are sealed in a package 11 composed of a rectangular box-shaped base 12 having a through hole and a metal lid 14. The crystal vibrating piece 30 is cantilevered with the conductive adhesive 16 on the connection terminal 15 on the bottom surface of the base 12 at the base end 30a where the extraction electrode is provided, with the second excitation electrode 25b facing down. . After the lid 14 is joined to the upper end of the base 12 via the seal ring 13 by, for example, seam welding, the second excitation electrode 25b is dry-etched through the sealing hole 17 as shown in FIG. Perform ion beam etching. Therefore, it is preferable that the sealing hole 17 is disposed substantially at the center of the bottom surface of the base 12 corresponding to the position of the second excitation electrode 25b.

【0031】このイオンビームエッチングは、接続端子
15からパッケージ11外面に引き出された外部端子3
1を介して周波数を測定しながら行うことにより、最終
的に水晶振動子の周波数を高精度に微調整することがで
きる。図4(A)(B)に関連して説明したように、第
2の励振電極25bを第1の励振電極25bよりも厚く
形成した場合、これをイオンビームエッチングで削除す
ることによって、両励振電極25a、25bの膜厚の不
均等さを減らすことができる。振動部23の厚さ及び第
1の励振電極25aの膜厚は第2の励振電極25bの成
膜前に分かっているので、両励振電極の膜厚が均等にな
るように設計することができる。特に、上述したように
第1の励振電極25aの膜厚taを前記膜厚基準値の1
/2(=to/2)に、第2の励振電極25bの膜厚tb
を、前記膜厚基準値の1/2に周波数調整で吸収し得る
厚さ(α)を足した値(=to/2+α)にすることが
好ましい。これにより、周波数のより高精度な微調整と
同時に、周波数のばらつきを解消することができる。
In this ion beam etching, the external terminals 3 drawn out from the connection terminals 15 to the outer surface of the package 11 are used.
By performing the measurement while measuring the frequency via 1, the frequency of the crystal resonator can be finely adjusted with high accuracy. As described with reference to FIGS. 4A and 4B, when the second excitation electrode 25b is formed thicker than the first excitation electrode 25b, the second excitation electrode 25b is removed by ion beam etching to thereby provide a dual excitation electrode. The unevenness of the film thickness of the electrodes 25a and 25b can be reduced. Since the thickness of the vibrating portion 23 and the film thickness of the first excitation electrode 25a are known before the film formation of the second excitation electrode 25b, it is possible to design the two excitation electrodes so that the film thicknesses thereof are equal. . In particular, as described above, the film thickness ta of the first excitation electrode 25a is set to the film thickness reference value of one.
/ 2 (= to / 2), the thickness tb of the second excitation electrode 25b
Is preferably set to a value (= to / 2 + α) obtained by adding a thickness (α) that can be absorbed by frequency adjustment to の of the film thickness reference value. This makes it possible to eliminate the variation in the frequency at the same time as the fine adjustment of the frequency with higher accuracy.

【0032】最後に、真空雰囲気又は不活性ガス雰囲気
中で封止用孔17をシール材18で気密に閉塞すると、
本発明の高周波化に対応した逆メサ構造の水晶振動子が
完成する。シール材18には、例えばAu−Snはんだ
系又は9:1はんだ等の高融点Pb−Snはんだ系材料
等を使用し、これらの材料で形成された金属ボール18
´を図5(B)に示すように段差17´に載置しかつバ
ッチ式の真空封止装置やレーザ装置又は電子ビーム装置
等で溶着させることにより、封止用孔17を閉塞する。
Finally, when the sealing hole 17 is hermetically closed with a sealing material 18 in a vacuum atmosphere or an inert gas atmosphere,
A quartz resonator having an inverted mesa structure corresponding to a higher frequency according to the present invention is completed. As the sealing material 18, for example, a high melting point Pb-Sn solder-based material such as Au-Sn solder or 9: 1 solder is used, and a metal ball 18 formed of these materials is used.
5 'is placed on a step 17' as shown in FIG. 5 (B) and welded by a batch-type vacuum sealing device, a laser device, an electron beam device, or the like, thereby closing the sealing hole 17.

【0033】本発明は上記実施例に限定されるものでは
なく、その技術的範囲内において上記実施例に様々な変
形・変更を加えて実施し得ることは当業者に明らかであ
る。例えば、水晶以外にタンタル酸リチウム、ニオブ酸
リチウム等の様々な圧電材料からなる圧電素子片につい
ても、同様に適用することができる。また、上記実施例
では、ウエハの状態で多数の水晶素子片を同時に加工し
た後に個々の水晶振動片に分割する方法を採用したが、
ウエハから複数の水晶素子片をダイシング等で切り出し
た後に、各水晶素子片を個別に加工処理して水晶振動片
を製造することもできる。更に、本発明により製造され
る圧電振動片は、圧電振動子以外に圧電発振器その他の
様々な圧電デバイスに使用することができる。
The present invention is not limited to the above-described embodiment, and it will be apparent to those skilled in the art that various modifications and changes can be made to the above-described embodiment within the technical scope thereof. For example, the present invention can be similarly applied to piezoelectric element pieces made of various piezoelectric materials such as lithium tantalate and lithium niobate other than quartz. Further, in the above embodiment, a method is employed in which a large number of crystal element pieces are simultaneously processed in the state of a wafer and then divided into individual crystal vibrating pieces.
After cutting out a plurality of crystal element pieces from the wafer by dicing or the like, each of the crystal element pieces can be individually processed to produce a crystal vibrating piece. Further, the piezoelectric vibrating reed manufactured according to the present invention can be used for a piezoelectric oscillator and other various piezoelectric devices other than the piezoelectric vibrator.

【0034】[0034]

【発明の効果】本発明は、上述したように構成すること
により、以下に記載するような格別の効果を奏する。本
発明によれば、圧電振動片及び圧電振動子の製造過程に
おいて、圧電素子片の周波数を測定する際に、その測定
端子を励振電極に直接接触させ又は電気的に接続するこ
とができ、従来のようなエネルギの漏れや測定端子の位
置ずれを生じる虞がないので、圧電振動子の小型化及び
高周波化に対応して正確かつ高精度な測定が可能にな
り、更に圧電素子片の周波数調整は、振動部の一方の主
面のみをエッチングすることで制御し易く、高精度な周
波数の合わせ込みが可能になり、従来よりも簡単かつ短
時間で行われるので、生産性及び歩留まりを向上させる
ことができる。また、振動部の厚さ及びその表裏主面に
形成される各励振電極の膜厚をそれぞれ別個に制御して
製造できるので、高精度な周波数の調整と共に、両励振
電極の膜厚を均等にして周波数のばらつきを解消するこ
とができる。
According to the present invention, the above-described configuration provides the following special effects. According to the present invention, in the process of manufacturing the piezoelectric vibrating piece and the piezoelectric vibrator, when measuring the frequency of the piezoelectric element piece, the measuring terminal can be directly contacted or electrically connected to the excitation electrode. As described above, there is no risk of energy leakage and displacement of the measuring terminals, so that accurate and high-precision measurement can be performed in accordance with the miniaturization and high frequency of the piezoelectric vibrator, and the frequency adjustment of the piezoelectric element piece. Is easy to control by etching only one main surface of the vibrating part, it is possible to adjust the frequency with high precision, and it is performed more easily and in a shorter time than before, thereby improving productivity and yield. be able to. In addition, since the thickness of the vibrating portion and the thickness of each excitation electrode formed on the front and back main surfaces can be controlled separately, the frequency can be adjusted with high precision, and the thickness of both excitation electrodes can be made uniform. Frequency variation can be eliminated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による水晶振動片の製造過程を工程順に
示す(A)図〜(F)図からなる水晶ウエハの断面図。
FIG. 1 is a cross-sectional view of a crystal wafer composed of FIGS. 1A to 1F showing a manufacturing process of a crystal resonator element according to the present invention in the order of steps.

【図2】図1(D)において水晶振動片の周波数を測定
する要領を示す斜視図。
FIG. 2 is a perspective view showing how to measure the frequency of the crystal resonator element in FIG. 1 (D).

【図3】図2の周波数の測定結果を示す線図。FIG. 3 is a diagram showing measurement results of the frequency of FIG. 2;

【図4】図1(F)の水晶振動片を示す部分拡大断面
図。
FIG. 4 is a partially enlarged cross-sectional view showing the crystal resonator element of FIG. 1 (F).

【図5】水晶振動片をパッケージに封止する過程を示す
(A)図及び(B)図からなる水晶振動子の縦断面図。
5A and 5B are longitudinal sectional views of the crystal resonator shown in FIGS. 5A and 5B showing a process of sealing the crystal resonator element in a package.

【図6】従来の水晶振動片の製造過程を工程順に示す
(A)図〜(E)図からなる水晶ウエハの断面図。
FIGS. 6A to 6E are cross-sectional views of a quartz crystal wafer including FIGS.

【図7】図6(C)において水晶素子片の周波数を測定
する要領を示す斜視図。
FIG. 7 is a perspective view showing how to measure the frequency of the crystal element piece in FIG. 6 (C).

【図8】水晶振動子を示す縦断面図。FIG. 8 is a longitudinal sectional view showing a crystal resonator.

【図9】図7の周波数の測定結果を示す線図。FIG. 9 is a diagram showing measurement results of the frequency in FIG. 7;

【符号の説明】[Explanation of symbols]

1、21 水晶ウエハ 2、22 水晶素子片 3、23 振動部 3a、3b、23a、23b 主面 4、24 補強枠 5、26 対向電極 6、27 電極板 7、28 測定端子 8、29 周波数計 9 励振電極 10、30 水晶振動片 10a、30a 基端部 11 パッケージ 12 ベース 13 シールリング 14 蓋 15 接続端子 16 導電性接着剤 17 封止用孔 17´ 段差 18 シール材 18´ 金属ボール 25a 第1の励振電極 25b 第2の励振電極 31 外部端子 1,21 Quartz wafer 2,22 Quartz element piece 3,23 Vibration part 3a, 3b, 23a, 23b Main surface 4,24 Reinforcement frame 5,26 Counter electrode 6,27 Electrode plate 7,28 Measuring terminal 8,29 Frequency meter 9 Excitation electrode 10, 30 Quartz vibrating piece 10a, 30a Base end 11 Package 12 Base 13 Seal ring 14 Lid 15 Connection terminal 16 Conductive adhesive 17 Sealing hole 17 'Step 18 Seal material 18' Metal ball 25a First Excitation electrode 25b Second excitation electrode 31 External terminal

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 所定の外形及び寸法を有する圧電素子
片を準備し、 前記圧電素子片の振動部の第1の主面に第1の励振電極
を形成し、 前記第1の励振電極を用いて前記圧電素子片の共振周波
数を測定し、 前記測定の結果に応じて前記圧電素子片の前記振動部の
第2の主面をエッチングすることにより、前記圧電素子
片の共振周波数を調整し、かつ、 前記圧電素子片の前記振動部の前記第2の主面に第2の
励振電極を形成することにより、圧電振動片を製造する
ことを特徴とする圧電振動片の製造方法。
1. A piezoelectric element piece having a predetermined outer shape and dimensions is prepared, a first excitation electrode is formed on a first main surface of a vibrating portion of the piezoelectric element piece, and the first excitation electrode is used. Measuring the resonance frequency of the piezoelectric element piece by etching the second main surface of the vibrating portion of the piezoelectric element piece according to the result of the measurement, thereby adjusting the resonance frequency of the piezoelectric element piece; A method of manufacturing a piezoelectric vibrating reed, comprising: forming a second excitation electrode on the second main surface of the vibrating portion of the piezoelectric element piece to manufacture a piezoelectric vibrating reed.
【請求項2】 前記第2の励振電極をエッチングする
ことにより、前記圧電素子片の共振周波数を調整する過
程を更に含むことを特徴とする請求項1に記載の圧電振
動片の製造方法。
2. The method according to claim 1, further comprising the step of adjusting the resonance frequency of the piezoelectric element by etching the second excitation electrode.
【請求項3】 所望の周波数に基づいて決定される励
振電極の膜厚基準値に関して、前記第1の励振電極をそ
れより薄く形成し、かつ前記第2の励振電極をそれより
厚く形成することを特徴とする請求項2に記載の圧電振
動片の製造方法。
3. The method according to claim 1, wherein the first excitation electrode is formed thinner and the second excitation electrode is formed thicker with respect to a thickness reference value of the excitation electrode determined based on a desired frequency. The method for manufacturing a piezoelectric vibrating reed according to claim 2.
【請求項4】 前記圧電素子片がATカット水晶素子
片であることを特徴とする請求項1乃至3のいずれかに
記載の圧電振動片の製造方法。
4. The method for manufacturing a piezoelectric vibrating piece according to claim 1, wherein said piezoelectric element piece is an AT-cut quartz crystal element piece.
【請求項5】 請求項1に記載の方法により製造され
た前記圧電振動片をパッケージ内に気密に封止すること
を特徴とする圧電振動子の製造方法。
5. A method for manufacturing a piezoelectric vibrator, wherein the piezoelectric vibrating reed manufactured by the method according to claim 1 is hermetically sealed in a package.
【請求項6】 前記パッケージのベースに前記圧電振
動片を実装し、前記ベースに蓋を接合して前記圧電振動
片を封止することを特徴とする請求項5に記載の圧電振
動子の製造方法。
6. The piezoelectric vibrator according to claim 5, wherein the piezoelectric vibrating reed is mounted on a base of the package, and a lid is bonded to the base to seal the piezoelectric vibrating reed. Method.
【請求項7】 前記圧電振動片を前記ベースに実装し
た後に、前記圧電振動片の前記第2の励振電極をエッチ
ングすることにより、その共振周波数を調整する過程を
更に有することを特徴とする請求項6に記載の圧電振動
子の製造方法。
7. The method according to claim 1, further comprising a step of adjusting the resonance frequency by etching the second excitation electrode of the piezoelectric vibrating piece after mounting the piezoelectric vibrating piece on the base. Item 7. A method for manufacturing a piezoelectric vibrator according to item 6.
【請求項8】 所望の周波数に基づいて決定される励
振電極の膜厚基準値に関して、前記第1の励振電極をそ
れより薄く形成し、かつ前記第2の励振電極をそれより
厚く形成することを特徴とする請求項7に記載の圧電振
動子の製造方法。
8. The method according to claim 1, wherein the first excitation electrode is formed thinner and the second excitation electrode is formed thicker with respect to a thickness reference value of the excitation electrode determined based on a desired frequency. The method for manufacturing a piezoelectric vibrator according to claim 7, wherein:
【請求項9】 前記ベースが前記パッケージの内部に
通じる封止用孔を有し、前記圧電振動片を前記ベースに
実装しかつ前記蓋を前記ベースに接合した後前記封止用
孔を閉塞する前に、前記封止用孔を介して前記第2の励
振電極をドライエッチングすることにより、その共振周
波数を調整する過程を更に有することを特徴とする請求
項8に記載の圧電振動子の製造方法。
9. The base has a sealing hole communicating with the inside of the package, and closes the sealing hole after mounting the piezoelectric vibrating reed on the base and joining the lid to the base. 9. The method according to claim 8, further comprising the step of adjusting the resonance frequency of the second excitation electrode by dry-etching the second excitation electrode through the sealing hole. Method.
【請求項10】 前記圧電振動片がATカット水晶振動
片であることを特徴とする請求項5乃至9のいずれかに
記載の圧電振動子の製造方法。
10. The method according to claim 5, wherein the piezoelectric vibrating reed is an AT-cut quartz vibrating reed.
JP2001129687A 2001-04-26 2001-04-26 Piezoelectric vibrating reed and method of manufacturing piezoelectric vibrator Expired - Fee Related JP3543786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001129687A JP3543786B2 (en) 2001-04-26 2001-04-26 Piezoelectric vibrating reed and method of manufacturing piezoelectric vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001129687A JP3543786B2 (en) 2001-04-26 2001-04-26 Piezoelectric vibrating reed and method of manufacturing piezoelectric vibrator

Publications (2)

Publication Number Publication Date
JP2002325022A true JP2002325022A (en) 2002-11-08
JP3543786B2 JP3543786B2 (en) 2004-07-21

Family

ID=18978175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001129687A Expired - Fee Related JP3543786B2 (en) 2001-04-26 2001-04-26 Piezoelectric vibrating reed and method of manufacturing piezoelectric vibrator

Country Status (1)

Country Link
JP (1) JP3543786B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006129383A (en) * 2004-11-01 2006-05-18 Daishinku Corp Piezoelectric vibrating piece and piezoelectric vibrating device provided with the same
JP2006211583A (en) * 2005-01-31 2006-08-10 Kyocera Kinseki Corp Method of manufacturing crystal vibrator
JP2006311342A (en) * 2005-04-28 2006-11-09 Kyocera Kinseki Corp Crystal resonator
JP2009055545A (en) * 2007-08-29 2009-03-12 Citizen Finetech Miyota Co Ltd Piezoelectric device and manufacturing method thereof
JP2011010204A (en) * 2009-06-29 2011-01-13 Nippon Dempa Kogyo Co Ltd Method of manufacturing crystal piece and crystal oscillator manufactured thereby
JP2012060259A (en) * 2010-09-06 2012-03-22 Fujitsu Ltd Manufacturing method of vibrator, vibrator and oscillator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116707477B (en) * 2023-08-02 2024-04-02 深圳新声半导体有限公司 Method for manufacturing Film Bulk Acoustic Resonator (FBAR) filter device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006129383A (en) * 2004-11-01 2006-05-18 Daishinku Corp Piezoelectric vibrating piece and piezoelectric vibrating device provided with the same
JP2006211583A (en) * 2005-01-31 2006-08-10 Kyocera Kinseki Corp Method of manufacturing crystal vibrator
JP2006311342A (en) * 2005-04-28 2006-11-09 Kyocera Kinseki Corp Crystal resonator
JP4549226B2 (en) * 2005-04-28 2010-09-22 京セラキンセキ株式会社 Wafer with many crystal units formed
JP2009055545A (en) * 2007-08-29 2009-03-12 Citizen Finetech Miyota Co Ltd Piezoelectric device and manufacturing method thereof
JP2011010204A (en) * 2009-06-29 2011-01-13 Nippon Dempa Kogyo Co Ltd Method of manufacturing crystal piece and crystal oscillator manufactured thereby
JP2012060259A (en) * 2010-09-06 2012-03-22 Fujitsu Ltd Manufacturing method of vibrator, vibrator and oscillator

Also Published As

Publication number Publication date
JP3543786B2 (en) 2004-07-21

Similar Documents

Publication Publication Date Title
US8791766B2 (en) Resonating element, resonator, electronic device, electronic apparatus, moving vehicle, and method of manufacturing resonating element
US9923544B2 (en) Piezoelectric vibration element, manufacturing method for piezoelectric vibration element, piezoelectric resonator, electronic device, and electronic apparatus
CN107681991B (en) Piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, and electronic device
JP5796355B2 (en) Piezoelectric vibration element, piezoelectric vibrator, electronic device, and electronic apparatus
JP4990047B2 (en) Piezoelectric vibrating piece and piezoelectric device
JP5622173B2 (en) Vibrating piece, vibrator, oscillator, and electronic device
TWI406498B (en) Piezoelectric vibrator, surface-mounting type piezoelectric vibrator, oscillator, electronic apparatus and wave clock
JP5824967B2 (en) Vibration element, vibrator, electronic device, and electronic apparatus
JP2003133879A (en) Piezoelectric oscillator and method for manufacturing piezoelectric device
TW201340598A (en) Vibration device and oscillator
JP2013042440A (en) Piezoelectric vibrating element, piezoelectric vibrator, electronic device and electronic apparatus
WO2013027381A1 (en) Vibrating element, resonator, electronic device, and electronic apparatus
JP4238779B2 (en) Piezoelectric oscillator and electronic equipment
JP2012191300A (en) Piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, and electronic device
JP5910092B2 (en) Piezoelectric vibration element, piezoelectric vibrator, electronic device, and electronic apparatus
JP3543786B2 (en) Piezoelectric vibrating reed and method of manufacturing piezoelectric vibrator
JP5987321B2 (en) Piezoelectric vibrating piece, method for manufacturing piezoelectric vibrating piece, piezoelectric device, and electronic apparatus
JP2013042410A (en) Piezoelectric vibrating element, piezoelectric vibrator, electronic device and electronic apparatus
JP4680449B2 (en) Piezoelectric device and manufacturing method thereof
JP5082968B2 (en) Piezoelectric oscillator
JP2013162265A (en) Vibration element, vibrator, electronic device, oscillator and electronic apparatus
JP3975927B2 (en) Piezoelectric vibrating piece, piezoelectric device using the piezoelectric vibrating piece, mobile phone device using the piezoelectric device, and electronic equipment using the piezoelectric device
JP2013258452A (en) Vibration element, vibrator, electronic device, electronic apparatus, mobile body, and manufacturing method of vibration element
JP2002246866A (en) Surface mounted piezoelectric device and method for manufacturing the same
JP6137274B2 (en) Vibration element, vibrator, electronic device, and electronic apparatus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees