JPH05119027A - Ultrasonic flaw detection of thick-wall steel pipe - Google Patents

Ultrasonic flaw detection of thick-wall steel pipe

Info

Publication number
JPH05119027A
JPH05119027A JP3283309A JP28330991A JPH05119027A JP H05119027 A JPH05119027 A JP H05119027A JP 3283309 A JP3283309 A JP 3283309A JP 28330991 A JP28330991 A JP 28330991A JP H05119027 A JPH05119027 A JP H05119027A
Authority
JP
Japan
Prior art keywords
flaw
depth
steel pipe
echo height
echo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3283309A
Other languages
Japanese (ja)
Inventor
Tsutomu Furuyama
勉 古山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3283309A priority Critical patent/JPH05119027A/en
Publication of JPH05119027A publication Critical patent/JPH05119027A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable closing echo height of outside face flaw to echo hight of inside face flaw and thereby to detect the outside face flaw highly accurately by processing the artificial flaw depth of the inside face larger than a specific value and by executing compensation function of outside face echo height (DAC). CONSTITUTION:When executing a flow detection of a thick-wall steel pipe by a ultrasonic flaw detection, sensitivity difference of both comparing test pieces 5 one of which has an outer surface artificial flaw 7 of 5 % depth hOD to wall thickness of the steel pipe, and another one of which has an inner surface artificial flaw 6 of depth hID smaller than the depth of the outer surface artificial flaw 7, is calibrated so as to stay within the predetermined echo height, by using both test pieces. Then, flow detection is carried out after compensation by the use of a DAC. By processing the depth of the inside face artificial flaw 6 to be smaller than 5 %t and conducting the DAC compensation, the echo height of the outside face flaw can be made close to the echo height of the inside face flaw and therewith the outside face flaw can be detected highly accurately.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、厚肉鋼管の超音波探傷
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flaw detection method for thick-walled steel pipes.

【0002】[0002]

【従来の技術】従来、鋼材などの内部または表面に存在
する疵などの欠陥は超音波探傷法を用いて検出される。
この超音波探傷試験は密度の異なる物質の境界面におい
て超音波が反射する特性を利用したもので、非破壊検査
には0.2 〜25MHzの周波数の超音波が用いられ、特に1
〜5MHzが多用される。一般にはパルス反射法が用いら
れるが、図2に示すように材料1の面に油,グリセリン
などの接触媒質を塗布し、その接触媒質を介して探触子
2から超音波パルスTを入射させ、欠陥3からの反射パ
ルスFを通常ブラウン管オシログラフなどの受信装置4
で受信し、その受信電圧(エコー)と時間の関係を表示
させて欠陥の有無を評価するのである。
2. Description of the Related Art Conventionally, defects such as flaws existing inside or on the surface of steel and the like are detected by ultrasonic flaw detection.
This ultrasonic flaw detection test utilizes the property of ultrasonic waves to be reflected at the boundary surface of substances having different densities, and ultrasonic waves with a frequency of 0.2 to 25 MHz are used for non-destructive inspection.
~ 5 MHz is frequently used. Generally, a pulse reflection method is used, but as shown in FIG. 2, a contact medium such as oil or glycerin is applied to the surface of the material 1, and an ultrasonic pulse T is made incident from the probe 2 through the contact medium. , A reflection pulse F from the defect 3 is normally received by a receiving device 4 such as a cathode ray tube oscillograph.
Then, the relationship between the received voltage (echo) and time is displayed and the presence or absence of a defect is evaluated.

【0003】測定対象は、エコーの認められる時間軸上
の位置,エコー高さ,エコーの材料面上での拡がりなど
で、これらのデータをたとえば図3に示すように、欠陥
のある部分の材料底面からのエコー高さF,健全部の底
面エコー高さB,または別の対比試験片などのデータと
比較して欠陥の位置や程度を評価する。このような欠陥
検出に用いられる探触子や装置の感度・精度などは測定
上重要な因子であり、JIS規格などの規定があるほ
か、感度の調整などに用いる対比試験片もJIS規格や
API−SR2規格などに規定がある。
The object of measurement is the position on the time axis where the echo is recognized, the height of the echo, the spread of the echo on the material surface, etc. These data are used, for example, as shown in FIG. The position and degree of the defect are evaluated by comparing with the data of the echo height F from the bottom surface, the bottom echo height B of the sound part, or another comparison test piece. Sensitivity / accuracy of the probe and device used for such defect detection are important factors for measurement, and there are regulations such as JIS standards. Also, contrast test pieces used for sensitivity adjustment are JIS standards and APIs. -There is a regulation in the SR2 standard.

【0004】すなわち、たとえばAPI−SR2規格に
基づく場合は図4に示すように、鋼管の対比試験片5に
はその肉厚tに対して5%の深さを有する人工疵6,7
を内面(ID)と外面(OD)にそれぞれ穿設してお
き、内面ゲートを0.5 スキップ、外面ゲートを1.0 スキ
ップとして探傷するのである。
That is, for example, in the case of being based on the API-SR2 standard, as shown in FIG. 4, the comparative test piece 5 of the steel pipe has artificial flaws 6, 7 having a depth of 5% with respect to its wall thickness t.
The inner surface (ID) and the outer surface (OD) are pierced respectively, and the inner gate is skipped by 0.5 and the outer gate is skipped by 1.0.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな超音波探傷法を用いて厚肉鋼管の内面疵欠陥を探傷
する場合は、図5に示すように、外面(OD)からの外
面疵エコー高さFODは内面(ID)からの内面疵エコー
高さFIDよりもかなり低くなるという欠点である。この
ため、探傷装置に付加されている外面エコー高さ補償機
能(以下、DACと略称する)を用いて、外面疵エコー
高さFODと内面疵エコー高さFIDの差すなわち感度差Δ
Sが通常10dB(DACの調整幅の約3倍)以下になるよ
うに外面疵エコー高さFODを補償するのであるが、しか
し、肉厚tが40mm以上の厚肉鋼管の場合には、たとえば
図6の実線で示すように、内面疵エコー高さFIDがほぼ
26dBに対して外面疵エコー高さFODが1〜2dBと感度差
ΔSがその限界の10dBをはるかに越えることになる。
However, when the flaws on the inner surface of the thick-walled steel pipe are to be flaw-detected by using the ultrasonic flaw detection method as described above, as shown in FIG. 5, echoes on the outer surface (OD) are flawed. The height F OD has the drawback that it is considerably lower than the height F ID of the internal flaw echo from the inner surface (ID). Therefore, by using the external echo height compensation function (hereinafter abbreviated as DAC) added to the flaw detector, the difference between the external flaw echo height F OD and the internal flaw echo height F ID , that is, the sensitivity difference Δ.
The external flaw echo height F OD is compensated so that S is usually 10 dB (about 3 times the adjustment width of the DAC) or less, but in the case of a thick steel pipe with a wall thickness t of 40 mm or more, For example, as shown by the solid line in FIG. 6, the internal flaw echo height F ID is almost
The external flaw echo height F OD is 1 to 2 dB with respect to 26 dB, and the sensitivity difference ΔS far exceeds the limit of 10 dB.

【0006】そこで、DAC補償を行おうとしても、そ
の補償限界を越えていることから、点線で示すような外
面疵エコー高さFOD′しか得られず、せいぜい数dBの補
償がなされる程度である。この対策の一つとして、DA
C補償の能力を上げることが考えられるが、コスト高に
なる反面S/N比が悪化するという欠点がある。また、
探触子の周波数を小さくする方法もあるが、分解能やS
/N比を低下することになる。
Therefore, even if the DAC compensation is attempted, since the compensation limit is exceeded, only the external flaw echo height F OD ′ shown by the dotted line can be obtained, and compensation of several dB at most is performed. Is. As one of the measures, DA
Although it is conceivable to increase the ability of C compensation, there is a drawback that the S / N ratio deteriorates while the cost increases. Also,
There is a method to reduce the frequency of the probe, but the resolution and S
The / N ratio will be reduced.

【0007】本発明は、上記のような課題を解決すべく
してなされたものであって、現状のDAC補償を維持し
たままでかつ分解能やS/N比を低下させることのない
厚肉鋼管の超音波探傷方法を提案することを目的とす
る。
The present invention has been made in order to solve the above problems, and is intended for a thick-walled steel pipe which does not reduce the resolution and the S / N ratio while maintaining the current DAC compensation. The purpose is to propose an ultrasonic flaw detection method.

【0008】[0008]

【課題を解決するための手段】本発明は、超音波探傷法
によって厚肉鋼管を探傷するに際し、前記鋼管の肉厚の
5%の深さの外面人工疵と、この外面人工疵の深さより
も浅い深さの内面人工疵とを有する対比試験片を用いて
両者の感度差が所定のエコー高さ以内になるように較正
し、ついで外面エコー高さ補償機能を用いて補償したの
ち探傷することを特徴とする厚肉鋼管の超音波探傷方法
である。
According to the present invention, in detecting a thick-walled steel pipe by an ultrasonic flaw detection method, an outer surface artificial flaw having a depth of 5% of the wall thickness of the steel pipe and a depth of the outer surface artificial flaw are used. Is also calibrated so that the difference in sensitivity between them is within a predetermined echo height using a contrasting test piece having a shallow depth of internal artificial flaw, and then the external echo height compensation function is used for compensation before flaw detection. This is an ultrasonic flaw detection method for thick-walled steel pipes.

【0009】[0009]

【作 用】本発明者は、上記のような課題について鋭意
研究・実験を行った結果、以下のような知見を得た。す
なわち、図6に示すように、外面ビーム路程とエコー
高さとの間にはビーム路程が長くなるにつれてエコー高
さが低くなること、外面人工疵深さを種々変えてみる
と、人工疵の深さが深くなるにつれて、図7に示すよう
にそのエコー高さも高くなることの2点である。
[Operation] As a result of earnest research and experimentation on the above problems, the present inventor has obtained the following findings. That is, as shown in FIG. 6, the echo height becomes lower between the outer surface beam path and the echo height as the beam path length becomes longer, and when the outer surface artificial flaw depth is variously changed, the depth of the artificial flaw becomes larger. As the depth becomes deeper, the echo height becomes higher as shown in FIG.

【0010】したがって、鋼管の肉厚が厚くなるとそれ
に応じて外面ビーム路程が長くなるのであるから、外面
からのエコー高さを高くするには外面人工疵の深さを内
面人工疵の深さよりも深くすることが必要である。しか
し、対比試験片に設ける人工疵深さについては、前述し
たようにAPI−SR2規格において5%tと定められ
ていることを考慮する必要があることから、まず外面人
工疵深さを5%tとし、内面人工疵深さについては外面
疵エコー高さがDAC補償可能範囲のたとえば10dB以内
の感度差(ΔS)になるような内面疵エコー高さ(たと
えば26dB)が得られる値に穿設するのである。
Therefore, since the outer surface beam path becomes longer as the wall thickness of the steel pipe becomes thicker, the depth of the outer surface artificial flaw is made larger than the depth of the inner surface artificial defect in order to increase the echo height from the outer surface. It is necessary to deepen it. However, it is necessary to consider that the artificial flaw depth to be provided on the comparative test piece is 5% t in the API-SR2 standard as described above. As for the depth of the internal artificial flaw, the height of the internal flaw echo (for example, 26 dB) is set so that the height of the external flaw echo becomes a sensitivity difference (ΔS) within 10 dB of the DAC compensable range. To do.

【0011】ここで、本発明者の実験によれば、内面人
工疵深さhID(mm)と肉厚t(mm)の関係は、下記式で
表すことができる。なお、kは鋼種によって決まる常数
であり、たとえば炭素鋼では1.6 、13Cr鋼では1.2 が適
当である。 hID=k・1/2(5%t) なお、内面人工疵深さを5%tよりも小さい値にする
と、API規格を損なう恐れがあるが、しかしこの場合
はより小さい疵まで検出が可能であることから生産者側
には厳しいものとなるから、需要家側にはむしろ歓迎さ
れるべき対応策であるといえよう。また、内外面の基準
人工疵よりも浅い疵を検出するには判定レベルを厳しく
することにより可能である。さらに、このような対応策
は、炭素鋼よりも超音波の減衰量の大きいたとえば13Cr
鋼などの高合金鋼に適用するとより有効である。
According to an experiment conducted by the present inventor, the relationship between the inner surface artificial flaw depth h ID (mm) and the wall thickness t (mm) can be expressed by the following equation. It should be noted that k is a constant determined by the steel type. For example, 1.6 is suitable for carbon steel and 1.2 is suitable for 13Cr steel. h ID = k · 1/2 (5% t) If the internal artificial flaw depth is smaller than 5% t, the API standard may be impaired, but in this case, smaller flaws can be detected. Since it will be difficult for producers because it is possible, it can be said that it is rather a welcome measure for consumers. Further, it is possible to detect a flaw that is shallower than the reference artificial flaw on the inner and outer surfaces by making the judgment level strict. In addition, such countermeasures have a higher ultrasonic attenuation than carbon steel, for example, 13Cr.
It is more effective when applied to high alloy steel such as steel.

【0012】[0012]

【実施例】以下に、本発明の実施例について説明する。
図1に示す肉厚tが40mmの厚肉鋼管の対比試験片5に本
発明法を適用した。対比試験片5に設けた外面人工疵7
の深さhODはAPI規格通りの2mm(5%t)に、また
内面人工疵6の深さhIDは1mm(2.5 %t)に穿設し
た。この対比試験片5に探触子2を接触させて、それぞ
れのエコー高さを測定して較正した結果、内面ゲート0.
5 スキップに対する内面疵エコー高さが26dBであったの
に対し、外面ゲート1.0 スキップにおける外面疵エコー
高さは21dBとして得られ、その感度差ΔSが5dBであっ
た。そこで、DAC補償を行って外面疵エコー高さを内
面疵エコー高さと同じ26dBに調整することができた。
EXAMPLES Examples of the present invention will be described below.
The method of the present invention was applied to a comparative test piece 5 of a thick-walled steel pipe having a wall thickness t of 40 mm shown in FIG. External artificial flaws 7 provided on the comparison test piece 5
The depth h OD was 2 mm (5% t) according to the API standard, and the depth h ID of the inner surface artificial flaw 6 was 1 mm (2.5% t). The probe 2 was brought into contact with this comparative test piece 5, and the echo height of each was measured and calibrated.
The internal flaw echo height for the 5 skips was 26 dB, while the external flaw echo height for the external gate 1.0 skip was 21 dB, and the sensitivity difference ΔS was 5 dB. Therefore, it was possible to perform DAC compensation to adjust the height of the external flaw echo to 26 dB, which is the same as the height of the internal flaw echo.

【0013】[0013]

【発明の効果】以上説明したように本発明によれば、内
面人工疵深さを5%tよりも浅くなるように加工して、
DAC補償を行うことにより外面疵エコー高さを内面疵
エコー高さに近づけることができるから、外面疵を精度
よく検出することができ、製品の品質保証の向上に大い
に寄与する。
As described above, according to the present invention, the internal artificial flaw depth is processed to be shallower than 5% t,
By performing DAC compensation, the height of the external flaw echo can be made close to the height of the internal flaw echo, so that the external flaw can be detected with high accuracy, which greatly contributes to the improvement of the quality assurance of the product.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を説明する概要図である。FIG. 1 is a schematic diagram illustrating an embodiment of the present invention.

【図2】従来の超音波探傷法の構成の説明図である。FIG. 2 is an explanatory diagram of a configuration of a conventional ultrasonic flaw detection method.

【図3】超音波探傷法の原理の説明図である。FIG. 3 is an explanatory diagram of the principle of the ultrasonic flaw detection method.

【図4】従来の鋼管の対比試験片による較正例の説明図
である。
FIG. 4 is an explanatory diagram of a calibration example using a conventional test piece of a steel pipe.

【図5】従来の鋼管の対比試験片による較正時のエコー
高さの説明図である。
FIG. 5 is an explanatory diagram of an echo height at the time of calibration by a conventional steel pipe comparative test piece.

【図6】従来の鋼管の対比試験片による外面人工疵エコ
ー高さと肉厚の関係を示す特性図である。
FIG. 6 is a characteristic diagram showing the relationship between the external artificial flaw echo height and the wall thickness of a conventional steel pipe comparative test piece.

【図7】外面ビーム路程とエコー高さの関係を示す特性
図である。
FIG. 7 is a characteristic diagram showing a relationship between an outer beam path length and an echo height.

【図8】外面人工疵深さとエコー高さの関係を示す特性
図である。
FIG. 8 is a characteristic diagram showing a relationship between an external artificial flaw depth and an echo height.

【符号の説明】[Explanation of symbols]

2 探触子 5 対比試験片 6 内面人工疵 7 外面人工疵 2 Probe 5 Comparative test piece 6 Internal artificial flaw 7 External artificial flaw

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 超音波探傷法によって厚肉鋼管を探傷
するに際し、前記鋼管の肉厚の5%の深さの外面人工疵
と、この外面人工疵の深さよりも浅い深さの内面人工疵
とを有する対比試験片を用いて両者の感度差が所定のエ
コー高さ以内になるように較正し、ついで外面エコー高
さ補償機能を用いて補償したのち探傷することを特徴と
する厚肉鋼管の超音波探傷方法。
1. When detecting a thick steel pipe by an ultrasonic flaw detection method, an outer artificial flaw having a depth of 5% of the wall thickness of the steel pipe and an inner artificial flaw having a depth shallower than the depth of the outer artificial flaw. A thick-walled steel pipe characterized by calibrating so that the difference in sensitivity between the two is within a predetermined echo height using a contrasting test piece with and then compensating using the external echo height compensation function and then performing flaw detection. Ultrasonic flaw detection method.
JP3283309A 1991-10-29 1991-10-29 Ultrasonic flaw detection of thick-wall steel pipe Pending JPH05119027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3283309A JPH05119027A (en) 1991-10-29 1991-10-29 Ultrasonic flaw detection of thick-wall steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3283309A JPH05119027A (en) 1991-10-29 1991-10-29 Ultrasonic flaw detection of thick-wall steel pipe

Publications (1)

Publication Number Publication Date
JPH05119027A true JPH05119027A (en) 1993-05-14

Family

ID=17663792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3283309A Pending JPH05119027A (en) 1991-10-29 1991-10-29 Ultrasonic flaw detection of thick-wall steel pipe

Country Status (1)

Country Link
JP (1) JPH05119027A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082864A (en) * 2006-09-27 2008-04-10 Hitachi Ltd Ultrasonic flaw detector and ultrasonic flaw detecting method
JP2009236794A (en) * 2008-03-28 2009-10-15 Sumitomo Metal Ind Ltd Ultrasonic flaw detecting method and device of pipe
KR101104889B1 (en) * 2009-09-25 2012-01-12 한국수력원자력 주식회사 Calibration block for ultrasonic testing with tapered and curved surface
CN105241955A (en) * 2015-09-23 2016-01-13 南京佳业检测工程有限公司 Ultrasonic testing process for thick-wall container
CN113406203A (en) * 2021-06-24 2021-09-17 浙江泰富无缝钢管有限公司 Method for detecting longitudinal defects of thick-wall pipe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082864A (en) * 2006-09-27 2008-04-10 Hitachi Ltd Ultrasonic flaw detector and ultrasonic flaw detecting method
JP2009236794A (en) * 2008-03-28 2009-10-15 Sumitomo Metal Ind Ltd Ultrasonic flaw detecting method and device of pipe
KR101104889B1 (en) * 2009-09-25 2012-01-12 한국수력원자력 주식회사 Calibration block for ultrasonic testing with tapered and curved surface
CN105241955A (en) * 2015-09-23 2016-01-13 南京佳业检测工程有限公司 Ultrasonic testing process for thick-wall container
CN113406203A (en) * 2021-06-24 2021-09-17 浙江泰富无缝钢管有限公司 Method for detecting longitudinal defects of thick-wall pipe

Similar Documents

Publication Publication Date Title
KR101833467B1 (en) Method for detecting and characterizing defects in a heterogeneous material via ultrasound
US4068524A (en) Ultrasonic inspection of articles
CN108956775A (en) A kind of high-sensitivity ultrasonic detection method of engine complex profile bearing part
CA2258913C (en) Ultrasonic technique for inspection of weld and heat-affected zone for localized high temperature hydrogen attack
CN112379001A (en) Process method for reducing detection blind area of railway bearing ring by ultrasonic flaw detection
CN109196350A (en) Pass through the method for the defects of ultrasound detection material
JPH05119027A (en) Ultrasonic flaw detection of thick-wall steel pipe
RU2406083C1 (en) Method of determining defect structure of rolled titanium
JP2010236886A (en) Method of measuring distribution of crystal grain size of metal material
RU2714868C1 (en) Method of detecting pitting corrosion
KR101919028B1 (en) Method for ultrasonic inspection and, apparatus and system for the same
JP4596326B2 (en) Ultrasonic flaw detection method and apparatus for internally finned tube
JP4538928B2 (en) Crystal grain size abnormality judgment device and crystal grain size abnormality judgment method
JPS61138160A (en) Ultrasonic flaw detector
JPH0862192A (en) Ultrasonic flaw detection apparatus and flaw judgement method
JPH11287790A (en) Ultrasonic flaw detection method
Howard et al. An improved methodology for the inspection of titanium alloys
Bayer et al. Early detection of fatigue damage through ultrasonic non-destructive evaluation—Part II: Experimental
KR101951393B1 (en) Ultrasonic testing method for special steel
JP2019184432A (en) Nondestructive inspection method for high manganese cast steel
JPH06138105A (en) Ultrasonic flaw detector
JPS6125097B2 (en)
KR20150123602A (en) Method for reducing noise in ultrasonic inspection
JPS6326342B2 (en)
JP3327870B2 (en) Ultrasonic signal processor