JPH0511584B2 - - Google Patents

Info

Publication number
JPH0511584B2
JPH0511584B2 JP28142584A JP28142584A JPH0511584B2 JP H0511584 B2 JPH0511584 B2 JP H0511584B2 JP 28142584 A JP28142584 A JP 28142584A JP 28142584 A JP28142584 A JP 28142584A JP H0511584 B2 JPH0511584 B2 JP H0511584B2
Authority
JP
Japan
Prior art keywords
resistor
zero point
compensation
inverting input
sensitivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28142584A
Other languages
Japanese (ja)
Other versions
JPS61151472A (en
Inventor
Kazuyuki Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP28142584A priority Critical patent/JPS61151472A/en
Publication of JPS61151472A publication Critical patent/JPS61151472A/en
Publication of JPH0511584B2 publication Critical patent/JPH0511584B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、ブリツジ出力検出回路に関し、特
に、ブリツジ出力の零点の補償及び感度温度特性
の補償を行うようにしたものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field to which the Invention Pertains] The present invention relates to a bridge output detection circuit, and particularly to a bridge output detection circuit that compensates for the zero point of the bridge output and compensates for sensitivity temperature characteristics.

〔従来技術とその問題点〕[Prior art and its problems]

この種のブリツジ出力検出回路は、例えば、シ
リコン感圧ダイアフラムを備えた圧力変換器に用
いられるが、この圧力変換器において、ストレン
ゲージブリツジの零点不平衡成分や他の回路部で
生ずる零点のばらつきにより、圧力変換器出力の
零点のばらつきが生じる。また、ストレンゲージ
の圧力変化に対する抵抗値の変化の度合が−0.1
〜−0.3/℃の負の温度係数を有するため、負の
感度温度特性を生ずる。特に、高精度の圧力変換
器にシリコン感圧ダイヤフラムを使用する場合に
は、零点ばねつきの補償及び感度温度特性の補償
が不可欠になる。
This type of bridge output detection circuit is used, for example, in a pressure transducer equipped with a silicon pressure-sensitive diaphragm. The variations cause variations in the zero point of the pressure transducer output. In addition, the degree of change in resistance value with respect to pressure change of the strain gauge is -0.1
Since it has a negative temperature coefficient of ~-0.3/°C, it produces a negative sensitivity temperature characteristic. In particular, when using a silicon pressure-sensitive diaphragm in a high-precision pressure transducer, compensation for zero point springing and compensation for sensitivity temperature characteristics are essential.

従来一般的に用いられている零点補償及び感度
温度特性の補償を行なう回路としては、第7図に
示すように、ストレンゲージブリツジの一部に可
変抵抗やトリミング抵抗を接続して零点補償を行
ない、ストレンゲージブリツジと駆動電源間にス
トレンゲージとは温度係数の異なる適当な温度係
数を有する抵抗を接続して感度温度特性の補償を
行なう回路や、第8図に示すように、出力段の演
算増幅器の非反転入力端子に抵抗で分圧した電圧
を印加して零点補償を行ない、この演算増幅器の
帰還抵抗にブリツジの感度温度特性とは逆の温度
依存性を有する抵抗を用いて感度温度特性の補償
を行なう回路が知られている。
As shown in Figure 7, a commonly used circuit for zero point compensation and sensitivity temperature characteristic compensation is a circuit that connects a variable resistor or trimming resistor to a part of the strain gauge bridge to perform zero point compensation. In addition, a circuit that compensates for the sensitivity temperature characteristics by connecting a resistor with an appropriate temperature coefficient different from that of the strain gauge between the strain gauge bridge and the drive power supply, and an output stage as shown in Figure 8. Zero-point compensation is performed by applying a voltage divided by a resistor to the non-inverting input terminal of the operational amplifier, and the sensitivity is adjusted by using a resistor with a temperature dependence opposite to the sensitivity temperature characteristic of the bridge as the feedback resistor of this operational amplifier. Circuits that compensate for temperature characteristics are known.

第7図において、SG1〜SG4はストレンゲー
ジ、RX,RYは可変抵抗もしくはトリミング抵
抗であり、RX,RYの値を変化させることによ
りブリツジのバランスを変化させ、零点を補償す
る。また、RZはストレンゲージよりも負の適当
な温度依存性を持つた抵抗であり、この抵抗によ
りストレンゲージブリツジの駆動電圧は正の温度
依存性を生じ、ストレンゲージブリツジの出力感
度に正の温度特性を持たせる傾向を生ずる。この
正の温度特性により、前述した負の感度温度特性
を補償する。この補償はブリツジ部に抵抗を接続
するだけで行なうことができるので、回路が比較
的簡単であるという利点を有するが、その反面、
次のような欠点を有する。
In FIG. 7, SG1 to SG4 are strain gauges, RX and RY are variable resistors or trimming resistors, and by changing the values of RX and RY, the balance of the bridge is changed and the zero point is compensated for. In addition, RZ is a resistor that has an appropriate temperature dependence that is more negative than that of the strain gauge, and this resistance causes the drive voltage of the strain gauge bridge to have a positive temperature dependence, which increases the output sensitivity of the strain gauge bridge. There is a tendency for the temperature characteristics to be as follows. This positive temperature characteristic compensates for the aforementioned negative sensitivity temperature characteristic. This compensation can be done by simply connecting a resistor to the bridge, so it has the advantage of a relatively simple circuit, but on the other hand,
It has the following drawbacks.

(1) 感度温度特性補償用の抵抗RZにより、零点
補償用抵抗RX,RYより生じた零点成分も温
度依存性を生ずる。特に高精度の圧力変換器に
おいて、零点補償量が大きい場合は、この零点
の温度依存性の補償が必要となる。
(1) Due to the sensitivity temperature characteristic compensation resistor RZ, the zero point component generated by the zero point compensation resistors RX and RY also becomes temperature dependent. Particularly in a high-precision pressure transducer, if the amount of zero point compensation is large, it is necessary to compensate for the temperature dependence of this zero point.

(2) ストレンゲージブリツジと駆動電源間に抵抗
が接続されるため、ブリツジの駆動電圧が小さ
くなり、その結果ブリツジの感度が小さくな
る。
(2) Since a resistor is connected between the strain gauge bridge and the driving power source, the driving voltage of the bridge is reduced, and as a result, the sensitivity of the bridge is reduced.

また、第8図において、R1,R2は固定抵
抗、RV,RWは正の適当な温度係数を持つた抵
抗、R3,R4は可変抵抗あるいはトリミング抵
抗であり、また、OP1は演算増幅器である。こ
れらの抵抗R1〜R4,RV,RW及び演算増幅
器OP1で差動増幅器が構成される。この回路の
差動入力端子T1,T2にストレンゲージブリツ
ジ出力電圧成分VGが印加される。この電圧VG
はストレンゲージブリツジ出力電圧そのものであ
る場合と、ストレンゲージブリツジ出力電圧が増
幅されたものである場合とがある。そして、この
電圧VGはこの差動増幅器により増幅され、圧力
変換器出力として増幅器OP1の出力端子より出
力される。通常R1‐R2,RV=RWであり、
また簡単のためR3,R4はRV,RWと比較し
て十分抵抗値が小さいとすると、増幅器OP1の
出力電圧Voutは次の式(1)で表わされる。
Further, in FIG. 8, R1 and R2 are fixed resistors, RV and RW are resistors having an appropriate positive temperature coefficient, R3 and R4 are variable resistors or trimming resistors, and OP1 is an operational amplifier. These resistors R1 to R4, RV, RW and operational amplifier OP1 constitute a differential amplifier. A strain gauge bridge output voltage component VG is applied to differential input terminals T1 and T2 of this circuit. This voltage VG
may be the strain gauge bridge output voltage itself, or may be an amplified strain gauge bridge output voltage. Then, this voltage VG is amplified by this differential amplifier and outputted from the output terminal of the amplifier OP1 as a pressure transducer output. Usually R1-R2, RV=RW,
Further, for the sake of simplicity, assuming that R3 and R4 have sufficiently smaller resistance values than RV and RW, the output voltage Vout of the amplifier OP1 is expressed by the following equation (1).

Vout=R4/R3+R4VC+RV/R1VG ……(1) ここでVCは抵抗R3に印加する電圧である。 Vout=R4/R3+R4VC+RV/R1VG ……(1) Here, VC is the voltage applied to resistor R3.

そして抵抗R3,R4を適当に変化させること
により、式(1)の右辺第一項が変化し、零点が補償
される。また抵抗RV,RWに正の適当な温度係
数を持たせることにより、右辺第二項の温度依存
性を無くすることができる。つまり感度温度特性
が補償される。この方式によると、零点の補償と
感度温度特性の補償は互いに影響を及ぼすことは
なく、またブリツジの感度が小さくなることもな
いが、抵抗R3,R4による零点の変化範囲は0
以上、VC以下であり、負もしくはV以上の零点
を持たせることはできない。そのため、例えばダ
イヤフラムの基準圧側が真空の大気圧付近のみを
検出する圧力変換器では常に正の差圧がダイヤフ
ラムに印加されるので、その差圧により生ずる出
力を補償するため負の基準電圧を発生させる必要
があり、適用不可能であるという欠点がある。
By appropriately changing the resistances R3 and R4, the first term on the right side of equation (1) changes, and the zero point is compensated for. Furthermore, by providing the resistors RV and RW with appropriate positive temperature coefficients, the temperature dependence of the second term on the right side can be eliminated. In other words, the sensitivity temperature characteristics are compensated. According to this method, zero point compensation and sensitivity temperature characteristic compensation do not affect each other, and bridge sensitivity does not decrease, but the zero point change range due to resistors R3 and R4 is 0.
Above, the value is less than or equal to VC, and it is not possible to have a zero point that is negative or greater than or equal to V. Therefore, for example, in a pressure transducer that detects only near atmospheric pressure when the reference pressure side of the diaphragm is vacuum, a positive differential pressure is always applied to the diaphragm, so a negative reference voltage is generated to compensate for the output caused by that differential pressure. The disadvantage is that it is not applicable.

〔発明の目的〕[Purpose of the invention]

そこで、本発明は、上述した欠点を除去し、ブ
リツジ出力感度を減少させることなく、零点の補
償と感度温度特性の補償間の影響が非常に小さ
く、更に零点の補償範囲の広い、ブリツジ出力検
出回路を提供することを目的とする。
Therefore, the present invention eliminates the above-mentioned drawbacks, and provides a bridge output detection method that does not reduce the bridge output sensitivity, has a very small influence between zero point compensation and sensitivity temperature characteristic compensation, and has a wide zero point compensation range. The purpose is to provide circuits.

〔発明の要点〕[Key points of the invention]

本発明は、ブリツジ出力ラインの一方が非反転
入力に接続される第1の演算増幅器と、ブリツジ
出力ラインの他方が非反転入力に接続される第2
の演算増幅器と、前記第1および第2の演算増幅
器の反転入力間に接続される抵抗と、前記第1お
よび第2の演算増幅器のそれぞれについて出力と
反転入力との間に接続される第1および第2の帰
還抵抗と、前記第1および第2の演算増幅器のい
ずれか一方の反転入力と所定電圧電源との間に接
続される零点補償用抵抗とを備え、前記第1およ
び第2の帰還抵抗のうち前記零点補償用抵抗が接
続されない方の演算増幅器の帰還抵抗を感度温度
特性補償用の抵抗とすることによつて、零点の補
償と感度温度特性の補償の間の影響を少なくしよ
うとするものである。
The present invention includes a first operational amplifier having one of its bridge output lines connected to a non-inverting input, and a second operational amplifier having one of its bridge output lines connected to a non-inverting input.
an operational amplifier, a resistor connected between the inverting inputs of the first and second operational amplifiers, and a first resistor connected between the output and the inverting input of each of the first and second operational amplifiers. and a second feedback resistor, and a zero point compensation resistor connected between the inverting input of either one of the first and second operational amplifiers and a predetermined voltage power supply, By using the feedback resistor of the operational amplifier that is not connected to the zero point compensation resistor as the sensitivity temperature characteristic compensation resistor, try to reduce the influence between the zero point compensation and the sensitivity temperature characteristic compensation. That is.

〔発明の実施例〕[Embodiments of the invention]

以下に図面を参照して本発明の実施例を説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図に本発明を適用した圧力変換器の一実施
例を示す。図において、端子T3,T4にストレ
ンゲージブリツジ出力電圧Viが加わる。端子T
3は演算増幅器OP2の非反転入力端子に接続さ
れ、端子T4は演算増幅器OP3の非反転入力端
子に接続される。また、電源VccとアースGND
間に抵抗R5とR6が直列に接続され、この抵抗
R5,R6は可変抵抗もしくはトリミング抵抗で
ある。そして、抵抗R5,R6の結合点がOP3
の反転入力端子に接続され、増幅器OP2の反転
入力端子と増幅器OP3の反転入力端子間に抵抗
R7が接続される。増幅器OP2の出力端子T5
と反転入力端子間には正の温度係数を有する抵抗
Raが接続され、増幅器OP3の出力端子T6と反
転入力端子間に抵抗R8が接続される。演算増幅
器OP2,OP3と抵抗R5〜R8,Raにより、
差動入力で差動出力の増幅器が構成される。ここ
で、差動入力端子はT3,T4、差動出力端子は
T5,T6である。
FIG. 1 shows an embodiment of a pressure transducer to which the present invention is applied. In the figure, a strain gauge bridge output voltage Vi is applied to terminals T3 and T4. Terminal T
3 is connected to the non-inverting input terminal of the operational amplifier OP2, and the terminal T4 is connected to the non-inverting input terminal of the operational amplifier OP3. Also, power supply Vcc and earth GND
Resistors R5 and R6 are connected in series between them, and these resistors R5 and R6 are variable resistors or trimming resistors. And the connection point of resistors R5 and R6 is OP3
A resistor R7 is connected between the inverting input terminal of the amplifier OP2 and the inverting input terminal of the amplifier OP3. Output terminal T5 of amplifier OP2
A resistor with a positive temperature coefficient is connected between the input terminal and the inverting input terminal.
Ra is connected, and a resistor R8 is connected between the output terminal T6 and the inverting input terminal of the amplifier OP3. By operational amplifiers OP2, OP3 and resistors R5 to R8, Ra,
A differential input and differential output amplifier is configured. Here, the differential input terminals are T3 and T4, and the differential output terminals are T5 and T6.

次に、以上のような構成の本発明の実施例の動
作を説明する。ここでは簡単のため演算増幅器の
オフセツト電流、電圧は零とする。また入力端子
T3の対アース電位V3と、入力端子T4の対ア
ース電位V4の平均は電源の半分になるとする。
これを式で表わすと次のようになる。
Next, the operation of the embodiment of the present invention having the above configuration will be explained. Here, for simplicity, the offset current and voltage of the operational amplifier are assumed to be zero. It is also assumed that the average of the potential V3 of the input terminal T3 relative to the ground and the potential V4 of the input terminal T4 relative to the ground is half of the power supply.
This can be expressed as a formula as follows.

V3=Vcc/2−Vi/2 ……(2) V4=Vcc/2+Vi/2 ……(3) ここでViは端子T3より見た端子T4の電位
と定義する。
V3=Vcc/2-Vi/2...(2) V4=Vcc/2+Vi/2...(3) Here, Vi is defined as the potential of terminal T4 viewed from terminal T3.

この増幅器の差動出力電圧Voは次式(4)で表わ
される。
The differential output voltage Vo of this amplifier is expressed by the following equation (4).

Vo={R8+Ra/R7+1+R8(R5+R6)/2R5R6}Vi
+R8(R5−R6)/2R5R6・Vcc……(4) R5,R6は零点補償用抵抗であり、この抵抗R
5,R6により生ずる零点成分分VDは式(4)の右
辺第二項であり、次式(5)で表わされる。
Vo={R8+Ra/R7+1+R8(R5+R6)/2R5R6}Vi
+R8 (R5-R6)/2R5R6・Vcc...(4) R5 and R6 are zero point compensation resistors, and this resistor R
The zero point component V D generated by 5 and R6 is the second term on the right side of equation (4), and is expressed by the following equation (5).

VD=R8(R5−R6)/2R5R6・Vcc ……(5) このVDの式には温度依存性を有する抵抗Raは
含まれない。従つて、VDは感度温度特性補償の
影響により温度依存性を持つことはない。R5=
R6であればVD=0である。ここでR5をR5
=R6=RSの状態から無限大(オープン)まで
変化をさせた場合の零点成分VDの変化△VD1は
次の式(6)のようになる。
V D = R8 (R5 − R6)/2R5R6·Vcc (5) This V D equation does not include the temperature-dependent resistance Ra. Therefore, V D does not have temperature dependence due to the influence of sensitivity temperature characteristic compensation. R5=
If it is R6, VD=0. Here R5 is R5
The change ΔVD1 in the zero point component V D when changing from the state of =R6=RS to infinity (open) is expressed by the following equation (6).

△VD1=R8/RS・Vcc/2 ……(6) 同じようにR6をR6=R5=RSの状態から
無限大(オープン)まで変化させた場合のVDの
変化△VD2は次の式(7)のようになる。
△VD1=R8/R S・Vcc/2 ...(6) Similarly, when R6 is changed from the state of R6=R5= RS to infinity (open), the change in VD △VD2 is calculated by the following formula. It becomes like (7).

△VD2=−R8/RS・Vcc/2 ……(7) よつて、R5=RS,R6=∞の状態からR5=
∞、R6=RSの状態まで変化させた時の零点成
分VDの変化△VDは次式(8)で表わされる。
△VD2=-R8/R S・Vcc/2 ...(7) Therefore, from the state of R5=R S and R6=∞, R5=
∞, the change in the zero point component V D when it is changed to the state of R6=R S is expressed by the following equation (8).

△VD=△VD1−△VD2=R8/RS・Vcc ……(8) この式で明らかなように、△VDは抵抗R5,
R6,R8の値により、零より無限大までの範囲
で選ぶことが可能である。
△V D = △V D 1-△V D 2 = R8/R S・Vcc ...(8) As is clear from this formula, △V D is the resistance R5,
The values of R6 and R8 can be selected from zero to infinity.

式(4)の右辺第一項はストレンゲージブリツジ出
力電圧Viに関する項である。ここで、抵抗Raの
温度係数をα(α>0)とする。またストレンゲ
ージブリツジ出力電圧Viは差圧に応じて生ずる
成分すなわちスパン成分VSと零点成分VZに分か
れる。ここでスパン成分VSの温度係数をβ(β<
0)とし、また簡単のため零点成分VZの温度依
存性は無いとする。以上よりRaとViを次の式(9),
(10)のように表わす。
The first term on the right side of equation (4) is a term related to the strain gauge bridge output voltage Vi. Here, the temperature coefficient of resistance Ra is assumed to be α (α>0). Further, the strain gauge bridge output voltage Vi is divided into a component generated according to the differential pressure, that is, a span component V S and a zero point component V Z. Here, the temperature coefficient of the span component V S is β (β <
0), and for the sake of simplicity, it is assumed that the zero point component V Z has no temperature dependence. From the above, Ra and Vi can be expressed as the following equation (9),
Expressed as (10).

Ra=Rao(1+αT) ……(9) Vi=VSp(1+βT)+VZ ……(10) ここで、Tは温度、RaoはT=0におけるRa、
VS0はT=0におけるVSである。式(9),(1)(10)を式
(4)の差動出力電圧Voの右辺第一項(Voiと置く)
に代入するとVoiは次式(11)のように表わされる。
Ra=Rao(1+αT)...(9) Vi=V Sp (1+βT)+V Z ...(10) Here, T is temperature, Rao is Ra at T=0,
V S0 is V S at T=0. Expressions (9), (1) and (10) are expressed as
The first term on the right side of the differential output voltage Vo in (4) (set as Voi)
By substituting into , Voi is expressed as the following equation (11).

Voi={R7+R8+Rao/R7+R8(R5+R6)/2R5R6} {1+Rao αT/R7+R8+Rao+R7R8(R5+R6)/2R
5R6}×{VSp(1+βT)+VZ} 式(11)のうち、ストレンゲージブリツジのスパン
成分VSpに関する項の温度係数はγは次式(12)で表
わされる。ここで温度2次の項は簡単のため省略
する。
Voi={R7+R8+Rao/R7+R8(R5+R6)/2R5R6} {1+Rao αT/R7+R8+Rao+R7R8(R5+R6)/2R
5R6}×{V Sp (1+βT)+V Z } In equation (11), the temperature coefficient γ of the term related to the span component V Sp of the strain gauge bridge is expressed by the following equation (12). Here, the second-order temperature term is omitted for simplicity.

γ=Rao α/R7+R8+Rao+R7R8(R5+R6)/2R5R6+
β
……(12) 式(12)の右辺第一項は回路増幅度の温度係数であ
る。感度温度補償が為される条件はγ=0であ
る。通常R7はRa,R8よりも小さく設定され
るので、RaoまたはR8の値を変化させることに
より、増幅度の温度係数を零付近よりα付近まで
の範囲で変化させることができ、広範囲の補償が
可能である。
γ=Rao α/R7+R8+Rao+R7R8(R5+R6)/2R5R6+
β
...(12) The first term on the right side of equation (12) is the temperature coefficient of circuit amplification. The condition for sensitivity temperature compensation is γ=0. Normally, R7 is set smaller than Ra and R8, so by changing the value of Rao or R8, the temperature coefficient of the amplification degree can be changed in the range from around zero to around α, allowing a wide range of compensation. It is possible.

零点補償の影響が感度温度特性の補償に及ぼす
影響を十分小さくするためには、零点補償用抵抗
R5,R6の変化に対する式(12)の右辺第一項の変
化幅(△γと置く)が十分小さいことが必要であ
る。
In order to sufficiently reduce the influence of zero point compensation on compensation of sensitivity temperature characteristics, the width of change (denoted as △γ) in the first term on the right side of equation (12) with respect to changes in zero point compensation resistors R5 and R6 must be It needs to be sufficiently small.

一例としてR7=1.5KΩ、R8=30KΩ、Ra
=50KΩ、α=0.4%/℃の状態でR5,R6の
値を、R5=RS、R6=∞よりR5=∞、R6
=RSまで変化させた場合のRSと△VDの関係、及
びRSと△γの関係を第2図に示す。第2図より、
△VDを十分大きく、△γを十分小さくする一例
として、△VDを2Vcc以上、△γを5×10-2%/
℃以下にしたい場合は、RSを2.5KΩ〜15KΩの範
囲に設定すれば良い。
As an example, R7=1.5KΩ, R8=30KΩ, Ra
= 50KΩ, α = 0.4%/℃, the values of R5 and R6 are R5 = R S and R6 = ∞, so R5 = ∞, R6
Figure 2 shows the relationship between R S and △V D and the relationship between R S and △γ when the value is changed to =R S . From Figure 2,
As an example of making △V D sufficiently large and △γ sufficiently small, △V D should be 2Vcc or more, and △γ should be 5×10 -2 %/
If you want to keep it below ℃, you can set R S in the range of 2.5KΩ to 15KΩ.

以上述べたように、RaoまたはR8を適当な値
に選ぶことにより、感度温度特性の補償を行な
い、更にR5,R6の値を適当に選ぶことによ
り、零点補償範囲△VDが十分広く、かつ零点補
償による感度温度特性の変化を十分小さくするこ
とが可能である。
As mentioned above, by selecting an appropriate value for Rao or R8, the sensitivity temperature characteristics can be compensated, and by further selecting the values for R5 and R6, the zero point compensation range △V D can be sufficiently wide and It is possible to sufficiently reduce changes in sensitivity temperature characteristics due to zero point compensation.

第3図は他の実施例を示す回路図であり、零点
補償抵抗R5,R6の結合点を演算増幅器OP2
の反転入力端子に接続し、正の温度係数を持つた
感度温度特性補償用抵抗RbをOP3の出力端子と
反転入力端子間に接続し、抵抗R9をOP2の出
力端子と反転入力端子間に接続した場合であり、
第1図の実施例と同様の効果を呈す。
FIG. 3 is a circuit diagram showing another embodiment, in which the connection point of the zero point compensation resistors R5 and R6 is connected to the operational amplifier OP2.
A sensitivity temperature characteristic compensation resistor Rb with a positive temperature coefficient is connected between the output terminal of OP3 and the inverting input terminal, and a resistor R9 is connected between the output terminal of OP2 and the inverting input terminal. In the case that
It exhibits the same effect as the embodiment shown in FIG.

第4図は更に他の実施例を示す回路図であり、
第1図の実施例のR6をオープンにした場合に相
当する。零点補償用抵抗R5により負の零点のみ
を出力することが可能である。第1図の実施例と
比較して零点補償の範囲が狭くなる以外は、第1
図の実施例と同様の効果を呈す。同様に第3図の
実施例のR5をオープンにすることにより。正の
零点のみを出力することができる。
FIG. 4 is a circuit diagram showing still another embodiment,
This corresponds to the case where R6 in the embodiment shown in FIG. 1 is left open. It is possible to output only the negative zero point by the zero point compensation resistor R5. The first embodiment except that the range of zero point compensation is narrower compared to the embodiment shown in FIG.
It exhibits the same effect as the embodiment shown in the figure. Similarly, by opening R5 in the embodiment of FIG. Only positive zeros can be output.

第5図は更に他の実施例を示す回路図である。
第1図における抵抗R5を温度依存性をもつ抵抗
Rcで置き換えたもので、抵抗Rcの抵抗温度係数
を適当な値に選ぶことにより、零点の温度特性を
補償することができる。
FIG. 5 is a circuit diagram showing still another embodiment.
The resistance R5 in Figure 1 is a temperature-dependent resistance.
By replacing it with Rc, the temperature characteristics at the zero point can be compensated by selecting an appropriate value for the resistance temperature coefficient of the resistor Rc.

第1図における抵抗R6を温度依存性抵抗で置
き換えると、第5図の実施例とは逆の傾きをもつ
温度特性を補償することができる。
If the resistor R6 in FIG. 1 is replaced by a temperature-dependent resistor, it is possible to compensate for a temperature characteristic having a slope opposite to that of the embodiment shown in FIG.

第6図は更に他の実施例を示す回路図である。
第1図における抵抗5に非直線性抵抗であるダイ
オードD1を付加したものであり、特性の電源電
圧依存性を補償することができる。ダイオードの
部分は他の非直線性抵抗で置き換えることができ
る。抵抗R6に非直線性抵抗を付加すると第6図
の実施例とは逆方向の補償ができる。
FIG. 6 is a circuit diagram showing still another embodiment.
A diode D1, which is a nonlinear resistor, is added to the resistor 5 in FIG. 1 , and the dependence of the characteristics on the power supply voltage can be compensated for. The diode portion can be replaced with other non-linear resistors. Adding a non-linear resistance to resistor R6 allows compensation in the opposite direction to that of the embodiment of FIG.

〔発明の効果〕〔Effect of the invention〕

以上のような本発明によれば、2つの演算増幅
器を用いて差動増幅器を構成し、一方の反転入力
に零点補償用抵抗を接続すると共に、この抵抗が
接続されない方の演算増幅器の帰還抵抗を感度温
度特性補償用の抵抗としたので、零点補償の感度
温度特性に及ぼす影響が非常に少なくなり、零点
の補償幅を十分に大きくとることができる。
According to the present invention as described above, a differential amplifier is constructed using two operational amplifiers, and a zero point compensation resistor is connected to the inverting input of one, and the feedback resistor of the operational amplifier to which this resistor is not connected is Since the resistor is used as a resistance for compensating sensitivity-temperature characteristics, the influence of zero-point compensation on sensitivity-temperature characteristics is extremely reduced, and the zero-point compensation width can be made sufficiently large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す回路図、第2図
はRS,△VDおよび△γとの関係の一例を示す図、
第3図〜第6図はそれぞれ本発明の別の実施例を
示す回路図、第7図,第8図は従来例を示す回路
図である。 SG1〜SG4…ストレンゲージ、R1,R2,
R7,R8,R9…抵抗、R3,R4,R5,R
6…可変抵抗、RZ…ストレンゲージより温度係
数が負の抵抗、RV,RW,Ra,Rb,Rc…温度依
存性を有する抵抗、D1…ダイオード、OP1〜
OP3…演算増幅器、P,Vc,Vcc…電源、GND
…大地電位、ViN,VG,Vi…ストレンゲージブリ
ツジ出力成分、Vout,Vo…増幅回路出力、T1
T6…端子。
Fig. 1 is a circuit diagram showing an embodiment of the present invention, Fig. 2 is a diagram showing an example of the relationship between R S , △V D and △γ,
FIGS. 3 to 6 are circuit diagrams showing other embodiments of the present invention, and FIGS. 7 and 8 are circuit diagrams showing conventional examples. SG1~SG4...Strain gauge, R1, R2,
R7, R8, R9...Resistance, R3, R4, R5, R
6... Variable resistor, R Z ... Resistance with a more negative temperature coefficient than the strain gauge, R V , R W , Ra, Rb, Rc... Resistance with temperature dependence, D 1 ... Diode, OP1~
OP3...Operation amplifier, P, Vc, Vcc...Power supply, GND
...Earth potential, Vi N , V G , Vi... Strain gauge bridge output component, Vout, Vo... Amplifier circuit output, T 1 ~
T6 ...Terminal.

Claims (1)

【特許請求の範囲】[Claims] 1 ブリツジ出力ラインの一方が非反転入力に接
続される第1の演算増幅器と、ブリツジ出力ライ
ンの他方が非反転入力に接続される第2の演算増
幅器と、前記第1および第2の演算増幅器の反転
入力間に接続される抵抗と、前記第1および第2
の演算増幅器のそれぞれについて出力と反転入力
との間に接続される第1および第2の帰還抵抗
と、前記第1および第2の演算増幅器のいずれか
一方の反転入力と所定電圧電源との間に接続され
る零点補償用抵抗とを備え、前記第1および第2
の帰還抵抗のうち前記零点補償用抵抗が接続され
ない方の演算増幅器の帰還抵抗を感度温度特性補
償用の抵抗としたことを特徴とするブリツジ出力
検出回路。
1 a first operational amplifier having one of the bridge output lines connected to the non-inverting input; a second operational amplifier having the other bridge output line connected to the non-inverting input; and the first and second operational amplifiers. a resistor connected between the inverting inputs of the first and second
first and second feedback resistors connected between the output and the inverting input of each of the operational amplifiers, and between the inverting input of either one of the first and second operational amplifiers and a predetermined voltage power supply. a zero point compensation resistor connected to the first and second
A bridge output detection circuit characterized in that a feedback resistor of an operational amplifier to which the zero-point compensation resistor is not connected among the feedback resistors is used as a sensitivity-temperature characteristic compensation resistor.
JP28142584A 1984-12-25 1984-12-25 Bridge output detection circuit Granted JPS61151472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28142584A JPS61151472A (en) 1984-12-25 1984-12-25 Bridge output detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28142584A JPS61151472A (en) 1984-12-25 1984-12-25 Bridge output detection circuit

Publications (2)

Publication Number Publication Date
JPS61151472A JPS61151472A (en) 1986-07-10
JPH0511584B2 true JPH0511584B2 (en) 1993-02-15

Family

ID=17638980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28142584A Granted JPS61151472A (en) 1984-12-25 1984-12-25 Bridge output detection circuit

Country Status (1)

Country Link
JP (1) JPS61151472A (en)

Also Published As

Publication number Publication date
JPS61151472A (en) 1986-07-10

Similar Documents

Publication Publication Date Title
US4337665A (en) Semiconductor pressure detector apparatus with zero-point temperature compensation
US5460050A (en) Semiconductor strain sensor with Wheatstone bridge drive voltage compensation circuit
JPH0351733A (en) Amplifying and compensating circuit for semiconductor pressure sensor
US5134885A (en) Circuit arrangement for measuring a mechanical deformation, in particular under the influence of a pressure
US6101883A (en) Semiconductor pressure sensor including a resistive element which compensates for the effects of temperature on a reference voltage and a pressure sensor
US6011422A (en) Integrated differential voltage amplifier with programmable gain and input offset voltage
JP3222367B2 (en) Temperature measurement circuit
JPH0511584B2 (en)
EP0709660A1 (en) Sensor and a method for temperature compensating for span variation in the sensor
JPH11160347A (en) Sensor circuit
JPH0473085B2 (en)
JPH06294664A (en) Nonlinear circuit
JPH0419470Y2 (en)
JPH0434091B2 (en)
JPS6136163B2 (en)
JP2021189109A (en) Sensor drive circuit
JPH06120737A (en) Detector circuit
JPS622484Y2 (en)
JP2792522B2 (en) Signal processing circuit for semiconductor sensor
JPS60144633A (en) Temperature compensating circuit
JPH08159884A (en) Load cell type weighing equipment employing single electric power source and correcting method based on temperature characteristic
JPH0368830A (en) Temperature compensation circuit of semiconductor pressure sensor
JPH0346771B2 (en)
JPS6356933B2 (en)
JP2516647Y2 (en) Temperature compensation circuit