JPH08159884A - Load cell type weighing equipment employing single electric power source and correcting method based on temperature characteristic - Google Patents

Load cell type weighing equipment employing single electric power source and correcting method based on temperature characteristic

Info

Publication number
JPH08159884A
JPH08159884A JP33039794A JP33039794A JPH08159884A JP H08159884 A JPH08159884 A JP H08159884A JP 33039794 A JP33039794 A JP 33039794A JP 33039794 A JP33039794 A JP 33039794A JP H08159884 A JPH08159884 A JP H08159884A
Authority
JP
Japan
Prior art keywords
voltage
load cell
output
temperature
power source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33039794A
Other languages
Japanese (ja)
Inventor
Koji Oguma
耕二 小熊
Hitoshi Sugawara
仁 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanita Corp
Original Assignee
Tanita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanita Corp filed Critical Tanita Corp
Priority to JP33039794A priority Critical patent/JPH08159884A/en
Publication of JPH08159884A publication Critical patent/JPH08159884A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a highly precise weighing equipment at a low cost by installing a third voltage different from an electric power source voltage and a standard voltage and dividing the voltage obtained by amplification of the output of a strain gauge attached to a load cell and the third voltage with a temperature sensing resistor and a normal resistor. CONSTITUTION: A third voltage VP different from an electric power source voltage VDD and a standard voltage VSS is installed and the output VX obtained by dividing the voltage V1 obtained by amplifying the output of a strain gauge attached to a load cell and the third voltage VP with a temperature sensing resistor R3 and a normal resistor R4 is connected with an A/D converter. The output VX can be expressed as VX=R4 /(R4 +R3 )×(V1 +VP)+VP in the case where the temperature sensing resistor R3 is set in this way. If VP is so set as to satisfy V1 =VP, VX becomes equal to VP and is constant independently of the R3 value. That is, it is indicated that an indicated value does not fluctuate even if temperature alters in a no load state by setting VP=V1 ,0 while the amplified output V1 in no load state being set to be V1 ,0 .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】ロードセル式重量計に関し、特に
単電源を使用したロードセル式重量計の環境温度変化に
計量値が影響されない為の温度特性の補正に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a load cell type weighing scale, and more particularly to correction of a temperature characteristic of a load cell type weighing scale using a single power source so that a measured value is not influenced by an environmental temperature change.

【0002】[0002]

【従来の技術】一般に歪みゲージ自体、及び歪みゲージ
に荷重値に比例した歪みを与える起歪体は材質的に温度
特性があり、ロードセル単体の出力の温度による影響を
無くすることは非常に困難である。この為に従来よりロ
ードセル単体の出力の温度特性と逆の温度特性を有する
感温抵抗を使用してロードセルの温度特性を補正する方
法が種々提案され実施されている。
2. Description of the Related Art Generally, a strain gauge itself and a strain element that gives strain to the strain gauge in proportion to a load value have temperature characteristics in terms of material, and it is very difficult to eliminate the influence of the temperature of the output of a single load cell. Is. For this reason, various methods for correcting the temperature characteristic of the load cell using a temperature sensitive resistor having a temperature characteristic opposite to the output temperature characteristic of the load cell alone have been proposed and implemented.

【0003】従来より比較的低コストである単電源を使
用したロードセル式重量計では図3で代表される回路
で、電源電圧VDD と歪みゲージブリッヂとの間にロード
セルの温度特性と逆の温度特性を有する感温抵抗を挿入
し、入力電圧を制御する方法が一般的に取られていた。
In a load cell type weighing scale using a single power source, which is relatively low in cost compared to the conventional one, a circuit typified by FIG. 3 is used, in which a temperature opposite to the temperature characteristic of the load cell is provided between the power source voltage V DD and the strain gauge bridge. A method of inserting a temperature-sensitive resistor having characteristics and controlling the input voltage has been generally adopted.

【0004】しかしこの方法では、図3のVSS =0V と
し、RG1 =RG2 =RG3 =RG4とすると、ブリッヂ回路の出力
VG+は、ブリッヂの合成抵抗をRGと置くと VG+ =1/2*RG/(RG+R3)*VDD ・・・(1) で表される。ここで、ロードセルの温度特性が 600ppm/
℃とすると、ブリッヂ回路に約-600ppm/℃の温度特性を
持つようにR3は設定される。しかしその際、増幅器の+
入力端子の電圧VG+も-600ppm/℃で変動してしまい、結
果的に、増幅器出力V1は、VG+の電圧降下分下がること
になる。
However, in this method, when V SS = 0V in FIG. 3 and R G1 = R G2 = R G3 = R G4 , the output of the bridge circuit is output.
V G + is expressed as V G + = 1/2 * R G / (R G + R 3 ) * V DD (1), where R G is the combined resistance of the bridge. Here, the temperature characteristic of the load cell is 600ppm /
When set to ℃, R 3 is set so that the bridge circuit has a temperature characteristic of about -600ppm / ℃. However, at that time, the +
The voltage V G + at the input terminal also fluctuates at −600 ppm / ° C., and as a result, the amplifier output V 1 drops by the voltage drop of V G + .

【0005】即ち、1℃当たりのV1の変動電圧ΔV1は、
VG+の電圧降下分をΔVG+とすると ΔV1 =ΔVG+ =1/2*RG/(RG+R3)*(-600ppm)*10-6・・・
(2)で表される。ここで、RG=350Ω、R3=72Ω、R3
温度特性を3,500ppm/℃、VDD =5V とすると、温度補正
はほぼ-600ppmとなるので、(2)式より、ΔV1 =1/2*3
50/(350+72)*(-600-6)*5 =-1.24mVとなり、無負荷時と
秤量負荷時のV1の変動を0.6Vとすると、1℃変化すると
約1/500変化することになる。このことは、環境温度が
1℃変化すると、1目度量が秤量の1/1,000 の重量計で
はゼロ点が2目ずれてしまうことであり、1/3,000 の重
量計では、6目もずれてしまうことを示している。
That is, the fluctuation voltage ΔV 1 of V 1 per 1 ° C. is
When V G + of the voltage drop and ΔV G + ΔV 1 = ΔV G + = 1/2 * R G / (R G + R 3) * (- 600ppm) * 10 -6 ···
It is represented by (2). Here, if R G = 350Ω, R 3 = 72Ω, and the temperature characteristics of R 3 are 3,500ppm / ° C and V DD = 5V, the temperature correction is almost -600ppm, so from equation (2), ΔV 1 = 1/2 * 3
50 / (350 + 72) * (-600 -6 ) * 5 = -1.24 mV, and if the fluctuation of V 1 under no load and under weighing load is 0.6 V, it changes about 1/500 when 1 degree changes. It will be. This means that if the environmental temperature changes by 1 ° C, the zero point shifts by 2 in a weighing scale whose scale is 1 / 1,000 of the weighing scale, and in the scale of 1 / 3,000 it shifts by 6 scales. It shows that it will end.

【0006】この様な単電源での欠点を補うために図4
に示すように温度補正用の感温抵抗を正負の電源に接続
する方法が用いられている。R3 =R3' RG1 =RG2 =RG3 =R
G4とすると、ゲージの出力は0Vであり、温度が変動して
もゲージ出力は変わらないことになる。しかし、A/D
変換器、特にロードセル式重量計に使用されるA/D変
換器に置いては、負の電圧を変換出来る物は少なく、秤
の無負荷状態での出力V0は正の値に調整される必要があ
る。V0が一定値を持つと言うことは、前述のように温度
が変動することにより出力値V0が変動することになり、
本質的な解決にはならず、また感温抵抗は一般的に高価
であり、2個使用することはコスト増の要因ともなり望
ましい物ではない。一方、温度の変化に依るロードセル
の状態の変化や、増幅器のオフセット電圧の変化等によ
り、無負荷の指示値が変動することが知られている。
In order to make up for such a drawback with a single power source, as shown in FIG.
As shown in, a method of connecting a temperature-sensitive resistor for temperature correction to positive and negative power supplies is used. R 3 = R 3 'R G1 = R G2 = R G3 = R
With G4 , the gauge output is 0V, which means that the gauge output does not change even if the temperature changes. However, A / D
In the converter, especially in the A / D converter used in the load cell type weighing machine, there are few things that can convert the negative voltage, and the output V 0 of the balance in the unloaded state is adjusted to a positive value. There is a need. The fact that V 0 has a constant value means that the output value V 0 fluctuates as the temperature fluctuates as described above.
It is not an essential solution, and the temperature-sensitive resistance is generally expensive, and using two of them is not desirable because it causes a cost increase. On the other hand, it is known that the no-load instruction value fluctuates due to changes in the state of the load cell due to changes in temperature, changes in the offset voltage of the amplifier, and the like.

【0007】[0007]

【発明が解決しようとする課題】本発明の課題は、単電
源を使用したロードセル式重量計で前記した無負荷時の
指示値の変化が無い温度特性の補正を施し、低コストで
高精度のロードセル式重量計を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a load cell type weighing machine using a single power source, which corrects the temperature characteristics without any change in the indicated value at the time of no load, and is low cost and highly accurate. It is to provide a load cell type weighing scale.

【0008】[0008]

【課題を解決するための手段】電源電圧VDD及び基準電
圧VSSとは異なる第3の電圧VPを設け、ロードセルに貼
付された歪みゲージの出力を増幅器で増幅した電圧V
1と、前記第3の電圧VPとを、感温抵抗R3と通常の抵抗R
4で分割した出力VXをA/D変換器に接続する。
[Means for Solving the Problems] A third voltage V P different from a power supply voltage V DD and a reference voltage V SS is provided, and a voltage V obtained by amplifying an output of a strain gauge attached to a load cell with an amplifier.
1 and the third voltage V P , the temperature sensitive resistance R 3 and the normal resistance R
Connect the output V X divided in 4 to the A / D converter.

【0009】[0009]

【作用】容易に設定できる第3の電圧VPの値を、無負荷
時のロードセルの出力が増幅された出力電圧、V1,0と等
しい値とすることで、無負荷状態で温度変化があっても
指示値は変化しないものとなる。
By setting the value of the third voltage V P that can be easily set to a value equal to V 1 , 0 , which is the output voltage obtained by amplifying the output of the load cell under no load, the temperature change under no load condition Even if there is, the indicated value will not change.

【0010】[0010]

【実施例】図1及び図2は本発明の実施例の要部を詳細
に示したブロック図、図5及び図6は本発明の実施例の
説明に用する回路図である。
1 and 2 are block diagrams showing details of essential parts of an embodiment of the present invention, and FIGS. 5 and 6 are circuit diagrams used for explaining the embodiment of the present invention.

【0011】図5に示す様に感温抵抗R3を配すると、 VX =R4/(R4+R3)*(V1-VP)+VP ・・・(3) で表される。ここで、V1 =VPとなるようにVPを設定すれ
ばVX =VPとなり、R3の値に関係せず一定値となる。この
ことは、無負荷状態の増幅器出力V1をV1,0とすると、VP
=V1,0 となるようにすれば無負荷状態で温度変化があ
っても指示値が変化しないことを示している。
If a temperature-sensitive resistor R 3 is arranged as shown in FIG. 5, V X = R 4 / (R 4 + R 3 ) * (V 1 -V P ) + V P (3) To be done. Here, if V P is set so that V 1 = V P , V X = V P , which is a constant value regardless of the value of R 3 . This means that if the unloaded amplifier output V 1 is V 1 , 0 , then V P
= V 1 , 0 indicates that the indicated value does not change even if the temperature changes in the no-load state.

【0012】任意のVPを得ることは、図5に示すよう
に、VDD、VSS及びR1、R2によって容易であり、R1に可変
抵抗器を使用して、VPを調整可能にすることも容易であ
る。ロードセルの温度補正は、(3)式の増幅器出力V1
の計数、R4/(R4+R3) がロードセルの温度特性を打ち消
すような温度特性を持つようにR4の値、及び感温抵抗R3
の値を設定すればよい。
Obtaining an arbitrary V P is easy by V DD , V SS and R 1 , R 2 as shown in FIG. 5, and a variable resistor is used for R 1 to adjust V P. It is also easy to enable. The temperature correction of the load cell is performed by the amplifier output V 1 of formula (3).
Value of R 4 , the value of R 4 and the temperature-sensitive resistance R 3 so that R 4 / (R 4 + R 3 ) has temperature characteristics that cancel the temperature characteristics of the load cell.
You can set the value of.

【0013】他の実施例である図6に示す更に単純な図
5に示す回路と等価な回路で同一の結果を得ることが出
来る。即ち、図6はキルヒホッフの法則より (VDD-VX)/R1+(V1-VX)/R3 =VX/R2 ・・・(4) が成立する。よって R2 R3(VDD-VX)+R1 R2(V1-VX) =R1 R3 VX この式を変形して VX(R1 R2+R2 R3+R3 R1) =R2 R3 VDD+R1 R2 V1 ・・・(5) を得る。(5)式をVXについて解くと VX =(R1 R2 V1+R2 R3 VDD)/(R1 R2+R2 R3+R3 R1) =R1 R2/(R1 R2+R2 R3+R3 R1)*(V1+R3/R1*VDD) =R1 R2/(R1 R2+R2 R3+R3 R1)*[V1+{R2/(R1+R2)-R2/( R1+R2)+R3/R1}*VD D ] =R1 R2/(R1 R2+R2 R3+R3 R1)*{V1-R2/(R1+R2)*VDD+(R1 R2+R2 R3+R3 R1 )/R1(R1+R2)*VDD} =R1 R2/(R1 R2+R2 R3+R3 R1)*{V1-R2/(R1+R2)*VDD}+R2/(R1+R2)*VDD ={R1 R2/(R1+R2)}/{R1 R2/(R1+R2)+R3}*{V1-R2/(R1+R2)*VDD}+R2/(R1+ R2)*VDD ・・・(6)となる。 ここで、R4 =R1 R2/(R1+R2)とおくと、 VX =R4/(R4+R3)*{V1-R2/(R1+ R2)*VDD}+R2/(R1+R2)*VDD ・・・(7)を得 る。よって、R2/(R1+R2) =V1/VDDとなるようにR1、R2
置けば、(7)式より、VX=R2/(R1+R2)*VDD となり、VX
はR3の値に関係せず一定となり、増幅器で増幅されたロ
ードセルの出力VXには温度影響がないものとなる。一
方、V1の係数、R4/(R4+R3)がロードセルの温度特性を相
殺するようにR3を選ぶことでロードセルの温度補正が出
来る。ここで、VP =R2/(R1+R2)*VDDとおくと、(7)式
は(3)式と一致する。
Another embodiment, which is a simpler diagram shown in FIG.
It is possible to obtain the same result with an equivalent circuit to the circuit shown in 5.
come. That is, Fig. 6 is based on Kirchhoff's law (VDD-VX) / R1+ (V1-VX) / R3 = VX/ R2 (4) is established. Therefore R2 R3(VDD-VX) + R1 R2(V1-VX) = R1 R3 VX Transform this equation to VX(R1 R2+ R2 R3+ R3 R1) = R2 R3 VDD+ R1 R2 V1 ... (5) is obtained. Equation (5) is VXSolving for VX = (R1 R2 V1+ R2 R3 VDD) / (R1 R2+ R2 R3+ R3 R1) = R1 R2/ (R1 R2+ R2 R3+ R3 R1) * (V1+ R3/ R1* VDD) = R1 R2/ (R1 R2+ R2 R3+ R3 R1) * [V1+ {R2/ (R1+ R2) -R2/ (R1+ R2) + R3/ R1} * VD D ] = R1 R2/ (R1 R2+ R2 R3+ R3 R1) * (V1-R2/ (R1+ R2) * VDD+ (R1 R2+ R2 R3+ R3 R1 ) / R1(R1+ R2) * VDD} = R1 R2/ (R1 R2+ R2 R3+ R3 R1) * (V1-R2/ (R1+ R2) * VDD} + R2/ (R1+ R2) * VDD = (R1 R2/ (R1+ R2)} / {R1 R2/ (R1+ R2) + R3} * {V1-R2/ (R1+ R2) * VDD} + R2/ (R1+ R2) * VDD (6) Where RFour = R1 R2/ (R1+ R2), VX = RFour/ (RFour+ R3) * (V1-R2/ (R1+ R2) * VDD} + R2/ (R1+ R2) * VDD ... (7) is obtained. Therefore, R2/ (R1+ R2) = V1/ VDDTo be R1, R2To
If you put it, from formula (7), VX= R2/ (R1+ R2) * VDD And VX
Is R3Becomes constant regardless of the value of
Output VXHas no temperature effect. one
One, V1Coefficient of RFour/ (RFour+ R3) Indicates the load cell temperature characteristics
R to kill3Select the to correct the load cell temperature.
come. Here, setting VP = R2 / (R1 + R2) * VDD, the formula (7)
Matches the expression (3).

【0014】また、無負荷時のロードセルの出力V1が、
増幅器のオフセット電圧やロードセルの特性などのため
温度の変動により一定値の変化があるときも、相殺する
ことが出来る。即ち、Δt℃の温度変動の時のV1の変動
をΔV1、R3の変動をΔR3、VXの変動をΔVXとすると
(7)式より ΔVX =R4/(R4+R3+ΔR3)*{V1+ΔV1-R2/(R1+R2)*VDD}-R4/(R4+R3)*{V1-R2/(R1 +R2)*VDD} =R4/(R4+R3+ΔR3)*ΔV1+{R4/(R4+R3+ΔR3)-R4/(R4+R3)}{V1-R2/(R1+R2 )*VDD} =R4/(R4+R3+ΔR3)*ΔV1+(-ΔR3 R4)/(R4+R3+ΔR3)(R4+R3)*{V1-R2/(R1 +R2)*VDD} =R4/(R4+R3+ΔR3)*[ΔV1-ΔR3/(R4+R3)*{V1-R2/(R1+R2)*VDD}] ここで、右辺の[ ]内の値が0で有ればΔVX =0となるか
ら ΔV1-ΔR3/(R4+R3)*{V1-R2/(R1+R2)*VDD} =0となるに
は、 R2/(R1+R2)*VDD-V1 =-ΔV1*(R4+R3)/ΔR3 ∴ R2/(R1+R2) =1/VDD*{V1-ΔV1*(R4+R3)/ΔR3} を満足するR1、R2を選ぶことで目的が達せられる。 ただし、R4 =R1 R2/(R1+R2)であるから (R1+R2)R4 =R1 R2 ∴ R1 R2-R1 R4 =R2 R4 ∴ R1 =R2 R4/(R2-R4) を満足しなければな
らない。 図5においても同様に温度の変動によって一定値の変化
がある場合、その値を相殺できる値が存在することは明
白である。また、正負電源を持つ回路(図7)の場合
も、無負荷時の出力電圧V0=Vp となるようにVpを選ぶこ
とで、同様に解決できることは明白である。
The output V 1 of the load cell at no load is
Even when there is a change in a constant value due to a temperature change due to the offset voltage of the amplifier, the characteristics of the load cell, etc., it can be canceled. That is, the variation of V 1 of the time of temperature variation in Delta] t ° C. [Delta] V 1, the variation of R 3 to the variation of [Delta] R 3, V X and [Delta] V X (7) from equation ΔV X = R 4 / (R 4 + R 3 + ΔR 3 ) * (V 1 + ΔV 1 -R 2 / (R 1 + R 2 ) * V DD } -R 4 / (R 4 + R 3 ) * {V 1 -R 2 / (R 1 + R 2 ) * V DD } = R 4 / (R 4 + R 3 + ΔR 3 ) * ΔV 1 + (R 4 / (R 4 + R 3 + ΔR 3 ) -R 4 / (R 4 + R 3 )} {V 1 -R 2 / (R 1 + R 2 ) * V DD } = R 4 / (R 4 + R 3 + ΔR 3 ) * ΔV 1 + (-ΔR 3 R 4 ) / (R 4 + R 3 + ΔR 3 ) (R 4 + R 3 ) * {V 1 -R 2 / (R 1 + R 2 ) * V DD } = R 4 / (R 4 + R 3 + ΔR 3 ) * [ΔV 1 -ΔR 3 / (R 4 + R 3 ) * {V 1 -R 2 / (R 1 + R 2 ) * V DD }] where ΔV X = if the value in [] on the right side is 0 Since it is 0, ΔV 1 -ΔR 3 / (R 4 + R 3 ) * {V 1 -R 2 / (R 1 + R 2 ) * V DD } = 0, R 2 / (R 1 + R 2 ) * V DD -V 1 = -ΔV 1 * (R 4 + R 3 ) / ΔR 3 ∴ R 2 / (R 1 + R 2 ) = 1 / V DD * {V 1 -ΔV 1 * (R 4 + The objective can be achieved by selecting R 1 and R 2 that satisfy R 3 ) / ΔR 3 }. However, since R 4 = R 1 R 2 / (R 1 + R 2 ), (R 1 + R 2 ) R 4 = R 1 R 2 ∴ R 1 R 2 -R 1 R 4 = R 2 R 4 ∴ R 1 = R 2 R 4 / (R 2 -R 4 ) must be satisfied. Also in FIG. 5, when there is a constant change due to temperature fluctuation, it is clear that there is a value that can cancel the change. Also, in the case of a circuit having positive and negative power supplies (FIG. 7), it is apparent that the same problem can be solved by selecting V p so that the output voltage V 0 = V p when there is no load.

【0015】[0015]

【発明の効果】本発明よれば単電源使用のロードセル式
重量計の温度特性の補正が、無負荷時の指示値の変化が
無い温度特性の補正となり、さらに、無負荷時のロード
セルの出力V1が、増幅器のオフセット電圧やロードセル
の特性などのため温度の変動により一定値の変化がある
ときも、相殺することが出来る。
According to the present invention, the temperature characteristic of a load cell type weighing machine using a single power source is corrected to be the temperature characteristic with no change in the indicated value when there is no load, and the output V of the load cell when there is no load. 1 can be offset even when there is a constant change due to temperature fluctuations due to the offset voltage of the amplifier and the characteristics of the load cell.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の要部を詳細に示したブロック
図。
FIG. 1 is a block diagram showing details of essential parts of an embodiment of the present invention.

【図2】本発明の他の実施例の要部を詳細に示したブロ
ック図。
FIG. 2 is a block diagram showing details of essential parts of another embodiment of the present invention.

【図3】従来の実施例の説明に用する回路図FIG. 3 is a circuit diagram used for explaining a conventional embodiment.

【図4】正負電源における従来例FIG. 4 Conventional example for positive and negative power supplies

【図5】本発明の実施例の説明に用する回路図FIG. 5 is a circuit diagram used to describe an embodiment of the present invention.

【図6】本発明の他の実施例の説明に用する回路図FIG. 6 is a circuit diagram used to explain another embodiment of the present invention.

【図7】正負電源における本発明の実施例FIG. 7: Embodiment of the present invention in positive and negative power supplies

【符号の説明】[Explanation of symbols]

R1、R2、R4 通常の抵抗 R3、R3' 感温抵抗 RG1、RG2、RG3、RG4 ストレンゲーヂ V1 増幅されたロードセル出力 VP 第3の電圧 VX 温度補正され、A/D変換器に入力されるロード
セル出力 VSS 基準電圧 VDD 電源電圧 VG+ 増幅器の入力端子電圧
R 1, R 2, R 4 normal resistor R 3, R 3 'temperature sensing resistor R G1, R G2, is R G3, R G4 Sutorengedji V 1 amplified load cell output V P 3 was voltage V X Temperature correction , Load cell output input to A / D converter V SS Reference voltage V DD Power supply voltage V G + Amplifier input terminal voltage

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ロードセルに貼付された歪みゲージの出
力を増幅器で増幅した電圧V1と、電源電圧VDD及びVSS
は異なる第3の電圧VPとを感温抵抗R3と、通常の抵抗R4
とで分割した電圧VXをA/D変換器に接続することを特
徴とする単電源を使用したロードセル式重量計の温度特
性の補正方法。
1. A voltage V 1 obtained by amplifying the output of a strain gauge attached to a load cell with an amplifier, and a third voltage V P different from the power supply voltages V DD and V SS and a temperature-sensitive resistor R 3 , Resistance of R 4
A method for correcting temperature characteristics of a load cell type weighing scale using a single power source, characterized in that a voltage V X divided by and is connected to an A / D converter.
【請求項2】 ロードセルに貼付された歪みゲージの出
力を増幅器で増幅した電圧V1を感温抵抗R3を介して、R1
*R2/(R1+R2)が請求項1に記載のR4 と同一の値であるR1
とR2とでVDDとVSSを分割した出力VXをA/D変換器に接
続することを特徴とする単電源を使用したロー ドセル
式重量計の温度特性の補正方法。
2. A voltage V 1 obtained by amplifying the output of a strain gauge attached to a load cell with an amplifier is passed through a temperature sensitive resistor R 3 to R 1
* R 2 / (R 1 + R 2 ) is the same value as R 4 according to claim 1
A method for correcting the temperature characteristics of a load cell type weighing scale using a single power supply, characterized in that the output V X obtained by dividing V DD and V SS by R 2 and R 2 is connected to an A / D converter.
JP33039794A 1994-12-07 1994-12-07 Load cell type weighing equipment employing single electric power source and correcting method based on temperature characteristic Pending JPH08159884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33039794A JPH08159884A (en) 1994-12-07 1994-12-07 Load cell type weighing equipment employing single electric power source and correcting method based on temperature characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33039794A JPH08159884A (en) 1994-12-07 1994-12-07 Load cell type weighing equipment employing single electric power source and correcting method based on temperature characteristic

Publications (1)

Publication Number Publication Date
JPH08159884A true JPH08159884A (en) 1996-06-21

Family

ID=18232151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33039794A Pending JPH08159884A (en) 1994-12-07 1994-12-07 Load cell type weighing equipment employing single electric power source and correcting method based on temperature characteristic

Country Status (1)

Country Link
JP (1) JPH08159884A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218809A (en) * 2006-02-17 2007-08-30 Shimadzu Corp Material testing machine
KR100904225B1 (en) * 2007-06-05 2009-06-25 (주)바이텍코리아 Apparatus for measuring water level

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218809A (en) * 2006-02-17 2007-08-30 Shimadzu Corp Material testing machine
JP4697433B2 (en) * 2006-02-17 2011-06-08 株式会社島津製作所 Material testing machine
KR100904225B1 (en) * 2007-06-05 2009-06-25 (주)바이텍코리아 Apparatus for measuring water level

Similar Documents

Publication Publication Date Title
US4337665A (en) Semiconductor pressure detector apparatus with zero-point temperature compensation
US4480478A (en) Pressure sensor employing semiconductor strain gauge
JP3399953B2 (en) Pressure sensor
US5460050A (en) Semiconductor strain sensor with Wheatstone bridge drive voltage compensation circuit
JP2928526B2 (en) POWER SUPPLY CIRCUIT AND BRIDGE TYPE MEASUREMENT OUTPUT COMPENSATION CIRCUIT COMPRISING THE CIRCUIT
JPH06174536A (en) Measuring apparatus
JPS6142876B2 (en)
JPH0777266B2 (en) Semiconductor strain detector
WO1988006719A1 (en) Transducer signal conditioner
US6316990B1 (en) Constant current supply circuit
US6107861A (en) Circuit for self compensation of silicon strain gauge pressure transmitters
JPH08159884A (en) Load cell type weighing equipment employing single electric power source and correcting method based on temperature characteristic
JP3352006B2 (en) Sensor temperature compensation circuit
JPS6343697B2 (en)
JPS6255629B2 (en)
US4490686A (en) Differential amplifier with common mode rejection means
JPH1096675A (en) Circuit and method for temperature compensation
JPH06294664A (en) Nonlinear circuit
KR19980084452A (en) Temperature compensation circuit of pressure sensor
JP2948958B2 (en) Transducer circuit
KR830001352B1 (en) Semiconductor pressure detector with zero temperature compensation
JP2610736B2 (en) Amplification compensation circuit of semiconductor pressure sensor
JPH0531729B2 (en)
JP2940283B2 (en) Offset temperature drift compensation method for semiconductor strain gauge type sensor
RU2165602C2 (en) Semiconductor pressure transducer

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040507

Free format text: JAPANESE INTERMEDIATE CODE: A02