JPH05110078A - Field effect transistor and manufacture thereof - Google Patents

Field effect transistor and manufacture thereof

Info

Publication number
JPH05110078A
JPH05110078A JP26761091A JP26761091A JPH05110078A JP H05110078 A JPH05110078 A JP H05110078A JP 26761091 A JP26761091 A JP 26761091A JP 26761091 A JP26761091 A JP 26761091A JP H05110078 A JPH05110078 A JP H05110078A
Authority
JP
Japan
Prior art keywords
region
conductivity type
gate electrode
effect transistor
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP26761091A
Other languages
Japanese (ja)
Inventor
Akira Uchiyama
章 内山
Toshiyuki Ochiai
利幸 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP26761091A priority Critical patent/JPH05110078A/en
Publication of JPH05110078A publication Critical patent/JPH05110078A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To form a field effect transistor which enables a P-N junction to be lessened in area restraining it from increasing in contact resistance by a method wherein a second conductivity type region is continuously extended from one side of a ridge to the other side to be provided onto the ridge. CONSTITUTION:A first conductivity type base 30, an insulating film 36 provided with a window 34 which exposes the element forming regions 32 of the base 30, a gate oxide film 38 and a gate electrode 40 located nearly at the center of the regions 32, a drain region 42 provided to the adjacent element forming region 32, and a source region 44 provided to the other element forming region 32 are provided. The drain region 42 and the source region 44 are set to be of second conductivity type regions, ridges 46 and troughs 48 are alternately provided in parallel to both the element forming regions 32 or either of them, and a second conductivity type region is continuously provided extending from the side of the ridge 46 to the other side of it in constitution. Therefore, a P-N junction is lessened in area so as to be decreased in junction capacitance, so that a field effect transistor of this design can be improved in operation speed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は電界効果トランジスタ
の構造に関する。
This invention relates to the structure of field effect transistors.

【0002】[0002]

【従来の技術】現在、超LSI(Very Large
Scale Integra−tion)を構成する
基本素子として、MOS構造の電界効果トランジスタ
(Metal Oxide Semiconducto
r Field Ef−fect Transisto
r:MOSFETと称す)が広く用いられている。以
下、図面を参照し、従来のMOSFETの構造につき概
略的に説明する。尚、MOSFETの製造方法及び素子
構造の詳細に関しては、例えば文献1:超高速MOSデ
バイス 培風館 昭和61年2月10日 p117〜1
25を参照されたい。
2. Description of the Related Art Currently, VLSI (Very Large)
As a basic element that constitutes the Scale Integration, a field effect transistor (Metal Oxide Semiconductor) having a MOS structure is used.
r Field Ef-fect Transisto
r: referred to as MOSFET) is widely used. Hereinafter, a structure of a conventional MOSFET will be schematically described with reference to the drawings. For details of the MOSFET manufacturing method and the element structure, see, for example, Document 1: Ultra-high-speed MOS device, Baifukan, February 10, 1986, p117-1.
See 25.

【0003】図11(A)及び(B)は従来のMOSF
ETの要部構成を概略的に示す断面図及び平面図であ
り、図11(A)は図11(B)のA−A線に沿って取
った断面を示す。図においては超LSIが備えるMOS
FET1素子に着目して、その要部構成を示した。
11A and 11B show a conventional MOSF.
11A and 11B are a cross-sectional view and a plan view schematically showing the configuration of a main part of the ET, and FIG. 11A shows a cross section taken along line AA of FIG. 11B. In the figure, the MOS included in the VLSI
Focusing on the FET1 element, the configuration of the main part thereof is shown.

【0004】図11(A)〜(B)にも示すように、F
ET10は基板12とゲート酸化膜16及びゲート電極
18と、ソース領域20及びドレイン領域22とを備え
る。基板12上には、超LSIが備えるFET10とこ
れ以外の素子とを電気的に分離するためのフィールド酸
化膜24を設け、フィールド酸化膜24に基板12の素
子形成領域14を露出する窓26を設ける。そして窓2
6を介し露出する素子形成領域14上に順次にゲート酸
化膜16及びゲート電極18を設ける。またソース領域
20及びドレイン領域22をゲート電極18の一方及び
他方の側部に隣接させて素子形成領域14に設ける。図
中、ソース領域20及びドレイン領域22に点を付して
示した。図示せずも、ゲート電極18、ソース領域20
及びドレイン領域22上には、それぞれソース領域20
及びドレイン領域22を露出するコンタクト穴を有する
中間絶縁膜を設ける。この絶縁膜上にコンタクト穴を介
しソース領域20及びドレイン領域22と接続する配線
電極を設ける。
As shown in FIGS. 11A and 11B, F
The ET 10 includes a substrate 12, a gate oxide film 16, a gate electrode 18, a source region 20 and a drain region 22. A field oxide film 24 is provided on the substrate 12 for electrically separating the FET 10 included in the VLSI and the other elements, and a window 26 exposing the element formation region 14 of the substrate 12 is formed in the field oxide film 24. Set up. And window 2
A gate oxide film 16 and a gate electrode 18 are sequentially provided on the element forming region 14 exposed through the gate electrode 6. Further, the source region 20 and the drain region 22 are provided in the element formation region 14 so as to be adjacent to one and the other side portions of the gate electrode 18. In the figure, the source region 20 and the drain region 22 are indicated by dots. Although not shown, the gate electrode 18 and the source region 20
The source region 20 is provided on the drain region 22 and the drain region 22, respectively.
And an intermediate insulating film having a contact hole exposing the drain region 22 is provided. A wiring electrode connected to the source region 20 and the drain region 22 through a contact hole is provided on this insulating film.

【0005】FET10をnチャネルMOSFETとす
る場合には、基板12にp型基板を用いこの基板12に
n型不純物を添加して形成したn+ 層をソース領域20
及びドレイン領域22とする。またFET12をpチャ
ネルMOSFETとする場合には、基板12にn型基板
を用いこの基板12にp型不純物を添加して形成したp
+ 層をソース領域20及びドレイン領域22とする。こ
れら基板12とソース領域20及びドレイン領域22と
の間のpn接合による接合容量は、FET10の動作速
度を遅延させる要因となるものであるので、FET10
の動作速度を遅延させないためにはソース領域20及び
又はドレイン領域22の接合容量を減少させればよい。
When the FET 10 is an n-channel MOSFET, a p-type substrate is used as the substrate 12 and an n + layer formed by adding an n-type impurity to the substrate 12 is used as the source region 20.
And the drain region 22. When the FET 12 is a p-channel MOSFET, an n-type substrate is used as the substrate 12 and a p-type impurity is added to the substrate 12 to form a p-type MOSFET.
The + layer is the source region 20 and the drain region 22. The junction capacitance due to the pn junction between the substrate 12 and the source region 20 and the drain region 22 is a factor that delays the operating speed of the FET 10, and therefore the FET 10
The junction capacitance of the source region 20 and / or the drain region 22 may be reduced in order not to delay the operation speed of the above.

【0006】ソース領域20又はドレイン領域22の接
合容量の値は、ソース領域20又はドレイン領域22に
おけるpn接合の単位面積当たりの容量値をX・Y倍し
た値となる。ここで、図11(B)にも示すように、X
は平面的に見た場合の、ソース領域20又はドレイン領
域22のゲート電極18の幅方向における長さ、及びY
は平面的に見た場合の、ソース領域20又はドレイン領
域22のゲート電極18の長さ方向における長さを表
す。
The value of the junction capacitance of the source region 20 or the drain region 22 is a value obtained by multiplying the capacitance value per unit area of the pn junction in the source region 20 or the drain region 22 by X · Y. Here, as shown in FIG. 11B, X
Is the length of the source region 20 or the drain region 22 in the width direction of the gate electrode 18 in a plan view, and Y
Represents the length of the source region 20 or the drain region 22 in the length direction of the gate electrode 18 when viewed in a plan view.

【0007】[0007]

【発明が解決しようとする課題】しかしながら従来のF
ETでは、ソース及びドレイン領域における単位面積当
たりの接合容量はソース及びドレイン領域から下方の基
板中へ延びる空乏層の延び量で決定され、従って単位面
積当たりの接合容量を減少させることには限界がある。
また従来のFETでは、長さX及び又はYを減少させれ
ばpn接合の面積を減少できるが、長さX及び又はYを
減少させるとソース及びドレイン領域と対応する配線電
極との間の接続面積が減少し、その結果、これら領域及
び電極間のコンタクト抵抗が増加する。
However, the conventional F
In ET, the junction capacitance per unit area in the source and drain regions is determined by the amount of extension of the depletion layer extending from the source and drain regions into the underlying substrate, so there is a limit to reducing the junction capacitance per unit area. is there.
Further, in the conventional FET, the area of the pn junction can be reduced by reducing the length X and / or Y. However, by reducing the length X and / or Y, the connection between the source / drain region and the corresponding wiring electrode can be achieved. The area is reduced, resulting in an increase in contact resistance between these regions and the electrodes.

【0008】これがため従来のFETでは、動作速度の
遅延を減少させることには限界があった。
Therefore, the conventional FET has a limit in reducing the delay of the operating speed.

【0009】この発明の目的は、上述した従来の問題点
を解決し、コンタクト抵抗の増加を抑止しつつpn接合
の面積を減少させることのできる構造の電界効果トラン
ジスタ及びその製造方法を提供することにある。
An object of the present invention is to solve the above-mentioned conventional problems, and to provide a field effect transistor having a structure capable of reducing the area of a pn junction while suppressing an increase in contact resistance, and a manufacturing method thereof. It is in.

【0010】[0010]

【課題を解決するための手段】この目的の達成を図るた
め、この出願の第一発明の電界効果トランジスタは、第
一導電型の下地と、下地上に設けられ下地の素子形成領
域を露出する窓を有する絶縁膜と、素子形成領域のほぼ
中央部に順次に設けられたゲート酸化膜及びゲート電極
と、ゲート電極の一方の側部に隣接する一方の素子形成
領域に設けたドレイン領域と、ゲート電極の他方の側部
に隣接する他方の素子形成領域に設けたソース領域とを
備え、ドレイン領域及びソース領域を第一導電型とは反
対導電型の第二導電型領域とし、一方及び他方の素子形
成領域の双方又はいずれか一方に山部及び谷部を交互に
配置して複数の山部及び複数の谷部を並列させて設け、
第二導電型領域を山部の一方の側部から他方の側部まで
連続させて山部に設けたことを特徴とする。
In order to achieve this object, the field effect transistor of the first invention of this application exposes a first conductivity type underlayer and an element formation region of the underlayer provided on the underlayer. An insulating film having a window, a gate oxide film and a gate electrode sequentially provided in substantially the center of the element formation region, and a drain region provided in one element formation region adjacent to one side of the gate electrode, A source region provided in the other element formation region adjacent to the other side of the gate electrode, and the drain region and the source region are regions of the second conductivity type opposite to the first conductivity type; A plurality of peaks and a plurality of troughs are provided in parallel by alternately disposing peaks and troughs on both or either of the element forming regions of
It is characterized in that the second conductivity type region is continuously provided from one side portion of the mountain portion to the other side portion of the mountain portion.

【0011】さらに第二発明の電界効果トランジスタの
製造方法は、第一発明の電界効果トランジスタにおいて
谷部を第一導電型の下地とする場合の電界効果トランジ
スタを製造するための方法であって、この場合に、一方
及び他方の素子形成領域の双方又はいずれか一方の下地
にエッチングにより山部及び谷部を形成し、次に絶縁膜
を山部を露出させるように谷部上に形成し、次に第一導
電型とは反対導電型の第二導電型不純物をイオン注入法
により絶縁膜の上面部から谷部に至らない深さで絶縁膜
に注入するようにしながら山部に対して複数の異なる入
射方向から注入することを特徴とする。
Further, a method of manufacturing a field effect transistor according to the second invention is a method for manufacturing a field effect transistor in which the valley portion of the field effect transistor of the first invention is an underlayer of the first conductivity type. In this case, a peak and a valley are formed by etching one or the other of the element forming regions or one of the bases, and then an insulating film is formed on the valley so that the peak is exposed, Next, a second conductivity type impurity having a conductivity type opposite to the first conductivity type is implanted into the insulating film by an ion implantation method at a depth that does not reach the valley portion from the upper surface portion of the insulating film, and a plurality of impurities are added to the mountain portion. Is injected from different incident directions.

【0012】[0012]

【作用】第一発明によれば、ドレイン領域又はソース領
域と成るべき第二導電型領域を山部の一方の側部から他
方の側部まで連続させて山部に設けるので、山部におい
ては、pn接合は山部の底部の側で第二導電型領域と第
一導電型の下地との間で形成されるのみである。従って
第二導電型領域の表面積を同じとして従来と比較すれ
ば、pn接合の面積を減少させることができる。しかも
山部に設ける第二導電型領域の面積を増加させるにした
がって、pn接合の面積を減少させることができる。
According to the first aspect of the present invention, the second conductivity type region to be the drain region or the source region is continuously provided from one side portion to the other side portion of the mountain portion in the mountain portion. , The pn junction is only formed between the second conductivity type region and the first conductivity type base on the bottom side of the mountain portion. Therefore, if the surface area of the second conductivity type region is the same and compared with the conventional case, the area of the pn junction can be reduced. Moreover, the area of the pn junction can be reduced as the area of the second conductivity type region provided in the mountain portion is increased.

【0013】さらに第二発明によれば、絶縁膜を山部を
露出するように谷部に形成し、次に第二導電型不純物
を、絶縁膜の上面部から谷部に至らない深さで絶縁膜に
注入するようにしながら山部に対して複数の異なる入射
方向から注入する。従って絶縁膜により谷部に第二導電
型不純物が注入されるのを阻止しつつ、山部の一方の側
部から他方の側部まで連続させて第二導電型領域を形成
することができる。
Further, according to the second invention, the insulating film is formed in the valley so as to expose the peak, and the second conductivity type impurity is then formed at a depth not reaching the valley from the upper surface of the insulating film. While being injected into the insulating film, it is injected into the mountain portion from a plurality of different incident directions. Therefore, the second conductivity type region can be formed continuously from one side of the peak to the other side while preventing the second conductivity type impurities from being injected into the valley by the insulating film.

【0014】[0014]

【実施例】以下、図面を参照し、発明の実施例につき説
明する。尚、図面は発明が理解できる程度に概略的に示
してあるにすぎず、従ってこの発明を図示例に限定する
ものではない。
Embodiments of the present invention will be described below with reference to the drawings. It should be noted that the drawings are merely schematic representations so that the invention can be understood, and therefore the present invention is not limited to the illustrated examples.

【0015】図1及び図2はこの発明の実施例の要部構
成を概略的に示す平面図及び断面図であり、図2は図1
のII−II線に沿って取った断面を示す。この実施例のF
ET28はLSIに搭載されるMOSFETであり、こ
れら図においてはその要部構成を示した。
1 and 2 are a plan view and a cross-sectional view schematically showing the structure of a main part of an embodiment of the present invention, and FIG.
A cross section taken along line II-II of FIG. F in this example
The ET 28 is a MOSFET mounted on an LSI, and the configuration of the main part is shown in these figures.

【0016】この実施例のFET28は下地30と、下
地30上に設けられ下地30の素子形成領域32を露出
する窓34を有する絶縁膜36と、素子形成領域32の
ほぼ中央部に位置させて素子形成領域32上に順次に設
けられたゲート酸化膜38及びゲート電極40と、ゲー
ト電極40の一方の側部に隣接する一方の素子形成領域
pに設けたドレイン領域42と、ゲート電極40の他方
の側部に隣接する他方の素子形成領域qに設けたソース
領域44と、さらに一方及び他方の素子形成領域p及び
qの双方に設けた山部46及び谷部48とを備える。
尚、図1及び図2において、ドレイン領域42及びソー
ス領域44に点を付して示すと共に、ドレイン領域42
及びソース領域44と下地30との間に形成されるpn
接合の部分を点線で示した。
In the FET 28 of this embodiment, an underlayer 30, an insulating film 36 provided on the underlayer 30 and having a window 34 for exposing an element forming region 32 of the underlayer 30, and a FET 28 are located substantially in the center of the element forming region 32. The gate oxide film 38 and the gate electrode 40 sequentially provided on the element forming region 32, the drain region 42 provided in one element forming region p adjacent to one side of the gate electrode 40, and the gate electrode 40 A source region 44 provided in the other element forming region q adjacent to the other side portion, and a peak portion 46 and a valley portion 48 provided in both the one and the other element forming regions p and q are provided.
1 and 2, the drain region 42 and the source region 44 are indicated by dots, and the drain region 42
And pn formed between the source region 44 and the base 30
The joint portion is shown by a dotted line.

【0017】下地30は第一導電型の半導体材料から成
る下地例えばp型Si基板であり、この下地30上に絶
縁膜36を設ける。絶縁膜36は例えばフィールド酸化
膜であり、LSIに搭載されるFET28とこれ以外の
電気回路素子とを分離するためのものである。この絶縁
膜36の窓34を介し下地30の素子形成領域32を露
出させる。そして素子形成領域32のほぼ中央部にゲー
ト絶縁膜38及びゲート電極40を設け、一方及び他方
の素子形成領域p及びqをゲート電極40を挟むように
ゲート電極40に隣接させて配置する。
The base 30 is a base made of a semiconductor material of the first conductivity type, for example, a p-type Si substrate, and an insulating film 36 is provided on the base 30. The insulating film 36 is, for example, a field oxide film, and is used to separate the FET 28 mounted on the LSI from other electric circuit elements. The element forming region 32 of the base 30 is exposed through the window 34 of the insulating film 36. Then, the gate insulating film 38 and the gate electrode 40 are provided in substantially the center of the element forming region 32, and one and the other element forming regions p and q are arranged adjacent to the gate electrode 40 so as to sandwich the gate electrode 40.

【0018】また一方及び他方の素子形成領域p及びq
にはそれぞれ、山部46及び谷部48を交互に配置して
複数の山部46及び複数の谷部48を並列させて設け
る。山部46及び谷部48を、例えば、ゲート電極40
の長さ方向に平行に延在させかつゲート電極40と離間
させて設ける。
Further, one and the other element forming regions p and q
The plurality of peaks 46 and the plurality of valleys 48 are alternately arranged and the plurality of peaks 46 and the plurality of valleys 48 are arranged in parallel. The peak portion 46 and the valley portion 48 are formed, for example, in the gate electrode 40.
Are provided so as to extend parallel to the lengthwise direction of the gate electrode 40 and be spaced apart from the gate electrode 40.

【0019】ドレイン領域42及びソース領域44は第
一導電型とは反対導電型の第二導電型領域例えばn+
域であり、この第二導電型領域を山部46の一方の側部
から他方の側部まで連続させて山部46に設け、谷部4
8を第一導電型の下地30とする。従ってドレイン領域
42及びソース領域44はそれぞれ山部46を含むの
で、FETの素子規模の縮小とともにドレイン領域42
及びソース領域44の平面的に見た面積を縮小させたと
しても、山部46の配設個数及び深さ(或は高さ)を増
加させることにより、これら領域42及び44を対応す
る配線電極と接続した際にこれら領域42及び44と配
線電極との間の接触面積を増加させることができこの結
果これら領域及び電極の間のコンタクト抵抗が増えるの
を抑止できる。また第二導電型領域を山部46の一方の
側部から他方の側部まで連続させて設けるので、山部4
6においては、第二導電型領域と第一導電型の下地30
との間に形成されるpn接合は、山部46の下側部分の
みに存在し山部46のそれ以外の部分ではpn接合は存
在しない。従って第二導電型領域の表面積を同じとして
従来のFETと比較すれば、pn接合の面積が減少し従
ってpn接合による接合容量が減少する。しかも山部4
6の配設個数及び深さを増加させることにより山部46
に設けられる第二導電型領域の表面積が増加しこの増加
に伴ってpn接合の面積は減少する。またドレイン領域
42或はソース領域44としての第二導電型領域の全表
面積を一定に保つようにして考えた場合、山部46に設
ける第二導電型領域の表面積を増やすとともにドレイン
領域42或はソース領域44の平面的に見た面積は縮小
し従ってFETの素子規模をより縮小させることができ
る。
The drain region 42 and the source region 44 are second conductivity type regions of opposite conductivity type to the first conductivity type, for example, n + regions, and the second conductivity type regions are formed from one side of the peak portion 46 to the other. It is provided in the mountain part 46 continuously to the side part of the
8 is a first conductivity type base 30. Therefore, since the drain region 42 and the source region 44 each include the peak portion 46, the drain region 42 is reduced as the element size of the FET is reduced.
Even if the planar area of the source region 44 is reduced, by increasing the number and depth (or height) of the ridges 46, these regions 42 and 44 are made to correspond to the wiring electrodes. It is possible to increase the contact area between these regions 42 and 44 and the wiring electrode when they are connected to each other, and as a result, it is possible to suppress an increase in contact resistance between these regions and electrodes. Further, since the second conductivity type region is continuously provided from one side portion to the other side portion of the mountain portion 46, the mountain portion 4
6, the second conductivity type region and the first conductivity type base 30
The pn junction formed between and is present only in the lower portion of the peak portion 46, and there is no pn junction in the other portions of the peak portion 46. Therefore, when the surface area of the second conductivity type region is made the same and compared with the conventional FET, the area of the pn junction is reduced and therefore the junction capacitance due to the pn junction is reduced. Moreover, Yamabe 4
By increasing the number of 6 and the depth,
The surface area of the second-conductivity-type region provided in is increased, and the area of the pn junction is reduced with this increase. When the total surface area of the second conductivity type region as the drain region 42 or the source region 44 is kept constant, the surface area of the second conductivity type region provided in the peak portion 46 is increased and the drain region 42 or the drain region 42 or The area of the source region 44 in plan view is reduced, so that the device scale of the FET can be further reduced.

【0020】さらにこの実施例では、一方の素子形成領
域pの山部46及び山部46からゲート電極40までの
間の領域p1に第二導電型領域を設けこれら第二導電型
領域をドレイン領域42とし、一方の素子形成領域pの
残りの領域p2を第一導電型の下地30とする。この発
明の実施に当たっては、一方の素子形成領域pの谷部4
8や領域p2の谷部48を除く部分にも第二導電型領域
を形成するようにしてもよいが、pn接合の面積をより
効果的に減少させるためには、谷部48、さらには領域
p2の谷部48を除く部分を第一導電型の下地30とす
る方が有利である。同様にしてpn接合の面積をより効
果的に減少させるため、他方の素子形成領域qの山部4
6及び山部46からゲート電極40までの間の領域q1
に第二導電型領域を設けこれら第二導電型領域をソース
領域44とし、他方の素子形成領域qの残りの領域q2
を第一導電型の下地30とする。
Further, in this embodiment, a second conductivity type region is provided in the peak portion 46 of one element forming region p and a region p1 between the peak portion 46 and the gate electrode 40, and these second conductivity type regions are drain regions. 42, and the remaining region p2 of the one element formation region p is used as the first conductivity type base 30. In carrying out the present invention, the valley portion 4 of one element forming region p is
8 and the second conductivity type region may be formed in a portion of the region p2 other than the valley portion 48, but in order to more effectively reduce the area of the pn junction, the valley portion 48, and further the region. It is more advantageous to use the portion of p2 other than the valley portion 48 as the first conductivity type base 30. Similarly, in order to reduce the area of the pn junction more effectively, the peak portion 4 of the other element forming region q is formed.
6 and a region q1 between the mountain portion 46 and the gate electrode 40
Second conductivity type regions are provided as the source regions 44, and the remaining region q2 of the other element forming region q is provided.
Is the first conductivity type base 30.

【0021】またこの実施例では、後述するようにイオ
ン注入法により下地30に不純物を添加して第二導電型
領域を形成するのでイオン注入の際に不純物を谷部48
に添加しないようにしながら山部46に添加するため、
また谷部48は第一導電型の下地30なのでこの谷部4
8とドレイン領域42及びソース領域44の配線金属と
を電気的に接触させないための二つの目的により、谷部
48上に絶縁膜50を設ける。谷部48に第二導電型領
域を形成する場合は、絶縁膜50は設けなくてよい。
Further, in this embodiment, as will be described later, impurities are added to the base 30 by the ion implantation method to form the second conductivity type region.
Because it is added to the mountain portion 46 while not adding to
Further, since the valley portion 48 is the first conductivity type base 30, the valley portion 4
An insulating film 50 is provided on the valley portion 48 for the purpose of not electrically contacting the wiring metal of the drain region 42 and the source region 44 with each other. When forming the second conductivity type region in the valley portion 48, the insulating film 50 may not be provided.

【0022】次に第二発明の実施例につき一例を挙げて
説明する。この実施例は上述したFET28の製造方法
の一例である。図3〜図10は第二発明の実施例の製造
工程の説明図である。図3、図5及び図6それぞれの
(A)と図10とはFETの製造途上において素子形成
領域及びその近傍部分に対応する領域の様子を概略的に
示す要部平面図、また図3、図5及び図6それぞれの
(B)と図4及び図7〜図9それぞれの(A)〜(B)
はFETの製造途上においてドレイン領域に対応する領
域の様子を、図3(A)のIII −III 線に沿って取った
断面に対応する断面で概略的に示す断面図であって図3
(A)のIII −III 線に沿ってある。しかも図3(B)
は図3(A)と同一工程、図5(B)は図5(A)と同
一工程及び図6(B)は図6(A)と同一工程の様子を
示す。
Next, an example of the second invention will be described. This embodiment is an example of the method of manufacturing the FET 28 described above. 3 to 10 are explanatory views of the manufacturing process of the embodiment of the second invention. 3, 5 and 6 (A) and FIG. 10 are plan views of a main part schematically showing a state of an element formation region and a region corresponding to the vicinity thereof in the course of manufacturing the FET, and FIG. 5 and 6 (B) and FIGS. 4 and 7 to 9 (A) to (B), respectively.
3 is a cross-sectional view schematically showing a state of a region corresponding to a drain region in the process of manufacturing an FET, in a cross section corresponding to a cross section taken along line III-III in FIG.
It is along the line III-III in (A). Moreover, FIG. 3 (B)
5A shows the same step as FIG. 3A, FIG. 5B shows the same step as FIG. 5A, and FIG. 6B shows the same step as FIG. 6A.

【0023】この実施例のFET28を製造するに当た
り、下地30として第一導電型の下地例えばp型Si基
板を用意する。次いで図3(A)及び(B)にも示すよ
うに、下地30上にパッド酸化膜52を形成する。パッ
ド酸化膜52は、例えば熱酸化法により形成したSiO
2 膜であり、フィールド酸化膜36形成時の応力緩和を
目的として形成される。次いでパッド酸化膜52上に、
マスク形成用膜54を積層する。マスク形成用膜54は
酸化されにくい材料から成り、例えばCVD(Chem
ical Vapor Deposition)法によ
り形成したSi3 4 膜である。次いでマスク形成用膜
54上に、これのパターニングに用いるレジストパター
ン56を形成する。
In manufacturing the FET 28 of this embodiment, a base of the first conductivity type such as a p-type Si substrate is prepared as the base 30. Next, as shown in FIGS. 3A and 3B, a pad oxide film 52 is formed on the base 30. The pad oxide film 52 is, for example, SiO formed by a thermal oxidation method.
Two films, which are formed for the purpose of stress relaxation at the time of forming the field oxide film 36. Then, on the pad oxide film 52,
The mask forming film 54 is laminated. The mask forming film 54 is made of a material that is not easily oxidized, and is formed by, for example, CVD (Chem).
This is a Si 3 N 4 film formed by the ICP method. Then, a resist pattern 56 used for patterning the mask forming film 54 is formed on the mask forming film 54.

【0024】次に図4(A)にも示すように、レジスト
パターン56をマスクとしてマスク形成用膜54をパタ
ーニングし、パターニングしたマスク形成用膜54から
成るマスク58を得る。この際、パッド酸化膜52をパ
ターニングせずにマスク形成用膜54のみを選択的にパ
ターニングする。次いでチャネルストッパ用の不純物例
えばBイオンを素子形成領域32周辺の下地30に選択
的に添加する。図中、このイオンを添加した領域をばつ
印を付して概略的に示した。
Next, as shown in FIG. 4A, the mask forming film 54 is patterned using the resist pattern 56 as a mask to obtain a mask 58 made of the patterned mask forming film 54. At this time, only the mask forming film 54 is selectively patterned without patterning the pad oxide film 52. Then, impurities for channel stopper, for example, B ions are selectively added to the base 30 around the element forming region 32. In the figure, the region to which this ion is added is schematically indicated by a cross mark.

【0025】次に図4(B)にも示すように、レジスト
パターン56を除去し、然る後マスク58を用いて選択
的に下地30を酸化し下地30上に絶縁膜36を形成す
る。マスク58は酸化されにくいので下地30のマスク
58で覆われていない領域上に選択的に、絶縁膜36が
形成される。
Next, as shown in FIG. 4B, the resist pattern 56 is removed, and then the underlayer 30 is selectively oxidized by using a mask 58 to form an insulating film 36 on the underlayer 30. Since the mask 58 is not easily oxidized, the insulating film 36 is selectively formed on the region of the base 30 which is not covered with the mask 58.

【0026】次に図5(A)〜(B)にも示すように、
マスク58及びパッド酸化膜52を除去し、絶縁膜36
に窓34を形成する。窓34を介し素子形成領域32の
下地30を露出させる。
Next, as shown in FIGS. 5 (A) and 5 (B),
The mask 58 and the pad oxide film 52 are removed to remove the insulating film 36.
A window 34 is formed in the. The base 30 in the element formation region 32 is exposed through the window 34.

【0027】次に素子形成領域p及びqの双方に、エッ
チングにより、山部46及び谷部48を形成する。この
ため図6(A)〜(B)にも示すように、窓34を介し
露出する素子形成領域32上に山部46及び谷部48形
成用のマスク60を形成する。マスク60はゲート長さ
方向に延在するストライプ状の窓62を有する。複数の
窓62を一方の素子形成領域pとなるべき領域及び他方
の素子形成領域qとなるべき領域にそれぞれ配置し、素
子形成領域32の谷部48を形成すべき部分を窓62を
介し露出させ残りの部分をマスク60で覆う。然る後例
えば従来周知のドライエッチング法により、素子形成領
域32の谷部48を形成すべき部分を選択的にエッチン
グ除去してこの部分に溝64を形成し、例えば溝64の
形成により、山部46及び谷部48を形成する。山部4
6及び谷部48を形成した後、マスク60を除去する。
Next, peaks 46 and valleys 48 are formed in both the element formation regions p and q by etching. Therefore, as shown in FIGS. 6A and 6B, a mask 60 for forming the peaks 46 and the valleys 48 is formed on the element forming region 32 exposed through the window 34. The mask 60 has a stripe-shaped window 62 extending in the gate length direction. A plurality of windows 62 are arranged in a region to be one element forming region p and a region to be the other element forming region q, respectively, and a portion of the element forming region 32 where the valley portion 48 is to be formed is exposed through the window 62. Then, the remaining portion is covered with the mask 60. Thereafter, for example, by a conventionally known dry etching method, a portion where the valley portion 48 of the element forming region 32 is to be formed is selectively removed by etching to form a groove 64 in this portion. The portion 46 and the valley portion 48 are formed. Yamabe 4
After forming 6 and the valley portion 48, the mask 60 is removed.

【0028】次に谷部48への不純物添加を阻止するた
めに絶縁膜50を、例えばエッチバック法により、山部
46を露出させるように谷部48上に形成する。このた
め、図7(A)にも示すように、絶縁膜50形成用の酸
化膜66を例えばCVD法により溝64内に堆積させ、
然る後、酸化膜66の溝64に対応する部分に生じた凹
部にレジスト68を埋め込みこの凹部の部分を平坦にす
る。好ましくは、酸化膜66及びレジスト68をエッチ
ングレートがほぼ等しくなる材料から形成し、かつ酸化
膜66を下地30及び絶縁膜36のエッチングレートよ
りも速いエッチングレートを有する材料から形成する。
次いで図7(B)にも示すように、例えば反応性イオン
エッチングにより、所定膜厚の酸化膜66を谷部48上
に残存させ残りの酸化膜66及びレジスト68をエッチ
ング除去するように、酸化膜66及びレジスト68をエ
ッチングし、谷部48上に残存させた酸化膜66から成
る絶縁膜50を得る。
Next, an insulating film 50 is formed on the valley 48 so as to expose the peak 46 by, for example, an etch back method in order to prevent the valley 48 from being doped with impurities. Therefore, as shown in FIG. 7A, an oxide film 66 for forming the insulating film 50 is deposited in the trench 64 by, for example, the CVD method,
After that, a resist 68 is embedded in a recess formed in a portion of the oxide film 66 corresponding to the groove 64, and the recess is flattened. Preferably, the oxide film 66 and the resist 68 are made of a material having an etching rate substantially equal to each other, and the oxide film 66 is made of a material having an etching rate faster than the etching rates of the base 30 and the insulating film 36.
Next, as shown in FIG. 7B, the oxide film 66 having a predetermined film thickness is left on the valley portion 48 by, for example, reactive ion etching, and the remaining oxide film 66 and the resist 68 are removed by etching. The film 66 and the resist 68 are etched to obtain an insulating film 50 made of the oxide film 66 left on the valley 48.

【0029】次に図8(A)にも示すように、素子形成
領域32上にゲート酸化膜形成用の酸化膜70を形成す
る。酸化膜70は例えば、素子形成領域32を900℃
程度に加熱して熱酸化することにより形成した膜厚3〜
20nm程度のSiO2 膜である。次いで図示せずも、
素子形成領域32に対ししきい値電圧を制御するための
不純物を添加する。
Next, as shown in FIG. 8A, an oxide film 70 for forming a gate oxide film is formed on the element forming region 32. The oxide film 70 is formed, for example, in the element formation region 32 at 900 ° C.
Film thickness of 3 to 3
It is a SiO 2 film of about 20 nm. Then, although not shown,
Impurities for controlling the threshold voltage are added to the element forming region 32.

【0030】次に図8(B)にも示すように、酸化膜7
0上にゲート電極形成用の膜例えばポリシリコン膜72
を積層し、然る後ポリシリコン膜72上にレジストマス
ク74を形成する。マスク74はポリシリコン膜72の
ゲート電極形成部分を覆い残りの部分を露出する。
Next, as shown in FIG. 8B, the oxide film 7
0 for forming a gate electrode, for example, a polysilicon film 72
And then a resist mask 74 is formed on the polysilicon film 72. The mask 74 covers the gate electrode formation portion of the polysilicon film 72 and exposes the remaining portion.

【0031】次に図9にも示すように、ポリシリコン膜
72のゲート電極形成部分を残存させ残りの部分をエッ
チング除去して、残存するポリシリコン膜72から成る
ゲート電極40を得ると共に絶縁膜36を露出させる。
次いで酸化膜70のゲート電極直下の部分を残存させ残
りの部分をエッチング除去して、残存する酸化膜70か
ら成るゲート酸化膜38を得ると共に素子形成領域3
2、山部46及び谷部48を露出させる。
Next, as also shown in FIG. 9, the gate electrode forming portion of the polysilicon film 72 is left and the remaining portion is removed by etching to obtain the gate electrode 40 made of the remaining polysilicon film 72 and the insulating film. Expose 36.
Next, the portion of the oxide film 70 immediately below the gate electrode is left and the remaining portion is removed by etching to obtain the gate oxide film 38 of the remaining oxide film 70 and the element formation region 3
2. The peaks 46 and the valleys 48 are exposed.

【0032】次に第一導電型とは反対導電型の第二導電
型不純物を、イオン注入法により、絶縁膜50の上面部
から谷部48に至らない深さで絶縁膜50に注入するよ
うにしながら山部46に対して複数の異なる入射方向か
ら注入する。このため図10にも示すように、マスク7
4を除去し、然る後、窓76を有するレジストマスク7
8を素子形成領域32、ゲート電極40及び絶縁膜36
上に形成する。このマスク78は、素子形成領域32の
ドレイン領域42を形成すべき部分及びソース領域44
を形成すべき部分とこれら部分の間のゲート電極40部
分を窓76を介し露出し、残りの部分を覆う。次いで、
窓76を介し露出する素子形成領域32に第二導電型不
純物例えばPイオン或はAsイオンを添加し、図1及び
図2にも示すようにFET28の基本構造を完成する。
第二導電型不純物を添加する際には例えば、ゲート電極
40の一部及びマスク78をマスクとし、イオン注入法
により不純物を添加する。しかも第二導電型領域を山部
46の一方の側部から他方の側部まで連続させて山部4
6に形成するため、下地30の主平面(この例では、S
i基板の基板面)に対して垂直な方向からのみならず主
平面に対して斜めの複数の方向から、山部46の側壁部
分へ、第二導電型不純物を入射させるのがよい。尚、例
えば図2に示すように、第二導電型不純物を山部46の
上面部から谷部48に至らない深さhまでの間の領域に
導入するように、第二導電型不純物の導入深さを調整す
ればよい。
Next, a second conductivity type impurity having a conductivity type opposite to the first conductivity type is implanted into the insulating film 50 by an ion implantation method from the upper surface portion of the insulating film 50 to a depth not reaching the valley portion 48. However, the peak portion 46 is injected from a plurality of different incident directions. Therefore, as shown in FIG.
4 and then resist mask 7 with window 76
8 is a device forming region 32, a gate electrode 40 and an insulating film 36.
Form on top. The mask 78 is used for forming a portion of the element formation region 32 where the drain region 42 is to be formed and a source region 44.
And the portion of the gate electrode 40 between these portions is exposed through the window 76, and the remaining portion is covered. Then
A second conductivity type impurity such as P ions or As ions is added to the element forming region 32 exposed through the window 76 to complete the basic structure of the FET 28 as shown in FIGS.
When the second conductivity type impurity is added, the impurity is added by an ion implantation method using, for example, part of the gate electrode 40 and the mask 78 as a mask. Moreover, the second conductivity type region is continuously formed from one side portion of the mountain portion 46 to the other side portion thereof, and the mountain portion 4 is formed.
6, so that the main surface of the base 30 (in this example, S
It is preferable that the second-conductivity-type impurity be incident on the side wall portion of the crest portion 46 not only from the direction perpendicular to the substrate surface of the i substrate but also from a plurality of directions oblique to the main plane. Note that, for example, as shown in FIG. 2, the second conductivity type impurity is introduced so that the second conductivity type impurity is introduced into a region between the upper surface of the peak portion 46 and the depth h that does not reach the valley portion 48. Adjust the depth.

【0033】次に図示せずも、従来公知の方法により、
ゲート電極40、ドレイン領域42及びソース領域44
上に中間絶縁膜を積層し、次いで中間絶縁膜にドレイン
領域42及びソース領域44を露出するコンタクト穴を
形成する。ドレイン領域42及びソース領域44のコン
タクト穴は、ドレイン領域42及びソース領域44のp
n接合部分を除く部分を露出し、これら領域42及び4
4のpn接合部分と第一導電型の下地部分とは露出しな
い。次いでコンタクト穴を介しドレイン領域42及びソ
ース領域44と接続する配線電極を中間絶縁膜上に形成
し、FET28の配線を完了する。
Next, although not shown in the drawing, according to a conventionally known method,
Gate electrode 40, drain region 42, and source region 44
An intermediate insulating film is laminated on top, and then contact holes exposing the drain region 42 and the source region 44 are formed in the intermediate insulating film. The contact holes of the drain region 42 and the source region 44 are defined by p of the drain region 42 and the source region 44.
Except for the n-junction portion, these regions 42 and 4 are exposed.
The pn junction portion of No. 4 and the underlying portion of the first conductivity type are not exposed. Next, a wiring electrode connected to the drain region 42 and the source region 44 through the contact hole is formed on the intermediate insulating film, and the wiring of the FET 28 is completed.

【0034】尚、上述した例ではFET28としてnチ
ャネルFETを製造する例につき説明したが、これに換
え下地30をn型基板としドレイン領域42及びソース
領域44を形成するための第二導電型不純物を例えばB
或はBF2 としpチャネルFETをFET28として製
造するようにしてもよい。
In the example described above, an n-channel FET is manufactured as the FET 28. However, in place of this, the second conductivity type impurity for forming the drain region 42 and the source region 44 using the base 30 as an n-type substrate. For example B
Alternatively, BF 2 may be used and a p-channel FET may be manufactured as FET 28.

【0035】この発明は上述した実施例にのみ限定され
るものではなく、従って各構成成分の形状、配設位置、
形成材料、形成方法、数値的条件、延在方向、数値的条
件及びそのほかを任意好適に変更することができる。例
えば第一及び第二発明の実施例において、ゲート電極の
一方及び他方の側部に隣接する一方及び他方の素子形成
領域のいずれか一方のみに山部及び谷部を設け或は形成
するようにしてもよい。pn接合による接合容量を減少
させ電界効果トランジスタの動作速度を向上させるため
には、少なくとも、ドレイン領域が設けられるべき或は
形成されるべき一方の素子形成領域に、山部及び谷部を
設けるようにするのがよい。また上述した例では、第一
導電型の下地に溝を形成することにより山部及び谷部を
形成するようにしたが、山部及び谷部の形成方法をこれ
に限定するものではなく、このほか例えば、第一導電型
の下地上に第二導電型の層を積層しこの第二導電型の層
をエッチングすることにより山部及び谷部を形成するよ
うにしてもよい。
The present invention is not limited to the above-mentioned embodiment, and therefore, the shape of each component, the arrangement position,
The forming material, the forming method, the numerical conditions, the extending direction, the numerical conditions and the like can be arbitrarily changed. For example, in the embodiments of the first and second inventions, the peaks and valleys are provided or formed only in one of the element forming regions of the one side and the other side adjacent to the one side and the other side of the gate electrode. May be. In order to reduce the junction capacitance due to the pn junction and improve the operating speed of the field effect transistor, at least one element formation region in which a drain region should be formed or should be formed should have a peak and a valley. It is better to Further, in the above-mentioned example, the ridges and valleys are formed by forming the grooves in the first-conductivity-type base, but the method of forming the ridges and valleys is not limited to this. Alternatively, for example, a peak portion and a valley portion may be formed by stacking a layer of the second conductivity type on the lower surface of the first conductivity type and etching the layer of the second conductivity type.

【0036】[0036]

【発明の効果】上述した説明からも明らかなように、第
一発明によれば、ドレイン領域又はソース領域と成るべ
き第二導電型領域を山部の一方の側部から他方の側部ま
で連続させて山部に設けるので、山部においては、pn
接合は山部の底部の側で第二導電型領域と第一導電型の
下地との間で形成されるのみである。従って第二導電型
領域の表面積を同じとして従来と比較すれば、山部に設
ける第二導電型領域を増加させることにより、コンタク
ト抵抗の増加を抑止しつつpn接合の面積を減少させて
pn接合による接合容量を減少させ、よって電界効果ト
ランジスタの動作速度を向上させることができる。
As is apparent from the above description, according to the first invention, the second conductivity type region to be the drain region or the source region is continuously formed from one side portion of the mountain portion to the other side portion. Since it is provided in the mountain part, in the mountain part, pn
The junction is only formed between the second conductivity type region and the first conductivity type base on the bottom side of the peak. Therefore, if the surface area of the second conductivity type region is the same and compared with the conventional case, by increasing the second conductivity type region provided in the mountain portion, the area of the pn junction is reduced while suppressing an increase in contact resistance, and the pn junction is reduced. It is possible to reduce the junction capacitance due to, thereby improving the operating speed of the field effect transistor.

【0037】さらに第二発明によれば、絶縁膜を山部を
露出するように谷部に形成し、次に第二導電型不純物
を、絶縁膜の上面部から谷部に至らない深さで絶縁膜に
注入するようにしながら山部に対して複数の異なる入射
方向から注入する。従って絶縁膜により谷部に第二導電
型不純物が注入されるのを阻止しつつ、山部の一方の側
部から他方の側部まで連続的に第二導電型領域を形成す
ることができる。
Further, according to the second invention, the insulating film is formed in the valley so as to expose the peak, and the second conductivity type impurity is then formed at a depth not reaching the valley from the upper surface of the insulating film. While being injected into the insulating film, it is injected into the mountain portion from a plurality of different incident directions. Therefore, the second conductivity type region can be continuously formed from one side portion of the crest portion to the other side portion while preventing the second conductivity type impurity from being injected into the valley portion by the insulating film.

【図面の簡単な説明】[Brief description of drawings]

【図1】第一発明の実施例の基本構造の要部を概略的に
示す平面図である。
FIG. 1 is a plan view schematically showing a main part of a basic structure according to an embodiment of the first invention.

【図2】第一発明の実施例の基本構造の要部を概略的に
示す断面図である。
FIG. 2 is a sectional view schematically showing a main part of a basic structure of an embodiment of the first invention.

【図3】(A)及び(B)は第二発明の実施例の説明図
であって、同一工程段階における製造途上の様子を概略
的に示す要部平面図及び要部断面図である。
FIGS. 3A and 3B are explanatory views of an embodiment of the second invention, and are a plan view and a cross-sectional view of a main part schematically showing a state in the process of manufacturing in the same process step.

【図4】(A)及び(B)は第二発明の実施例の説明図
であって、異なる工程段階における製造途上の様子を概
略的に示す要部断面図である。
4 (A) and 4 (B) are explanatory views of an embodiment of the second invention, which is a cross-sectional view of an essential part schematically showing a state in the course of manufacturing in different process steps.

【図5】(A)及び(B)は第二発明の実施例の説明図
であって、同一工程段階における製造途上の様子を概略
的に示す要部平面図及び要部断面図である。
5 (A) and 5 (B) are explanatory views of an embodiment of the second invention, and are a main part plan view and a main part cross-sectional view schematically showing a state in the course of manufacturing in the same process step.

【図6】(A)及び(B)は第二発明の実施例の説明図
であって、同一工程段階における製造途上の様子を概略
的に示す要部平面図及び要部断面図である。
6 (A) and 6 (B) are explanatory views of an embodiment of the second invention, and are a plan view and a cross-sectional view of a main part schematically showing a state in the process of manufacturing in the same process step.

【図7】(A)及び(B)は第二発明の実施例の説明図
であって、異なる工程段階における製造途上の様子を概
略的に示す要部断面図である。
7 (A) and 7 (B) are explanatory views of an embodiment of the second invention, which is a cross-sectional view of relevant parts schematically showing a state in the process of being manufactured in different process steps.

【図8】(A)及び(B)は第二発明の実施例の説明図
であって、異なる工程段階における製造途上の様子を概
略的に示す要部断面図である。
8A and 8B are explanatory views of an embodiment of the second invention and are cross-sectional views of a main part schematically showing a manufacturing process in different process steps.

【図9】第二発明の実施例の説明図であって、製造途上
の様子を概略的に示す要部断面図である。
FIG. 9 is an explanatory view of the embodiment of the second invention, and is a cross-sectional view of a main part schematically showing a state in the course of manufacturing.

【図10】第二発明の実施例の説明図であって、製造途
上の様子を概略的に示す要部平面図である。
FIG. 10 is an explanatory view of the embodiment of the second invention, and is a main part plan view schematically showing a state in the course of manufacturing.

【図11】(A)及び(B)は従来のMOSFETの構
成を概略的に示す要部断面図及び要部平面図である。
11 (A) and 11 (B) are a main-portion cross-sectional view and a main-portion plan view schematically showing the configuration of a conventional MOSFET.

【符号の説明】[Explanation of symbols]

28:FET 30:下地 32:素子形成領域 34:窓 36、50:絶縁膜 38:ゲート絶縁膜 40:ゲート電極 42:ドレイン領域 44:ソース領域 46:山部 48:谷部 28: FET 30: Base 32: Element forming region 34: Window 36, 50: Insulating film 38: Gate insulating film 40: Gate electrode 42: Drain region 44: Source region 46: Mountain part 48: Valley part

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 第一導電型の下地と、該下地上に設けら
れ前記下地の素子形成領域を露出する窓を有する絶縁膜
と、前記素子形成領域のほぼ中央部に順次に設けられた
ゲート酸化膜及びゲート電極と、該ゲート電極の一方の
側部に隣接する一方の素子形成領域に設けたドレイン領
域と、前記ゲート電極の他方の側部に隣接する他方の素
子形成領域に設けたソース領域とを備え、前記ドレイン
領域及びソース領域を前記第一導電型とは反対導電型の
第二導電型領域として成る電界効果トランジスタにおい
て、 前記一方及び他方の素子形成領域の双方又はいずれか一
方に山部及び谷部を交互に配置して複数の山部及び複数
の谷部を並列させて設け、 前記第二導電型領域を前記山部の一方の側部から他方の
側部まで連続させて前記山部に設けたことを特徴とする
電界効果トランジスタ。
1. A first-conductivity-type underlayer, an insulating film provided on the underlayer and having a window exposing the element formation region of the underlayer, and a gate sequentially provided in substantially the center of the element formation region. An oxide film and a gate electrode, a drain region provided in one element formation region adjacent to one side of the gate electrode, and a source provided in another device formation region adjacent to the other side of the gate electrode. And a drain region and a source region as a second conductivity type region of a conductivity type opposite to the first conductivity type, in one or both of the one and the other element formation region. A plurality of peaks and a plurality of valleys are provided in parallel by alternately arranging peaks and valleys, and the second conductivity type region is continuously formed from one side of the peaks to the other side. What was provided in the mountain Field-effect transistor which is characterized.
【請求項2】 前記谷部を第一導電型の下地としたこと
を特徴とする請求項1に記載の電界効果トランジスタ。
2. The field effect transistor according to claim 1, wherein the valley portion is an underlayer of the first conductivity type.
【請求項3】 前記一方及び他方の素子形成領域の双方
又はいずれか一方の、前記山部及び前記山部からゲート
電極までの間の領域に第二導電型領域を設け、残りの領
域を第一導電型の下地としたことを特徴とする請求項1
に記載の電界効果トランジスタ。
3. A second conductivity type region is provided in the peak portion and a region between the peak portion and the gate electrode in both or one of the one and the other element forming regions, and the remaining region is a first region. 2. A base of one conductivity type is used.
A field effect transistor described in 1.
【請求項4】 前記山部及び谷部を、前記ゲート電極の
長さ方向に延在させて設けることを特徴とする請求項1
に記載の電界効果トランジスタ。
4. The peak portion and the valley portion are provided so as to extend in the length direction of the gate electrode.
A field effect transistor described in 1.
【請求項5】 請求項2に記載の電界効果トランジスタ
を製造するに当たり、 前記一方及び他方の素子形成領域の双方又はいずれか一
方の下地に、エッチングにより、山部及び谷部を形成
し、 次に絶縁膜を、前記山部を露出させるように前記谷部上
に形成し、 次に第一導電型とは反対導電型の第二導電型不純物を、
イオン注入法により、前記絶縁膜の上面部から前記谷部
に至らない深さで前記絶縁膜に注入するようにしながら
前記山部に対して複数の異なる入射方向から注入するこ
とを特徴とする電界効果トランジスタの製造方法。
5. In manufacturing the field effect transistor according to claim 2, a peak and a valley are formed by etching on a base of both or one of the one and the other element forming regions, and An insulating film is formed on the valley so as to expose the peak, and then a second conductivity type impurity having a conductivity type opposite to the first conductivity type is formed,
An electric field characterized by performing ion implantation from a plurality of different incident directions to the peak portion while implanting into the insulating film from the upper surface portion of the insulating film to a depth that does not reach the valley portion. Effect transistor manufacturing method.
JP26761091A 1991-10-16 1991-10-16 Field effect transistor and manufacture thereof Withdrawn JPH05110078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26761091A JPH05110078A (en) 1991-10-16 1991-10-16 Field effect transistor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26761091A JPH05110078A (en) 1991-10-16 1991-10-16 Field effect transistor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH05110078A true JPH05110078A (en) 1993-04-30

Family

ID=17447111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26761091A Withdrawn JPH05110078A (en) 1991-10-16 1991-10-16 Field effect transistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH05110078A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013042169A (en) * 2004-09-29 2013-02-28 Agere Systems Inc Metal oxide semiconductor device having trench diffusion region and formation method of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013042169A (en) * 2004-09-29 2013-02-28 Agere Systems Inc Metal oxide semiconductor device having trench diffusion region and formation method of the same

Similar Documents

Publication Publication Date Title
US5721148A (en) Method for manufacturing MOS type semiconductor device
JPH02250331A (en) Semiconductor device and its manufacture
KR960000713B1 (en) Semiconductor device
KR900000180B1 (en) Method of producing semiconductor memory device
JPH05110083A (en) Field effect transistor
US5508545A (en) Semiconductor device including a pair of transistors having a common channel region, and method of making the same
JPH04368180A (en) Structure of insulated gate type field-effect transistor and manufacture thereof
JP3323381B2 (en) Semiconductor device and manufacturing method thereof
JP2519284B2 (en) Method of manufacturing embedded gate type MOSFET
WO1990013918A1 (en) Field effect transistor
JPH0778977A (en) Semiconductor device
JPH06334146A (en) Semiconductor device
JPH05110078A (en) Field effect transistor and manufacture thereof
JPH05145042A (en) Semiconductor storage element, storage device and its manufacture
JPH10163338A (en) Semiconductor device and its manufacturing method
JPH067596B2 (en) Method for manufacturing semiconductor device
JP3017838B2 (en) Semiconductor device and manufacturing method thereof
JPH03219676A (en) Semiconductor device and its manufacturing method
JPS63143860A (en) Semiconductor device and manufacture thereof
KR100281889B1 (en) Semiconductor device having field shield isolation region and manufacturing method thereof
JP2661792B2 (en) Method for manufacturing field effect transistor
JPH0290567A (en) Semiconductor device and manufacture thereof
KR100247814B1 (en) Semiconductor device and method for manufacturing the same
JPH03793B2 (en)
JPH04142039A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990107