JPH05109714A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH05109714A
JPH05109714A JP26582191A JP26582191A JPH05109714A JP H05109714 A JPH05109714 A JP H05109714A JP 26582191 A JP26582191 A JP 26582191A JP 26582191 A JP26582191 A JP 26582191A JP H05109714 A JPH05109714 A JP H05109714A
Authority
JP
Japan
Prior art keywords
film
mask
plating
mask film
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26582191A
Other languages
Japanese (ja)
Inventor
Iku Mikagi
郁 三ケ木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP26582191A priority Critical patent/JPH05109714A/en
Publication of JPH05109714A publication Critical patent/JPH05109714A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To restrain the generation of defects, by patterning a second mask film turning to a practical mask for plating by using a first mask film and an etching mask film which are formed on the upper layer of the second mask film. CONSTITUTION:After an etching mask film 6 is patterned and left on a plating film forming region, a first mask 5 and the unnecessary part of a second conducting film 4 are eliminated. After the etching mask film 6 is eliminated, a second mask film 7 is formed on the whole surface of the first mask 5. The head part of the first mask 5 is exposed by etching-back the second mask 7, and the second conducting film 4 is exposed by eliminating the first mask 5. A plated film 8 is selectively formed on the exposed second conducting film 4 by electro-plating or electroless plating wherein the second mask film 7 is used as a plating mask. Thereby the yield in the manufacturing process can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
関し、特にメッキ法による配線の形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming wiring by a plating method.

【0002】[0002]

【従来の技術】従来の半導体装置の製造工程における配
線の形成方法を図3を用いて説明する。
2. Description of the Related Art A conventional method of forming wiring in a semiconductor device manufacturing process will be described with reference to FIG.

【0003】まず図3(a)に示すように、半導体基板
1上に熱酸化法あるいはSiH4 ガスを用いたCVD法
を用いて厚さ約500nmのシリコン酸化膜2と、タン
グステンにチタンが10wt%添加されたチタン−タン
グステン合金より構成される第1導電膜3を既知の技術
であるD.C.マグネトロンスパッタ法により、成膜パ
ワー1.0〜2.0kw、成膜圧力2〜10mTorr
の条件の下、100nmの厚みで形成する。さらにこの
第1導電膜3上に、たとえば金、白金、パラジウムある
いはロジウム等より構成される第2導電膜4を、同様の
手法を用いて成膜パワー0.2〜1.0kw、成膜圧力
2〜10mTorrの条件の下、20〜50nmの厚み
で形成する。
First, as shown in FIG. 3A, a silicon oxide film 2 having a thickness of about 500 nm is formed on a semiconductor substrate 1 by using a thermal oxidation method or a CVD method using SiH 4 gas, and 10 wt. % Of the titanium-tungsten alloy to which the first conductive film 3 is added is a known technique. C. Film formation power of 1.0 to 2.0 kw and film formation pressure of 2 to 10 mTorr by magnetron sputtering method.
Under the above conditions, it is formed with a thickness of 100 nm. Further, on the first conductive film 3, a second conductive film 4 made of, for example, gold, platinum, palladium, rhodium or the like is formed by using the same method with a film forming power of 0.2 to 1.0 kw and a film forming pressure. It is formed with a thickness of 20 to 50 nm under the condition of 2 to 10 mTorr.

【0004】第1導電膜3は後工程で形成するメッキ膜
や第2導電膜4の拡散防止バリアメタルおよび上層配線
と下層に存在する絶縁膜との密着層として働き、第2導
電膜4はメッキ時の下地(電流供給層)、メッキ膜形成
時の安定した成膜・成長、メッキ膜の密着性確保、およ
び第1の導電膜表面のメッキ液からの保護を目的として
形成されるものである。
The first conductive film 3 functions as a plating film to be formed in a later step, a diffusion preventing barrier metal of the second conductive film 4, and an adhesion layer between the upper wiring and the insulating film present in the lower layer. It is formed for the purpose of the base (current supply layer) during plating, stable film formation / growth during plating film formation, ensuring adhesion of the plating film, and protecting the surface of the first conductive film from the plating solution. is there.

【0005】続いて図3(b)に示す通り、g線あるい
はi線を用いたフォトリソグラフィー法により、100
0〜2000nmの厚みを有するフォトレジスト膜より
構成される第2マスク膜7を第2導電膜4上に形成し、
不要部分を除去してパターニングする。さらにたとえば
金あるいは銅より構成されるメッキ膜8を既知の手法で
ある電解メッキ法を用いて露出した第2導電膜4上のみ
に選択的に500〜1500nmの厚みで形成する。
Subsequently, as shown in FIG. 3 (b), a photolithography method using a g-line or an i-line is performed to obtain 100
Forming a second mask film 7 made of a photoresist film having a thickness of 0 to 2000 nm on the second conductive film 4;
The unnecessary portion is removed and patterning is performed. Further, a plating film 8 made of, for example, gold or copper is selectively formed with a thickness of 500 to 1500 nm only on the exposed second conductive film 4 by using a known electrolytic plating method.

【0006】メッキ膜8を金、成膜法を電解メッキ法と
した場合、電解金メッキに用いるメッキ液は硫酸金ナト
リウム、硫酸を主成分とし、これに平坦化剤、pH安定
剤等の添加剤が添加されている1リットル当たり約10
gの金を含有するほぼ中性の非シアン系のものを使用す
る。電解メッキはメッキ温度35〜65℃、電流密度1
〜4mA/cm2 の条件のもとで行う事が好ましい。
When the plating film 8 is gold and the film forming method is electrolytic plating, the plating solution used for electrolytic gold plating contains sodium gold sulphate and sulfuric acid as main components, and an additive such as a flattening agent and a pH stabilizer. About 10 per liter to which is added
An almost neutral non-cyan type containing g of gold is used. Electrolytic plating has a plating temperature of 35 to 65 ° C and a current density of 1
It is preferable to carry out under the condition of ˜4 mA / cm 2 .

【0007】続いて図3(c)に示す通り、有機溶剤を
用いた湿式剥離法、あるいはO2 プラズマを用いたアッ
シング法により第2マスク膜7を除去して、さらにメッ
キ膜8をエッチングマスクとして、王水と過酸化水素水
を用いたウェットエッチング法、Arガスをミリングソ
ースとしたイオンミリング法、あるいはCF4 、SF6
のフッ素系ガスを使用した反応性イオンエッチング法と
言った既知の手法を用いて第1導電膜3、第2導電膜4
の不要部分を除去して配線パターン化する。例えばウェ
ットエッチング法の場合、王水は濃度10〜20%、温
度25〜30℃、過酸化水素水は濃度50〜100%、
温度25〜30℃の条件下で行う事が好ましい。
Subsequently, as shown in FIG. 3C, the second mask film 7 is removed by a wet stripping method using an organic solvent or an ashing method using O 2 plasma, and the plating film 8 is further used as an etching mask. As the wet etching method using aqua regia and hydrogen peroxide solution, the ion milling method using Ar gas as a milling source, or CF 4 , SF 6
The first conductive film 3 and the second conductive film 4 are formed by a known method such as the reactive ion etching method using the above-mentioned fluorine-based gas.
The unnecessary portion of is removed to form a wiring pattern. For example, in the case of the wet etching method, the concentration of aqua regia is 10 to 20%, the temperature is 25 to 30 ° C., and the concentration of hydrogen peroxide is 50 to 100%.
It is preferably carried out under the condition of a temperature of 25 to 30 ° C.

【0008】上記工程によりシリコン酸化膜2上に第1
導電膜3、第2導電膜4、メッキ膜8より構成される配
線を形成していた。
The first step is performed on the silicon oxide film 2 by the above process.
Wiring composed of the conductive film 3, the second conductive film 4, and the plated film 8 was formed.

【0009】[0009]

【発明が解決しようとする課題】上述した従来の半導体
装置の製造方法には以下に示す欠点がある。
The above-mentioned conventional method of manufacturing a semiconductor device has the following drawbacks.

【0010】第1にメッキ用マスク膜としてフォトレジ
スト膜を使用しており、さらにフォトレジスト膜の下に
は金などの反射率の高い第2導電膜が存在するため、パ
ターニング時にフォトレジスト膜がすそを引き易い。そ
のためメッキ配線形状の悪化や寸法制御性の低下を招
き、安定した電気特性の配線を得にくい。
First, a photoresist film is used as a plating mask film, and a second conductive film having a high reflectance such as gold is present under the photoresist film. It is easy to draw a skirt. Therefore, the shape of the plated wiring is deteriorated and the dimensional controllability is deteriorated, and it is difficult to obtain wiring having stable electric characteristics.

【0011】第2にメッキ後に、金や白金など化学的安
定性の高いものや、銅のようにエッチング時にガス化し
にくい第2導電膜を除去する場合、通常の反応性イオン
エッチングでは除去が困難であるため、イオンミリング
のような物理的手法や、ウェットエッチングあるいは高
温反応性イオンエッチングにより除去する事となる。
Secondly, in the case of removing a chemically conductive material such as gold or platinum after plating or a second conductive film which is difficult to gasify during etching such as copper, it is difficult to remove by ordinary reactive ion etching. Therefore, it is removed by a physical method such as ion milling, wet etching or high temperature reactive ion etching.

【0012】しかしながらイオンミリングの場合はごみ
を発生しやすく、ショート不良の原因となり歩留りを低
下させる。ウェットエッチングの場合、ごみの発生は少
ないが等方的にエッチングが進行し、サイドエッチがは
いるため微細なパターンには適用出来ない。高温反応性
イオンエッチングの場合、銅にコロージョンが発生しや
すくなり、不良発生の原因となる。
However, in the case of ion milling, dust is liable to be generated, which causes a short circuit defect and reduces the yield. In the case of wet etching, the amount of dust is small, but the etching proceeds isotropically and side etching occurs, so that it cannot be applied to a fine pattern. In the case of high temperature reactive ion etching, corrosion is likely to occur in copper, which causes a defect.

【0013】[0013]

【課題を解決するための手段】本発明の半導体装置の製
造方法は、半導体基板上に絶縁膜とバリアおよび密着用
の第1導電膜と給電用の第2導電膜と第1マスク膜とエ
ッチングマスク膜とを順次形成する工程と、このエッチ
ングマスク膜をパターニングしてメッキ膜形成領域に残
したのち前記第1マスク膜と前記第2導電膜の不要部分
を除去する工程と、前記エッチングマスク膜を除去した
のち露出した第1マスク膜表面を含む全面に第2マスク
膜を形成する工程と、この第2マスク膜をエッチバック
し前記第1マスク膜の頭部を露出させる工程と、頭部が
露出したこの第1マスク膜を除去し前記第2導電膜を露
出させる工程と、前記第2マスク膜をメッキマスクとし
て電解あるいは無電解メッキを行い露出した前記第2導
電膜上にメッキ膜を選択的に形成する工程とを含むもの
である。
According to the method of manufacturing a semiconductor device of the present invention, an insulating film, a barrier, a first conductive film for adhesion, a second conductive film for power supply, a first mask film, and etching are formed on a semiconductor substrate. A step of sequentially forming a mask film, a step of patterning the etching mask film to leave it in a plating film forming region, and then removing an unnecessary portion of the first mask film and the second conductive film, and the etching mask film Forming a second mask film over the entire surface including the exposed first mask film surface after removing the film, a step of etching back the second mask film to expose the head of the first mask film, and a head. Removing the exposed first mask film to expose the second conductive film, and electrolytic or electroless plating using the second mask film as a plating mask to form a plated film on the exposed second conductive film. It is intended to include a step of selectively forming.

【0014】[0014]

【作用】本発明の半導体装置の製造方法は、実際のメッ
キ用マスクとなる第2マスク膜を、その上層に形成した
第1マスク膜およびエッチングマスク膜を用いてパター
ニングするため、下層に存在する第2導電膜からの反射
光の影響を受けず、形状が良好で寸法制御性のよい微細
なメッキ配線の形成が可能となる。さらに第2導電膜の
不要部分除去をメッキ配線形成前に行うため、ごみやコ
ロージョンの影響を大きく低減でき、歩留りの改善をは
かる事が出来る。
According to the method of manufacturing a semiconductor device of the present invention, the second mask film, which is an actual plating mask, is patterned by using the first mask film and the etching mask film formed on the upper layer of the second mask film. It is possible to form fine plated wiring having a good shape and good dimensional controllability without being affected by reflected light from the second conductive film. Furthermore, since the unnecessary portion of the second conductive film is removed before forming the plated wiring, the influence of dust and corrosion can be greatly reduced, and the yield can be improved.

【0015】[0015]

【実施例】次に本発明について図面を参照して説明す
る。図1(a)〜(d)は本発明の第1の実施例を説明
するための製造工程順に示した半導体チップの断面図で
ある。
The present invention will be described below with reference to the drawings. 1A to 1D are sectional views of a semiconductor chip shown in the order of manufacturing steps for explaining a first embodiment of the present invention.

【0016】まず図1(a)に示す通り、半導体基板1
上に熱酸化法、SiH4 を主反応ガスとした熱CVD
法、あるいはプラズマCVD法などの既知の手法を用い
て厚さ約500nmのシリコン酸化膜2を設ける。次で
このシリコン酸化膜2上にタングステンにチタンが10
wt%添加されたチタン−タングステン合金より構成さ
れる第1導電膜3を既知の技術であるD.C.マグネト
ロンスパッタ法により、成膜パワー1.0〜2.0k
w、成膜圧力2〜10mTorrの条件の下、100n
mの厚みで形成し、さらにこの第1導電膜3上に、たと
えば金より構成される第2導電膜4を同様の手法を用い
て成膜パワー0.2〜1.0kw、成膜圧力2〜10m
Torrの条件の下、20〜50nmの厚みで形成す
る。
First, as shown in FIG. 1A, the semiconductor substrate 1
Thermal oxidation method, thermal CVD using SiH 4 as the main reaction gas
Method or a known method such as a plasma CVD method is used to form a silicon oxide film 2 having a thickness of about 500 nm. Next, titanium is deposited on the silicon oxide film 2 with 10 titanium.
The first conductive film 3 made of a titanium-tungsten alloy added by wt% is a known technique. C. Film formation power of 1.0 to 2.0k by magnetron sputtering method
w, 100 n under the conditions of film forming pressure of 2 to 10 mTorr
The second conductive film 4 made of, for example, gold is formed on the first conductive film 3 by a similar method to form a film with a film forming power of 0.2 to 1.0 kw and a film forming pressure of 2. -10m
It is formed with a thickness of 20 to 50 nm under the conditions of Torr.

【0017】第1導電膜3は後工程で形成するメッキ膜
や第2導電膜4の構成元素の拡散防止バリアメタル、な
らびに上層配線と下層に存在する絶縁膜との間の密着層
として働く。第2導電膜4はメッキ時の下地(電流供給
層)、メッキ膜形成時の安定した成膜・成長、メッキ膜
の密着性確保および第1導電膜3表面のメッキ液からの
保護を目的として形成されるもので、金の他に白金ロジ
ウム、オスミウム、イリジウム、ルテニウムなどの各金
属を使用出来る。
The first conductive film 3 functions as a plating film formed in a later step, a barrier metal for preventing diffusion of constituent elements of the second conductive film 4, and an adhesion layer between the upper wiring and the insulating film existing in the lower layer. The second conductive film 4 is for the purpose of a base (current supply layer) during plating, stable film formation / growth during plating film formation, ensuring adhesion of the plating film, and protecting the surface of the first conductive film 3 from the plating solution. In addition to gold, platinum, rhodium, osmium, iridium, ruthenium and other metals can be used.

【0018】次で、SiH4 、N2 Oガスを用いたプラ
ズマCVD法により、例えばシリコン酸化膜より構成さ
れる第1マスク膜5を温度300℃、SiH4 =300
SCCM、N2 O=1200SCCM、0.25Tor
rの条件の下、500〜1500nmの厚みで第2導電
膜4上に形成し、さらに既知の技術であるg線あるいは
i線を用いたフォトリソグラフィー法により、第1マス
ク膜5上にポジタイプフォトレジストより構成されるエ
ッチングマスク膜6を1000〜2000の厚みで選択
的に形成した後、CF4 〜SF6 等のフッ素系ガスを使
用した反応性イオンエッチング法により第1マスク膜の
不要部分を除去し、さらにオーバーエッチをかける。エ
ッチング条件にも依存するが、50%〜200%程度の
オーバーエッチをかけると、第1マスク膜除去後の下層
に露出した第2導電膜4はイオンボンバードメントを受
ける事となり、イオンミリングと同様の現象によって第
2導電膜の構成原子は飛散するため、極めて薄い第2導
電膜4を除去する事が出来る。
Next, the first mask film 5 made of, for example, a silicon oxide film is formed at a temperature of 300 ° C. and SiH 4 = 300 by a plasma CVD method using SiH 4 and N 2 O gas.
SCCM, N 2 O = 1200 SCCM, 0.25 Tor
Under the condition of r, it is formed on the second conductive film 4 to have a thickness of 500 to 1500 nm, and is further positively formed on the first mask film 5 by a known photolithography method using g line or i line. After the etching mask film 6 made of photoresist is selectively formed to a thickness of 1000 to 2000, unnecessary portions of the first mask film are removed by a reactive ion etching method using a fluorine-based gas such as CF 4 to SF 6. Is removed and over-etching is applied. Although depending on the etching conditions, if over-etching of about 50% to 200% is applied, the second conductive film 4 exposed in the lower layer after the removal of the first mask film will be subjected to ion bombardment, similar to ion milling. By this phenomenon, the constituent atoms of the second conductive film are scattered, so that the extremely thin second conductive film 4 can be removed.

【0019】次に図1(b)の如く、O2 プラズマアッ
シング法そして有機溶剤によるウェット剥離法の両処理
によりエッチングマスク膜6を除去する。第2導電膜4
の除去工程で発生しやすいごみや再付着物の除去を十分
に行うため、出来る限り両工程を用いてエッチングマス
ク6を除去する事が好ましい。
Next, as shown in FIG. 1B, the etching mask film 6 is removed by both the O 2 plasma ashing method and the wet stripping method using an organic solvent. Second conductive film 4
It is preferable to remove the etching mask 6 by using both steps as much as possible in order to sufficiently remove dust and redeposits that are likely to occur in the removal step.

【0020】さらにフォトレジストあるいはポリイミド
などの塗布平坦化性の高い材料より構成される第2マス
ク膜7を回転塗布法を用いて2000〜4000nmの
厚みで塗布し、非酸化性雰囲気の下100〜150℃で
30〜60分間ベークする。
Further, a second mask film 7 made of a material having high coating flatness such as photoresist or polyimide is applied to a thickness of 2000 to 4000 nm by using a spin coating method, and the second mask film 7 is applied under a non-oxidizing atmosphere at 100 to 100 nm. Bake at 150 ° C. for 30-60 minutes.

【0021】続いてCF4 あるいはCF4 +O2 ガスを
用いた反応性イオンエッチングにより第1マスク膜と同
等の厚み、あるいはそれより100nmほど薄くなるま
でエッチバックして平坦化する。
[0021] followed by flattened etched back by reactive ion etching the first mask layer and the thickness equivalent to or until thinner it than about 100 nm, using a CF 4 or CF 4 + O 2 gas.

【0022】次に図1(c)に示すように、弗酸を用い
て第1マスク膜5を除去する。この操作によりパターニ
ングされた第2マスク膜7が残るが、このマスク膜はす
そ引きのない矩形を有しており、もとのマスクに対する
寸法変化も少ないものとなっている。
Next, as shown in FIG. 1C, the first mask film 5 is removed using hydrofluoric acid. Although the patterned second mask film 7 remains by this operation, this mask film has a rectangular shape without tailing, and the dimensional change with respect to the original mask is small.

【0023】続いて図1(d)に示す通り、電解金メッ
キ法によりメッキ膜8を露出している第2導電膜4上に
選択的に500〜1500nmの厚みで形成する。この
際、メッキ電流は下層の第1導電膜3を通じて第2導電
膜4へ流れる。電解金メッキは硫酸、硫酸金ナトリウ
ム、燐酸、硝酸等を主成分とし、これに平坦化剤、光沢
剤、pH安定化剤が添加されており、1リットル当たり
約10gの金を含有する非シアン系の電解金メッキ液を
使用する。メッキ温度40〜60℃、電流密度1〜5m
A/cm2 の条件でメッキを行うことが好ましい。
Subsequently, as shown in FIG. 1 (d), a plating film 8 is selectively formed with a thickness of 500 to 1500 nm on the exposed second conductive film 4 by an electrolytic gold plating method. At this time, the plating current flows through the lower first conductive film 3 to the second conductive film 4. Electrolytic gold plating has sulfuric acid, sodium gold sulfate, phosphoric acid, nitric acid, etc. as the main components, and a flattening agent, brightening agent, and pH stabilizer are added to this. Use the electrolytic gold plating solution. Plating temperature 40-60 ℃, current density 1-5m
It is preferable to carry out plating under the condition of A / cm 2 .

【0024】さらにO2 プラズマを用いたアッシング法
や有機溶剤を用いた剥離法により第2マスク膜7を除去
し、さらにメッキ膜をエッチングマスクとして、C
4 、SF6 等のフッ素系ガスをもちいた反応性イオン
エッチング法により露出した第1導電膜3を除去して配
線パターン化する。第2マスク膜7を除去すると、その
下層には反応性エッチングがしにくい第2導電膜4では
なく、反応性エッチングが容易な第1導電膜3のみが存
在するため、ごみ発生を大幅に低減できる。
Further, the second mask film 7 is removed by an ashing method using O 2 plasma or a peeling method using an organic solvent, and the plating film is used as an etching mask.
The exposed first conductive film 3 is removed by a reactive ion etching method using a fluorine-based gas such as F 4 or SF 6 to form a wiring pattern. When the second mask film 7 is removed, not the second conductive film 4 which is hard to be reactively etched but the first conductive film 3 which is easily reactively etched is present in the lower layer, so that the generation of dust is significantly reduced. it can.

【0025】このようにして形成された配線は寸法変化
が少なく、すそ引きのない矩形で、不要部分の除去工程
でのごみの発生が極めて少ないため、従来の製造方法と
比較して安定した電気特性を持つ微細な配線が高い歩留
りで得られる。本発明の半導体集積回路装置の配線構造
はMOS、バイポーラ等の半導体集積装置の種類にかか
わらず適応可能である。
The wiring formed in this manner has a small dimensional change, is a rectangular shape without tailing, and produces very little dust during the process of removing unnecessary portions, so that it is more stable than conventional manufacturing methods. Fine wiring with characteristics can be obtained with high yield. The wiring structure of the semiconductor integrated circuit device of the present invention is applicable regardless of the type of semiconductor integrated device such as MOS and bipolar.

【0026】図2(a)〜(c)は本発明の第2の実施
例を説明するための半導体チップの断面図である。
2 (a) to 2 (c) are sectional views of a semiconductor chip for explaining the second embodiment of the present invention.

【0027】まず図2(a)に示すように、第1の実施
例と同様の手法を用いて、半導体基板1上に厚さ500
nmのシリコン酸化膜2と、N2 ガスを用いた反応性ス
パッタ法により形成した厚さ100nmの窒化チタンよ
り構成される第1導電膜3Aと、選択的に形成された厚
さ20〜50nmの厚みを有する銅より構成される第2
導電膜4A、フォトレジストより構成される500〜1
500nmの厚みを有する第2マスク膜7より構成され
る構造を形成する。従来、銅を残渣やデポジション物の
付着なしに除去するには高温での反応性イオンエッチン
グが必要であったが、本実施例では第2導電膜4Aが薄
く、さらにメッキ前に残渣やデポジション物を除去でき
るため必要とはならない。
First, as shown in FIG. 2A, a thickness 500 is formed on the semiconductor substrate 1 by using the same method as that of the first embodiment.
nm silicon oxide film 2, a first conductive film 3A made of 100 nm thick titanium nitride formed by a reactive sputtering method using N 2 gas, and a selectively formed thickness of 20 to 50 nm. Second composed of thick copper
500 to 1 composed of conductive film 4A and photoresist
A structure composed of the second mask film 7 having a thickness of 500 nm is formed. Conventionally, reactive ion etching at a high temperature was required to remove copper without depositing residues or deposits. However, in the present embodiment, the second conductive film 4A is thin, and the residues and deposits are not removed before plating. It is not necessary because the position object can be removed.

【0028】続いて図2(b)の通り、電解銅メッキ法
によりメッキ膜8Aを露出している第2導電膜4A上に
選択的に500〜15000nmの厚みで形成する。電
解銅メッキは硫酸、硫酸銅、塩素を主成分とし、これに
平坦化剤、pH安定化剤などの添加剤が含まれているメ
ッキ液を使用し、メッキ温度20〜50℃、電流密度1
〜10mA/cm2 の条件で行う。
Subsequently, as shown in FIG. 2B, a plating film 8A is selectively formed with a thickness of 500 to 15000 nm on the exposed second conductive film 4A by an electrolytic copper plating method. Electrolytic copper plating uses a plating solution containing sulfuric acid, copper sulfate, and chlorine as main components and additives such as a flattening agent and a pH stabilizer, and a plating temperature of 20 to 50 ° C. and a current density of 1
It is performed under the condition of 10 mA / cm 2 .

【0029】さらに図2(c)のごとく、O2 プラズマ
を用いたアッシング法や有機溶剤を用いた剥離法により
第2マスク膜7を除去し、さらにメッキ膜8Aをエッチ
ングマスクとして、CCl4 等の塩素系ガスをもちいた
反応性イオンエッチング法により露出した第1導電膜3
Aを除去して配線パターン化する。第2マスク膜7を除
去すると、その下層には反応性エッチングがしにくい銅
より構成される第2導電膜ではなく第1導電膜のみが存
在するため、エッチングが容易でごみの発生も大幅に低
減できる。さらに従来必要であった銅の高温エッチング
工程が不要になった事で、コロージョンの発生も抑制で
きる。このようにして形成された配線は寸法変化が少な
く、すそ引きのない矩形で、不要部分の除去工程でのご
み発生が極めて少ないため、従来の製造方法と比較して
安定した電気特性を持つ微細な配線が高い歩留りで得ら
れる事は第1の実施例と同様である。
Further, as shown in FIG. 2C, the second mask film 7 is removed by an ashing method using O 2 plasma or a peeling method using an organic solvent, and CCl 4 or the like is used with the plating film 8A as an etching mask. First conductive film 3 exposed by the reactive ion etching method using the chlorine-based gas
A is removed to form a wiring pattern. When the second mask film 7 is removed, only the first conductive film, not the second conductive film made of copper, which is difficult to reactively etch, is present in the lower layer, so that the etching is easy and the generation of dust is significantly increased. It can be reduced. Further, since the high temperature etching step of copper, which has been necessary in the past, is no longer necessary, the occurrence of corrosion can be suppressed. The wiring formed in this way has a small dimensional change, is a rectangular shape without tailing, and generates very little dust during the process of removing unnecessary parts, so it has a stable electrical characteristic compared with conventional manufacturing methods. Similar to the first embodiment, it is possible to obtain high-quality wiring with high yield.

【0030】[0030]

【発明の効果】以上説明したように本発明の半導体装置
の製造方法は、実際のメッキ用マスクとなる第2マスク
膜を、その上層に形成した第1マスク膜およびエッチン
グマスク膜を用いてパターニングするため、下層に存在
する第2導電膜からの反射光の影響を受けず、形状が良
好で寸法制御性のよい安定した電気特性を有する微細な
メッキ配線の形成が可能となる。さらに第2導電膜の不
要部分除去をメッキ配線形成前に行うため、ごみの発生
を大きく低減でき、配線ショートによる不良の発生を大
幅に抑制できるため、製造工程での歩留りの改善をはか
れるという効果がある。
As described above, according to the method of manufacturing a semiconductor device of the present invention, the second mask film serving as an actual plating mask is patterned using the first mask film and the etching mask film formed thereabove. Therefore, it is possible to form fine plated wiring having a good shape, good dimensional controllability, and stable electrical characteristics without being affected by reflected light from the second conductive film existing in the lower layer. Further, since the unnecessary portion of the second conductive film is removed before forming the plated wiring, the generation of dust can be greatly reduced, and the generation of defects due to wiring short-circuiting can be significantly suppressed, so that the yield in the manufacturing process can be improved. There is.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を製造工程順に示した半
導体チップの断面図。
FIG. 1 is a cross-sectional view of a semiconductor chip showing a first embodiment of the present invention in the order of manufacturing steps.

【図2】本発明の第2の実施例を製造工程順に示した半
導体チップの断面図。
FIG. 2 is a cross-sectional view of a semiconductor chip showing a second embodiment of the present invention in the order of manufacturing steps.

【図3】従来の半導体装置の製造方法を製造工程順に示
した半導体チップの断面図。
FIG. 3 is a cross-sectional view of a semiconductor chip showing a conventional semiconductor device manufacturing method in the order of manufacturing steps.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 シリコン酸化膜 3,3A 第1導電膜 4,4A 第2導電膜 5 第1マスク膜 6 エッチングマスク膜 7 第2マスク膜 8,8A メッキ膜 1 semiconductor substrate 2 silicon oxide film 3, 3A first conductive film 4, 4A second conductive film 5 first mask film 6 etching mask film 7 second mask film 8, 8A plating film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に絶縁膜とバリアおよび密
着用の第1導電膜と給電用の第2導電膜と第1マスク膜
とエッチングマスク膜とを順次形成する工程と、このエ
ッチングマスク膜をパターニングしてメッキ膜形成領域
に残したのち前記第1マスク膜と前記第2導電膜の不要
部分を除去する工程と、前記エッチングマスク膜を除去
したのち露出した第1マスク膜表面を含む全面に第2マ
スク膜を形成する工程と、この第2マスク膜をエッチバ
ックし前記第1マスク膜の頭部を露出させる工程と、頭
部が露出したこの第1マスク膜を除去し前記第2導電膜
を露出させる工程と、前記第2マスク膜をメッキマスク
として電解あるいは無電解メッキを行い露出した前記第
2導電膜上にメッキ膜を選択的に形成する工程とを含む
ことを特徴とする半導体装置の製造方法。
1. A step of sequentially forming an insulating film, a barrier, a first conductive film for adhesion, a second conductive film for power supply, a first mask film and an etching mask film on a semiconductor substrate, and the etching mask film. Patterning to leave an unnecessary portion of the first mask film and the second conductive film after being left in the plating film formation region, and the entire surface including the exposed first mask film surface after removing the etching mask film A step of forming a second mask film on the first mask film, a step of etching back the second mask film to expose the head portion of the first mask film, and a step of removing the first mask film with the exposed head portion to remove the second mask film. And a step of selectively forming a plating film on the exposed second conductive film by performing electrolytic or electroless plating using the second mask film as a plating mask. Half A method for manufacturing a conductor device.
JP26582191A 1991-10-15 1991-10-15 Manufacture of semiconductor device Pending JPH05109714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26582191A JPH05109714A (en) 1991-10-15 1991-10-15 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26582191A JPH05109714A (en) 1991-10-15 1991-10-15 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH05109714A true JPH05109714A (en) 1993-04-30

Family

ID=17422527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26582191A Pending JPH05109714A (en) 1991-10-15 1991-10-15 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH05109714A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5429994A (en) * 1993-07-22 1995-07-04 Mitsubishi Denki Kabushiki Kaisha Wiring forming method, wiring restoring method and wiring pattern changing method
JPH0936064A (en) * 1995-07-24 1997-02-07 Lg Semicon Co Ltd Selective copper vapor deposition method for semiconductor element
JP2004304167A (en) * 2003-03-20 2004-10-28 Advanced Lcd Technologies Development Center Co Ltd Wiring, display device and method for forming the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5429994A (en) * 1993-07-22 1995-07-04 Mitsubishi Denki Kabushiki Kaisha Wiring forming method, wiring restoring method and wiring pattern changing method
JPH0936064A (en) * 1995-07-24 1997-02-07 Lg Semicon Co Ltd Selective copper vapor deposition method for semiconductor element
JP2004304167A (en) * 2003-03-20 2004-10-28 Advanced Lcd Technologies Development Center Co Ltd Wiring, display device and method for forming the same
US8110748B2 (en) 2003-03-20 2012-02-07 Toshiba Mobile Display Co., Ltd. Wiring, display device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US6958547B2 (en) Interconnect structures containing conductive electrolessly deposited etch stop layers, liner layers, and via plugs
JPH05206135A (en) Manufacture of semiconductor device
JP2000156406A (en) Semiconductor device and its manufacture
JPH05315332A (en) Semiconductor device and manufacture thereof
JPH05109714A (en) Manufacture of semiconductor device
JP2639369B2 (en) Method for manufacturing semiconductor device
JPH05315336A (en) Manufactue of semiconductor device
JP4646346B2 (en) Manufacturing method of electronic device
KR20100011799A (en) Method of manufacturing semiconductor device
JP2737762B2 (en) Method for manufacturing semiconductor device
JP3956118B2 (en) Semiconductor device manufacturing method and semiconductor device
JPH06236880A (en) Forming method of metal wiring
JPH06120357A (en) Semiconductor device and manufacture thereof
JP3519641B2 (en) Semiconductor device having gold wiring and method of manufacturing the same
JPH11238732A (en) Wiring structure and formation of bonding pad opening
JPH0799199A (en) Manufacture for semiconductor device
JP2929850B2 (en) Method for manufacturing semiconductor device
KR100790739B1 (en) Formation method of pad in semiconductor device
JP3211287B2 (en) Method for manufacturing semiconductor device
JPH05211242A (en) Semiconductor device and its manufacture
JPH04196429A (en) Manufacture of integrated circuit
JP2002246393A (en) Method of forming metal wiring
KR970004427B1 (en) A method for forming metal layer for semiconductor devices
JP2001274159A (en) Method of manufacturing semiconductor device
JPH0645283A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000321