JPH05109519A - High corrosion resistant rare earth magnet and manufacture thereof - Google Patents

High corrosion resistant rare earth magnet and manufacture thereof

Info

Publication number
JPH05109519A
JPH05109519A JP3299732A JP29973291A JPH05109519A JP H05109519 A JPH05109519 A JP H05109519A JP 3299732 A JP3299732 A JP 3299732A JP 29973291 A JP29973291 A JP 29973291A JP H05109519 A JPH05109519 A JP H05109519A
Authority
JP
Japan
Prior art keywords
layer
rare earth
alloy
plating
earth magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3299732A
Other languages
Japanese (ja)
Inventor
Hiroshi Sato
廣士 佐藤
Haruo Tomari
治夫 泊里
Fumihiro Sato
文博 佐藤
Atsushi Hanaki
敦司 花木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3299732A priority Critical patent/JPH05109519A/en
Publication of JPH05109519A publication Critical patent/JPH05109519A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To prevent the cracking of the surface of magnets or the like induced by hydrogen occlusion or the like and maintain excellent magnetic properties for a long time by forming the lowest layer with Sn and a metal coated layer plated with Ni or Ni alloy on the surface layer on the surface of RE-B-Fe group sintered rare earth magnets or the surface of RE-TM-B group hot processing rare earth magnets. CONSTITUTION:An Sn layer is formed on the surface of RE-B Fe group sintered rare earth magnets or RE-TM-B group hot processing rare earth magnets as a base layer. An Ni or Ni alloy layer is formed thereon based on an electric plating process or an electroless plating process or the like. In this case, the Sn layer has an excellent hydrogen transmission inhibiting action and prevents the generation of hydrogen embrittlement as hydrogen invades into the magnets when forming the Ni or the Ni alloy layer. It is, therefore, possible to enhance the adhesion properties with composite metal coated layers and inhibit the generation of plating crack or plate separation and enhance the corrosion resistance of the magnets in its turn.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は耐食性の改善された希土
類磁石およびその製法に関し、詳細には希土類磁石の表
面に最下層がSn、表面層がNiまたはNi合金めっき
層からなる複層構造の金属被覆層を形成し、これらの複
合構成により耐食性を高めて優れた磁気特性を長期間維
持できる様にした高耐食性希土類磁石およびその製法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth magnet having improved corrosion resistance and a method for producing the same, and more specifically, it has a multi-layer structure in which the bottom layer of the rare earth magnet is Sn and the surface layer is a Ni or Ni alloy plating layer. The present invention relates to a highly corrosion-resistant rare-earth magnet in which a metal coating layer is formed and a composite structure thereof can enhance corrosion resistance to maintain excellent magnetic properties for a long time, and a method for producing the same.

【0002】[0002]

【従来の技術】磁石合金は、大型コンピューターの周辺
機器から一般家庭用の各種電気製品等の電気もしくは電
子部品用材料として幅広く利用されているが、特に近年
におけるコンピューターや電気製品の小型化、高性能化
の要求に伴って、磁石合金に対する磁気特性や耐食性等
の要求性能はますます高度のものになっている。
2. Description of the Related Art Magnet alloys are widely used as materials for electric or electronic parts such as peripherals of large computers and various electric appliances for general household use. Along with the demand for higher performance, the required properties such as magnetic properties and corrosion resistance for magnet alloys are becoming more and more advanced.

【0003】こうした中にあって前述の希土類磁石は磁
気特性に優れたものであると期待されている。ところが
この希土類磁石は、非常に活性の高い希土類元素を含有
するばかりでなく、REリッチ相とFeリッチ相が混在
する合金であるため、両相間の電位差による局部電池の
影響も加わって非常にさびやすい。従って実用化に当た
っては防錆のための表面処理が不可欠であり、たとえば
NiやZnなどの金属やそれらの合金をめっきする方
法;りん酸塩処理やクロメート処理等の化成処理を施す
方法;浸漬法やスプレー法等によりエポキシ系樹脂やア
クリル系樹脂等の樹脂コーティングを施す方法等が提案
されている。これらの中で現在汎用されているのは、複
雑な設備を要することなく比較的安価に実施することの
できるNiめっきあるいはNi−P等のNi合金めっき
法である。
Under such circumstances, the above-mentioned rare earth magnet is expected to have excellent magnetic properties. However, since this rare earth magnet not only contains a highly active rare earth element but also an alloy in which a RE-rich phase and an Fe-rich phase coexist, it is extremely rusted due to the influence of the local battery due to the potential difference between the two phases. Cheap. Therefore, for practical use, surface treatment for rust prevention is indispensable. For example, a method of plating a metal such as Ni or Zn or an alloy thereof; a method of applying a chemical conversion treatment such as a phosphate treatment or a chromate treatment; a dipping method. A method of applying a resin coating such as an epoxy resin or an acrylic resin by a spray method or the like has been proposed. Among these, the ones currently widely used are Ni plating or Ni alloy plating methods such as Ni-P, which can be carried out relatively inexpensively without requiring complicated equipment.

【0004】[0004]

【発明が解決しようとする課題】しかしながらNi等の
金属もしくは合金をめっきする方法では、必ずしも満足
のいくめっき密着性および耐食性は得られない。その1
つの理由は次の様に考えることができる。即ちRE−B
−Fe系焼結希土類磁石またはRE−TM−B系熱間加
工希土類磁石は水素吸蔵性が高く、水素吸蔵によって脆
化する性質があるので、NiまたはNi合金めっき法を
採用すると、めっき時に発生する水素が希土類磁石中に
吸蔵されてめっき界面で脆化割れを起こし、めっき密着
性が低下するばかりでなく、永年の使用でめっき層と磁
石の界面で発錆し、めっき割れやめっき剥離を起こし、
耐食性を維持できなくなる。しかも焼結体である希土類
磁石はそれ自体非常に脆弱であるため、めっき層に生じ
る応力によって磁石界面が割れを起こしてめっき剥離を
誘発することも、高耐食性を維持できない大きな原因に
なっているものと考えられる。
However, the method of plating a metal or alloy such as Ni cannot always obtain satisfactory plating adhesion and corrosion resistance. Part 1
One reason can be thought of as follows. That is, RE-B
-Fe-based sintered rare earth magnets or RE-TM-B hot-worked rare earth magnets have a high hydrogen storage property and have the property of being brittle due to hydrogen storage. Therefore, when Ni or Ni alloy plating method is adopted, it occurs during plating. Hydrogen that is stored in the rare earth magnet causes embrittlement cracking at the plating interface, reducing the plating adhesion and rusting at the interface between the plating layer and the magnet due to long-term use, resulting in plating cracking and plating peeling. Awake,
Corrosion resistance cannot be maintained. Moreover, since the rare earth magnet, which is a sintered body, is very fragile in itself, stress generated in the plating layer causes cracks at the magnet interface and induces plating delamination, which is also a major cause of failure to maintain high corrosion resistance. Thought to be a thing.

【0005】本発明は上記の様な状況に着目してなされ
たものであって、その目的は、水素吸蔵等による磁石表
面の割れ等の問題を生じることなく、しかもめっき割れ
やめっき剥離等を生じることなく表面保護層を強固に密
着させることができ、それにより優れた磁気特性を長期
的に維持し得る様な高耐食性希土類磁石およびその製法
を提供しようとするものである。
The present invention has been made by paying attention to the above situation, and its purpose is to prevent plating cracks and plating peeling without causing problems such as cracks on the magnet surface due to hydrogen absorption. An object of the present invention is to provide a highly corrosion-resistant rare earth magnet and a method for producing the same, in which the surface protective layer can be firmly adhered to the surface protective layer without causing it, and thereby excellent magnetic properties can be maintained for a long period of time.

【0006】[0006]

【課題を解決するための手段】上記課題を解決すること
のできた本発明の構成は、RE−B−Fe系焼結希土類
磁石またはRE−TM−B系熱間加工希土類磁石の表面
に、最下層がSn、表面層がNiまたはNi合金めっき
からなる複層構造の金属被覆層が形成されたものである
ところに要旨を有するものである。また本発明において
は、上記Sn層とNiまたはNi合金層との間に、Ni
よりも電位的に貴な金属もしくは該金属の合金よりなる
中間層を形成することによって、耐食性を更に高めるこ
とができる。また上記Sn層とNiまたはNi合金層の
他、それらの間にSn−Ni系合金層を形成することに
よって被覆特性を一段と高めることができ、この様な複
層構造の金属被覆層は、RE−B−Fe系焼結希土類磁
石またはRE−TM−B系熱間加工希土類磁石の表面に
Sn層、次いでNiまたはNi合金層を順次形成した
後、これをSnの融点未満の温度で熱処理して相互拡散
させることによって容易に得ることができる。
The constitution of the present invention which has been able to solve the above-mentioned problems is that the RE-B-Fe system sintered rare earth magnet or the RE-TM-B system hot-worked rare earth magnet has a surface The gist is that the lower layer is a metal coating layer having a multilayer structure in which the lower layer is Sn and the surface layer is Ni or Ni alloy plating. Further, in the present invention, Ni is provided between the Sn layer and the Ni or Ni alloy layer.
Corrosion resistance can be further enhanced by forming an intermediate layer made of a metal or an alloy of the metal which is more noble in terms of potential. In addition to the Sn layer and the Ni or Ni alloy layer, a Sn-Ni alloy layer may be formed between them to further improve the coating characteristics. After a Sn layer and then a Ni or Ni alloy layer were sequentially formed on the surface of a —B—Fe-based sintered rare earth magnet or a RE-TM-B-based hot-worked rare earth magnet, this was heat-treated at a temperature lower than the melting point of Sn. It can be easily obtained by mutual diffusion.

【0007】[0007]

【作用】本発明に係る高耐食性希土類磁石の基本的構成
は、上記の様な希土類磁石の表面に、最下層がSn、表
面層がNiまたはNi合金よりなる複層構造の金属被覆
層を形成してなるものである。まず最下層に形成される
Sn層は、優れた水素透過抑制作用を有しており、下地
層としてSn層を形成しておくことによって、その上に
電気めっき法や無電解めっき法等によってNiまたはN
i合金層を形成する際に生成する水素が磁石中に侵入し
て水素脆化を起こすのを防止する。しかもSnは軟質で
あるのでSn層自身に内部応力を生じることがなく、且
つその上に形成されるNiまたはNi合金層との境界部
に生じる応力も緩和する作用があり、それらの相加的乃
至相乗的作用効果によって複層金属被覆層の磁石に対す
る密着性が著しく高められると共に、めっき割れやめっ
き剥離が抑えられ、ひいては磁石の耐食性を大幅に改善
することが可能となる。
The basic structure of the highly corrosion-resistant rare earth magnet according to the present invention is to form a metal coating layer having a multilayer structure in which the bottom layer is Sn and the surface layer is Ni or Ni alloy on the surface of the rare earth magnet as described above. It will be done. First, the Sn layer formed as the lowermost layer has an excellent effect of suppressing hydrogen permeation, and by forming the Sn layer as an underlayer, the Ni layer is formed thereon by electroplating or electroless plating. Or N
This prevents hydrogen generated when forming the i alloy layer from penetrating into the magnet and causing hydrogen embrittlement. In addition, since Sn is soft, it does not cause internal stress in the Sn layer itself, and also has a function of relaxing the stress generated at the boundary with the Ni or Ni alloy layer formed thereon, and the additive stress between them is added. Through the synergistic effect, the adhesion of the multi-layered metal coating layer to the magnet can be remarkably enhanced, plating cracks and plating peeling can be suppressed, and the corrosion resistance of the magnet can be greatly improved.

【0008】但しSnの防食作用はNiまたはNi合金
に比較するとかなり劣っており、Sn単独被覆層では希
土類磁石の耐食性を十分に高めることができない。そこ
で本発明ではSn層はあくまでも下地層として形成し、
本来の耐食性は表面層として形成されるNiまたはNi
合金層によって確保することとしている。そしてSn層
とNiまたはNi合金層の複合効果によって、被覆層全
体としての防食性能を飛躍的に高めることができたので
ある。
However, the anticorrosion effect of Sn is considerably inferior to that of Ni or Ni alloy, and the Sn alone coating layer cannot sufficiently enhance the corrosion resistance of the rare earth magnet. Therefore, in the present invention, the Sn layer is formed as a base layer,
The original corrosion resistance is Ni or Ni formed as the surface layer.
It will be secured by the alloy layer. Then, the combined effect of the Sn layer and Ni or Ni alloy layer was able to dramatically improve the anticorrosion performance of the entire coating layer.

【0009】上記Sn層の形成方法としては、例えば真
空蒸着法、イオンプレーティング法、イオン蒸着膜形成
法(IVD法)、プラズマ蒸着膜形成法(CVD法)等
の気相めっき法、電気めっき法、溶融めっき法等の様々
の方法を採用することができる。但しめっき工程で多量
の水素発生を伴う無電解めっき法は、磁石の水素脆化を
起こす原因になるので好ましくない。
Examples of the method of forming the Sn layer include vapor deposition methods such as vacuum deposition method, ion plating method, ion deposition film formation method (IVD method), plasma deposition film formation method (CVD method), and electroplating. Various methods such as a hot dip method and a hot dip plating method can be adopted. However, the electroless plating method involving a large amount of hydrogen generation in the plating step is not preferable because it causes hydrogen embrittlement of the magnet.

【0010】上記方法のうち電気めっき法を採用する場
合は、アルカリ浴、フェロスタン浴、硫酸酸性浴、ほう
ふっ酸酸性浴の様な通常のSnめっき浴を使用すればよ
く、浴温度、電流密度、添加剤の種類や添加量等は、め
っき効率やめっき厚さ、目標とするめっき応力低減効果
等を考慮して適宜選定すればよい。 該Sn層の厚さは
2μm程度以上にするのがよく、薄過ぎる場合は水素透
過抑制効果が十分に発揮されず、その上にNiまたはN
i合金層を形成する際、あるいはその後の腐食反応時に
発生する水素による磁石表面の水素脆化抑制効果が不十
分になるばかりでなく、該NiまたはNi合金層と磁石
表面の間の応力緩和効果も不足気味となる。
When the electroplating method is adopted among the above methods, a normal Sn plating bath such as an alkaline bath, a ferrostane bath, a sulfuric acid acid bath, and a borofluoric acid acid bath may be used. The type and amount of the additive may be appropriately selected in consideration of the plating efficiency, the plating thickness, the target effect of reducing the plating stress, and the like. The thickness of the Sn layer is preferably about 2 μm or more. If it is too thin, the effect of suppressing hydrogen permeation is not sufficiently exerted, and Ni or N
Not only is the effect of suppressing hydrogen embrittlement on the magnet surface due to hydrogen generated during the formation of the i alloy layer or subsequent corrosion reaction insufficient, but also the stress relaxation effect between the Ni or Ni alloy layer and the magnet surface. Also becomes a shortage.

【0011】次に表面層として形成されるNiまたはN
i合金層の形成方法としては、上記Sn層の場合と同様
に真空蒸着法、イオンプレーティング法、イオン蒸着膜
形成法(IVD法)、プラズマ蒸着膜形成法(CVD
法)等の気相めっき法、あるいは電気めっき法等を採用
することができ、更にこのめっき工程では、下地層とし
てSn層が形成されているので、相当量の水素発生を伴
う電解めっき法や無電解めっき法を採用することもでき
る。
Next, Ni or N formed as a surface layer
As the method of forming the i alloy layer, as in the case of the Sn layer, a vacuum vapor deposition method, an ion plating method, an ion vapor deposition film formation method (IVD method), a plasma vapor deposition film formation method (CVD
Method) or an electroplating method. Further, in this plating step, since the Sn layer is formed as the underlayer, an electrolytic plating method involving a considerable amount of hydrogen generation or An electroless plating method can also be adopted.

【0012】ここで採用される電解めっきは、市販のワ
ット浴もしくはその改良品である種々のNiめっき浴、
あるいはNi−P、Ni−B等のNi合金めっき浴を用
いて行なうことができ、めっき浴のpHや電流密度等の
めっき条件は、めっき効率や目標めっき厚さ等に応じて
適宜選定すればよい。また無電解めっき法を採用する場
合についても、通常の無電解Niめっき浴、あるいはN
i−P,Ni−B,Ni−W−P等の無電解Ni合金め
っき浴を使用すればよい。該NiまたはNi合金層の好
ましい厚さは2μm以上であり、薄過ぎる場合はピンホ
ール欠陥を完全に解消することができず、十分な耐食性
が得られ難くなる。
The electrolytic plating adopted here is various Ni plating baths which are commercially available Watts baths or their improved products,
Alternatively, it can be performed using a Ni alloy plating bath such as Ni-P or Ni-B, and the plating conditions such as pH and current density of the plating bath can be appropriately selected according to the plating efficiency, the target plating thickness and the like. Good. Even when the electroless plating method is adopted, a normal electroless Ni plating bath or N
An electroless Ni alloy plating bath such as iP, Ni-B, and Ni-WP may be used. The preferable thickness of the Ni or Ni alloy layer is 2 μm or more. If it is too thin, pinhole defects cannot be completely eliminated, and it becomes difficult to obtain sufficient corrosion resistance.

【0013】またSn層とNiまたはNi合金層との好
ましいトータル厚さは5〜15μmの範囲であり、この
範囲であればピンホール欠陥のない防食性能の優れた複
層被膜を得ることができる。この場合、本発明の上記特
性をより効果的に発揮させるには、(NiまたはNi合
金層)/Sn層の厚み比を1以下とすることが望まれ
る。その理由は、Sn層は前述の如くNiもしくはNi
合金層の密着性を高める為の下地層として形成されるも
のであり、腐食環境下における本来の耐食性はNiまた
はNi合金層によって発揮されるものであるからであ
る。
The preferable total thickness of the Sn layer and the Ni or Ni alloy layer is in the range of 5 to 15 μm, and in this range, a multi-layer coating film free of pinhole defects and excellent in anticorrosion performance can be obtained. .. In this case, the thickness ratio of (Ni or Ni alloy layer) / Sn layer is desired to be 1 or less in order to more effectively exhibit the above characteristics of the present invention. The reason is that the Sn layer is Ni or Ni as described above.
This is because it is formed as a base layer for enhancing the adhesiveness of the alloy layer, and the original corrosion resistance in a corrosive environment is exhibited by the Ni or Ni alloy layer.

【0014】この様に本発明では、下地層としてSn層
を形成しその上にNiまたはNi合金層を形成して2層
構造の被覆層によって磁石表面を保護するのが基本的な
考え方であるが、上記Sn層とNiまたはNi合金層の
間に、Niよりも電位的に貴な金属、例えばCu等やそ
の合金等を中間層として形成してやれば、被覆層全体と
しての耐食性を更に高めることができるので好ましい。
As described above, in the present invention, the basic idea is to form the Sn layer as the underlayer, form the Ni or Ni alloy layer on the Sn layer, and protect the magnet surface with the coating layer having a two-layer structure. However, if a metal nobler nobler than Ni, such as Cu or its alloy, is formed as an intermediate layer between the Sn layer and the Ni or Ni alloy layer, the corrosion resistance of the entire coating layer is further enhanced. It is possible to do so, which is preferable.

【0015】またSn層とNiまたはNi合金層との間
に、Sn−Ni系合金層を形成して3層以上の複層構造
の被覆層とすることも、耐食性を高める上で極めて効果
的である。即ちSn層に対するNiまたはNi合金層の
密着性は必ずしも良好であるとは言えず、殊にSn層表
面が酸化を受けている場合は、NiまたはNi合金層と
の密着性が不足気味となり、積層界面で層間剥離を起こ
す恐れがある。しかしこの様な懸念は、上記Sn層とN
iまたはNi合金層との間にSn−Ni系合金層を形成
することによって解消することができる。即ちSn−N
i系合金は、下層側のSn及び上層側のNiまたはNi
合金の双方に対して優れた親和性を有しているので、こ
れを中間層として形成することにより両層の密着性が高
められるばかりでなく、めっき層内に生じる応力はめっ
き層の下層側に行くにつれて段階的に吸収されるため、
めっき層の耐剥離性は一段と高められ、耐食性も更に改
善される。尚、このSn−Ni系合金層は1層だけであ
ってもよく、あるいは2層以上の複層とすることももち
ろん可能である。
It is also extremely effective to enhance the corrosion resistance by forming a Sn-Ni alloy layer between the Sn layer and the Ni or Ni alloy layer to form a coating layer having a multilayer structure of three or more layers. Is. That is, it cannot be said that the adhesion of the Ni or Ni alloy layer to the Sn layer is necessarily good, and particularly when the surface of the Sn layer is oxidized, the adhesion to the Ni or Ni alloy layer tends to be insufficient, Delamination may occur at the stacking interface. However, such concerns are caused by the Sn layer and N
This can be solved by forming a Sn—Ni based alloy layer between the i or Ni alloy layer. That is, Sn-N
The i-based alloy includes Sn on the lower layer side and Ni or Ni on the upper layer side.
Since it has an excellent affinity for both alloys, not only can the adhesion between both layers be enhanced by forming this as an intermediate layer, but the stress generated in the plating layer can also be Is gradually absorbed as you go to
The peeling resistance of the plating layer is further enhanced, and the corrosion resistance is further improved. It should be noted that the Sn-Ni alloy layer may be only one layer, or may be a multi-layer having two or more layers.

【0016】Sn−Ni系合金層の形成方法は特に限定
されないが、一般的な方法としては、Sn層上に気相め
っき法によってNiまたはNi合金層を形成するとき
に、基板を適当な温度に加熱しておき、あるいは気相め
っき等の後に加熱処理をほどこし、相互拡散によって積
層界面にSn−Ni系合金層を形成する方法が挙げられ
る。またNiまたはNi合金層を電気めっき法や無電解
めっき法によって形成する場合は、めっき後の加熱処理
によって積層界面にSn−Ni系合金層を形成すればよ
い。尚、この時の加熱処理温度がSnの融点を超える
と、Sn層が流動してめっき表面の平滑性が低下するば
かりでなく、複合めっき層中にクラックが発生して密着
性が低下すことがあるので、加熱処理温度はSnの融点
未満に抑えることが望まれる。
The method of forming the Sn-Ni alloy layer is not particularly limited, but as a general method, when forming the Ni or Ni alloy layer on the Sn layer by the vapor phase plating method, the substrate is heated to an appropriate temperature. A method of forming a Sn—Ni based alloy layer at the laminated interface by mutual diffusion by performing heating treatment after heating or after vapor-phase plating. Further, when the Ni or Ni alloy layer is formed by the electroplating method or the electroless plating method, the Sn—Ni alloy layer may be formed at the laminated interface by the heat treatment after plating. If the heat treatment temperature at this time exceeds the melting point of Sn, not only the Sn layer will flow and the smoothness of the plating surface will decrease, but also cracks will occur in the composite plating layer and the adhesion will decrease. Therefore, it is desirable that the heat treatment temperature be kept below the melting point of Sn.

【0017】またSn層自身の耐食性は、前述の如く必
ずしも十分なものであるとは言えず、その上に形成され
るNiまたはNi合金層に引っ掻き傷等ができたとき
に、その部分から急速に腐食が進行することが懸念され
る。しかしこうした懸念は、Sn層とNiまたはNi合
金層の間に、Niよりも電位的に貴な金属、たとえばC
u,Ti,Crやそれらの合金等からなる耐食性強化層
を中間層として形成しておくことによって解消できる。
Further, the corrosion resistance of the Sn layer itself is not always sufficient as described above, and when the Ni or Ni alloy layer formed on the Sn layer is scratched, the corrosion resistance of the Sn layer is rapidly increased. It is feared that corrosion will progress. However, such a concern is caused between the Sn layer and the Ni or Ni alloy layer by using a metal that is more noble than Ni, such as C.
This can be solved by forming an anticorrosion layer made of u, Ti, Cr or alloys thereof as an intermediate layer.

【0018】本発明は以上の様に構成されおり、RE−
B−Fe系焼結希土類磁石またはRE−TM−B系熱間
加工希土類磁石の表面に下地層としてSn層を形成し、
その上にNiまたはNi合金めっき層を形成し、より好
ましくはこれら両層の間にNiよりも貴な金属もしくは
合金層、あるいはSn−Ni系合金層を中間層として形
成することによって、表面保護層の密着性を著しく高め
ることができ、NiまたはNi合金めっき層の優れた防
食効果とも相まって高レベルの耐食性を得ることができ
るが、上記NiまたはNi合金めっき層の表面に更にク
ロメート処理等の化成処理や酸化処理、有機コーティン
グ処理等を施して耐食性を更に高めることも有効であ
る。
The present invention is constructed as described above, and the RE-
An Sn layer is formed as a base layer on the surface of the B-Fe-based sintered rare earth magnet or the RE-TM-B hot-working rare earth magnet,
A Ni or Ni alloy plating layer is formed thereon, and more preferably, a metal or alloy layer nobler than Ni or a Sn—Ni alloy layer is formed between these layers as an intermediate layer to protect the surface. The adhesion of the layer can be remarkably enhanced, and a high level of corrosion resistance can be obtained in combination with the excellent anticorrosion effect of the Ni or Ni alloy plating layer. However, the surface of the Ni or Ni alloy plating layer can be further subjected to chromate treatment or the like. It is also effective to further enhance the corrosion resistance by applying chemical conversion treatment, oxidation treatment, organic coating treatment, or the like.

【0019】次に本発明で使用されるRE−B−Fe系
焼結希土類磁石及びRE−TM−B系熱間加工希土類磁
石について説明する。まずRE−B−Fe系焼結希土類
磁石は、希土類元素の少なくとも1種とB及びFeを必
須元素として含むものであり、REで示される希土類元
素としては、Pr,Nd,La,Ce,Td,Dy,H
o,Er,Eu,Sm,Gd,Pm,Tm,Yb,L
u,Yなどを挙げることができ、これらは単独で使用し
てもよく或は必要により2種以上を併用することもでき
る。上記希土類元素の中でも特に好ましいのはPrとN
dである。
Next, the RE-B-Fe system sintered rare earth magnet and the RE-TM-B system hot-worked rare earth magnet used in the present invention will be explained. First, the RE-B-Fe based sintered rare earth magnet contains at least one kind of rare earth element and B and Fe as essential elements, and the rare earth element represented by RE is Pr, Nd, La, Ce, Td. , Dy, H
o, Er, Eu, Sm, Gd, Pm, Tm, Yb, L
Examples thereof include u and Y, and these may be used alone or, if necessary, may be used in combination of two or more kinds. Among the above rare earth elements, Pr and N are particularly preferable.
It is d.

【0020】これらRE−B−Fe系焼結希土類磁石中
に占めるREの好ましい含有量(以下、特記しない限り
原子%を意味する)は8〜30%であり、8%未満では
十分な保磁力が得られにくく、30%を超えると残留磁
束密度が不足気味となる。またBの好ましい含有率は2
〜28%であり、2%未満では十分な保磁力が得られ難
く、一方28%を超えると残留磁束密度が不十分とな
る。Feは40〜90%の範囲が好ましく、40%未満
では残留磁束密度が不足気味となり、一方90%を超え
ると高レベルの保磁力が得られ難くなる。
A preferable content of RE in these RE-B-Fe sintered rare earth magnets (hereinafter referred to as atomic% unless otherwise specified) is 8 to 30%, and if it is less than 8%, a sufficient coercive force is obtained. Is difficult to obtain, and if it exceeds 30%, the residual magnetic flux density tends to be insufficient. Further, the preferable content ratio of B is 2
If it is less than 2%, it is difficult to obtain a sufficient coercive force, and if it exceeds 28%, the residual magnetic flux density becomes insufficient. Fe is preferably in the range of 40 to 90%, and if it is less than 40%, the residual magnetic flux density tends to be insufficient, while if it exceeds 90%, it becomes difficult to obtain a high level of coercive force.

【0021】尚上記RE−B−Fe系焼結希土類磁石に
おいては、Feの一部をCoやNiで置換することもで
きる。しかしCoの置換量が多くなり過ぎると高保磁力
が得られにくくなるので、Feに対する置換量は50%
以下に抑えるべきであり、またNi置換量が多くなり過
ぎると残留磁束密度が低下する傾向があるので、Feに
対する置換量は8%以下とすべきである。更にこの磁石
には、他の元素として以下に示す様な元素の1種以上を
Feに置換して含有させることによって保磁力を更に高
めることが可能である(但し、2種以上を併用する場合
の許容含有量は、各添加元素のうち最大値を示すものの
含有量を上限とする。
In the RE-B-Fe system sintered rare earth magnet, part of Fe may be replaced with Co or Ni. However, if the substitution amount of Co becomes too large, it becomes difficult to obtain a high coercive force, so the substitution amount of Fe is 50%.
The residual magnetic flux density tends to decrease when the Ni substitution amount becomes too large, so the substitution amount for Fe should be 8% or less. Further, in this magnet, the coercive force can be further enhanced by substituting Fe with at least one of the following elements as the other element (provided that two or more elements are used in combination). The upper limit of the permissible content is the content of each additive element having the maximum value.

【0022】Al:9.5%以下、 Ti:4.5%以
下、 V:9.5%以下、Cr:8.5%以下、 M
n:8.0%以下、 Bi:5.0%以下、Nb:9.
5%以下、 Ta:9.5%以下、 Mo:9.5%以
下、W: 9.5%以下、 Sb:2.5%以下、 G
e:7.0%以下、Sn:3.5%以下、 Zr:5.
5%以下、 Ni:9.0%以下、Si:9.0%以
下、 Zn:1.1%以下、 Hf:5.5%以下。
Al: 9.5% or less, Ti: 4.5% or less, V: 9.5% or less, Cr: 8.5% or less, M
n: 8.0% or less, Bi: 5.0% or less, Nb: 9.
5% or less, Ta: 9.5% or less, Mo: 9.5% or less, W: 9.5% or less, Sb: 2.5% or less, G
e: 7.0% or less, Sn: 3.5% or less, Zr: 5.
5% or less, Ni: 9.0% or less, Si: 9.0% or less, Zn: 1.1% or less, Hf: 5.5% or less.

【0023】次にRE−TM−B系熱間加工希土類磁石
は、Yを含む希土類元素(RE)の少なくとも1種と遷
移元素(TM)およびBを必須元素として含むものであ
り、REとしては前記RE−B−Fe系焼結希土類磁石
の構成元素として挙げたものが再び例示されるが、これ
らのうち最も高い磁気的性質はPrを用いたときに、得
られ易いので、実質的にはPrのみ、もしくはREのう
ち50%以上がPrであるものが好ましい。またDyや
Td等の重希土類元素を少量併用することは、保磁力の
向上に有効である。
Next, the RE-TM-B hot-working rare earth magnet contains at least one rare earth element (RE) containing Y, a transition element (TM) and B as essential elements. Those listed as the constituent elements of the RE-B-Fe-based sintered rare earth magnet are exemplified again, but the highest magnetic property among these is easily obtained when Pr is used, so that it is substantially It is preferable to use only Pr or RE in which 50% or more of RE is Pr. Also, the combined use of a small amount of heavy rare earth elements such as Dy and Td is effective for improving the coercive force.

【0024】該RE−TM−B系熱間加工希土類磁石全
量中に占めるREの好ましい含有量は、8〜25%、よ
り好ましくは10〜20%、更に好ましくは12〜18
%の範囲である。REとTMおよびBを基本成分とする
磁石の主相はRE2 TM14B(たとえばPr2 Fe
14B)であるが、REが不足するとこの化合物が形成さ
れず、α−鉄と同一構造の立方晶組織となるため良好な
磁気的特性(特に保磁率)が得られ難く、他方、REが
多過ぎると非磁性のREリッチ相が多くなって残留磁束
密度が低下傾向を示す様になる。
The RE content in the total amount of the RE-TM-B hot-worked rare earth magnet is preferably 8 to 25%, more preferably 10 to 20%, further preferably 12 to 18%.
% Range. The main phase of a magnet having RE, TM and B as its basic components is RE 2 TM 14 B (eg Pr 2 Fe).
14B ), when RE is insufficient, this compound is not formed and a cubic crystal structure having the same structure as α-iron is formed, so that it is difficult to obtain good magnetic properties (especially coercivity). If it is too large, the amount of non-magnetic RE rich phase increases and the residual magnetic flux density tends to decrease.

【0025】次にBの含有量は、2〜8%、より好まし
くは4〜6%が適当である。B量が不足する場合は、R
E−Fe系の菱面体となるため満足な保磁力が得られ難
く、逆に多過ぎるとたとえば非磁性のRE2 Fe4 B相
が析出して残留磁束密度が低くなる。
Next, the content of B is preferably 2 to 8%, more preferably 4 to 6%. If the amount of B is insufficient, R
Since it becomes an E—Fe rhombohedral, it is difficult to obtain a sufficient coercive force. On the other hand, when the coercive force is too large, for example, a nonmagnetic RE 2 Fe 4 B phase is precipitated and the residual magnetic flux density becomes low.

【0026】TMは40〜90%、より好ましくは65
〜90%が適当であり、TM量が不足すると残留磁束密
度が低くなり、また多過ぎると保磁力が不十分となる。
尚、TMのうち最も代表的なものはFeであるが、その
一部をCoおよび/またはNiで代替することができ
る。Coは磁石のキューリー点を上げるのに有効であ
り、基本的には主相のFeサイトを置換してRE2 Co
14Bを形成するが、この化合物は結晶異方性磁界が小さ
く、Coの代替量が多くなるにつれて磁石全体としての
保磁力が低下するので、Feの50%以下、より好まし
くは20%以下に抑えるのがよい。またNiの代替量が
多くなると残留磁束密度が低下する傾向があるので、F
eの8%程度以下に抑えることが望まれる。
TM is 40 to 90%, more preferably 65.
90% is appropriate. If the amount of TM is insufficient, the residual magnetic flux density becomes low, and if it is too large, the coercive force becomes insufficient.
The most typical one of TM is Fe, but a part of it can be replaced with Co and / or Ni. Co is effective in raising the Curie point of the magnet, and basically it replaces the Fe site of the main phase to form RE 2 Co.
14 B is formed, but since this compound has a small crystal anisotropy magnetic field and the coercive force of the magnet as a whole becomes smaller as the substitution amount of Co increases, it becomes 50% or less, more preferably 20% or less of Fe. It is good to suppress. Further, since the residual magnetic flux density tends to decrease as the substitution amount of Ni increases, F
It is desired to suppress it to about 8% or less of e.

【0027】RE−TM−B系熱間加工希土類磁石の基
本的構成元素は上記の通りであるが、必要により更に他
の元素としてAg,Au,Al,Cu,Ga,Sn,P
t,Zn等の1種以上を含有させることにより保磁力を
更に高めることができ、その効果は0.2 %以上の添加で
有効に発揮される。しかし多過ぎると非磁性の粒界相が
増加して磁気特性の低下を招くので2%以下に抑えるべ
きである。
The basic constituent elements of the RE-TM-B hot-worked rare earth magnet are as described above, but if necessary, other elements such as Ag, Au, Al, Cu, Ga, Sn and P are used.
The coercive force can be further increased by containing at least one of t, Zn and the like, and the effect is effectively exhibited by the addition of 0.2% or more. However, if it is too large, the non-magnetic grain boundary phase increases and the magnetic properties are deteriorated. Therefore, it should be suppressed to 2% or less.

【0028】上記元素の中でも特にAg,Au,Al,
Cu,Pt,Sn,Znは結晶組織を微細化し、後述す
るような異方性付与のための熱間加工に伴う表面劣化層
の生成を抑制する作用があり、例えば3mm程度の薄肉形
状のものであっても優れた磁気特性を持った磁石を与え
るという効果を発揮する。
Among the above elements, especially Ag, Au, Al,
Cu, Pt, Sn, and Zn have the effect of refining the crystal structure and suppressing the formation of a surface-deteriorated layer that accompanies hot working for imparting anisotropy as described later. Even in that case, the effect of giving a magnet having excellent magnetic properties is exhibited.

【0029】かくして得られるRE−TM−B系合金
を、好ましくは800℃以上の温度で熱間加工して配向
させると、異方性の永久磁石が得られる。尚、このRE
−TM−B系熱間加工希土類磁石は、耐食性や磁気特性
において前述のRe−B−Fe系焼結希土類磁石よりも
優れた効果を有しているので特に好ましい。
An anisotropic permanent magnet is obtained by hot working the RE-TM-B based alloy thus obtained, preferably at a temperature of 800 ° C. or higher, to orient it. In addition, this RE
The -TM-B hot-worked rare earth magnet is particularly preferable because it has a better effect in corrosion resistance and magnetic properties than the Re-B-Fe sintered rare earth magnet described above.

【0030】本発明では、上記のようなRE−B−Fe
系焼結希土類磁石もしくはRE−TM−B系熱間加工希
土類磁石に、前述のSn層及びNiまたはNi合金めっ
き層(あるいはそれらの中間層としてNiよりも貴な金
属もしくは合金層またはSn−Ni系合金層)を形成す
ることによって、高耐食性の永久磁石を得ることができ
る。
In the present invention, RE-B-Fe as described above is used.
Sintered rare earth magnet or RE-TM-B hot-worked rare earth magnet is added to the above-mentioned Sn layer and Ni or Ni alloy plating layer (or a metal or alloy layer more noble than Ni or Sn-Ni as an intermediate layer between them). By forming the system alloy layer), a highly corrosion-resistant permanent magnet can be obtained.

【0031】すなわち上記の磁石合金は、その中に含ま
れる酸素や希土類元素酸化物の量が非常に少なく、しか
もNiまたはNi合金めっき層はSn層あるいはSn−
Ni系合金層介して強固に密着するので、NiまたはN
i合金層の優れた表面保護効果が遺憾なく発揮される。
その結果、本発明の表面被覆希土類磁石は卓越した耐食
性を示し、高レベルの磁気特性を長期間に渡って維持し
得るものとなる。
That is, in the above magnet alloy, the amount of oxygen and rare earth element oxide contained therein is very small, and the Ni or Ni alloy plating layer is a Sn layer or Sn-.
Since it adheres firmly through the Ni-based alloy layer, Ni or N
The excellent surface protection effect of the i alloy layer is fully exhibited.
As a result, the surface-coated rare earth magnet of the present invention exhibits excellent corrosion resistance and can maintain a high level of magnetic characteristics for a long period of time.

【0032】[0032]

【実施例】実施例1 純度99.9%の鉄粉、純度99.9%のフェロボロン
合金および純度99.7%以上のNdを原料とし、これ
らを配合して高周波溶解した後水冷銅鋳型を用いて鋳造
し、組成がNd147 Fe79の鋳塊を得た。この鋳塊を
スタンプミルで粗粉砕した後ボールミルで微粉砕し、粒
径が2.8〜8μmの微粉末を得た。この微粉末を金型
に装入して、10KOeの磁界中で配向させると共に
1.5t/cm2 の圧力で成形した。
Example 1 Iron powder having a purity of 99.9%, ferroboron alloy having a purity of 99.9%, and Nd having a purity of 99.7% or more were used as raw materials, and these were mixed and subjected to high frequency melting, and then a water-cooled copper mold was formed. Casting was performed to obtain an ingot having a composition of Nd 14 B 7 Fe 79 . The ingot was roughly crushed with a stamp mill and then finely crushed with a ball mill to obtain a fine powder having a particle size of 2.8 to 8 μm. This fine powder was charged into a mold, oriented in a magnetic field of 10 KOe, and molded at a pressure of 1.5 t / cm 2 .

【0033】この成形体を、Ar雰囲気中1100℃で
1時間焼結した後放冷し、その後Ar雰囲気中600℃
で2時間時効処理することにより希土類磁石を得た。得
られた磁石より20mm×30mm×3mmサイズの試
験片を切り出し、表面研磨(No.150)及びアセト
ン脱脂後、表1に示す構造の複合めっき層を形成した。
また従来法に準拠し、Sn層を形成することなくワット
浴を用いて電流密度8A/dm2 でNiめっきを行なっ
たものを比較例として示した。
This compact was sintered in an Ar atmosphere at 1100 ° C. for 1 hour, then allowed to cool, and then 600 ° C. in an Ar atmosphere.
A rare earth magnet was obtained by aging treatment for 2 hours. A test piece of 20 mm × 30 mm × 3 mm size was cut out from the obtained magnet, and after surface polishing (No. 150) and degreasing with acetone, a composite plating layer having a structure shown in Table 1 was formed.
A comparative example is based on the conventional method, in which a Watt bath was used to perform Ni plating at a current density of 8 A / dm 2 without forming a Sn layer.

【0034】上記めっき処理の後夫々着磁処理を行な
い、下記の初期磁気特性を有する供試材を得た。 残留磁束密度(Br)=12.5KG 保磁力(iHc)=12.0KQe エネルギー積(BH)max =35.0MGOe
After the above plating treatment, magnetizing treatment was carried out to obtain a test material having the following initial magnetic characteristics. Residual magnetic flux density (Br) = 12.5 KG Coercive force (iHc) = 12.0 KQe Energy product (BH) max = 35.0 MGOe

【0035】得られた各供試材について下記の方法で断
面観察、耐食性試験及び耐食性試験後の外観観察を行な
った。 (断面観察)耐食性試験前の各試験片を切断し、めっき
層と基板との界面における磁石の割れ発生の有無を調べ
た(〇:割れ無し、×:割れあり)。 (耐食性試験)供試材を125℃×85%RHの恒温恒
湿雰囲気に90時間放置した後、外観(目視観察:〇:
変化なし、△:変色がみとめられる、×:発錆あり)、
めっき密着性(JIS K 5400:碁盤目テープ
法)および磁気特性を調べた。
Cross-section observation, corrosion resistance test, and appearance observation after the corrosion resistance test were performed on each of the obtained test materials by the following methods. (Observation of Cross Section) Each test piece before the corrosion resistance test was cut and examined for the occurrence of cracks in the magnet at the interface between the plating layer and the substrate (◯: no crack, x: crack). (Corrosion resistance test) After leaving the test material for 90 hours in a constant temperature and humidity atmosphere of 125 ° C x 85% RH, the appearance (visual observation: ◯:
No change, △: Discoloration can be seen, ×: Rust occurred),
The plating adhesion (JIS K 5400: cross-cut tape method) and magnetic properties were examined.

【0036】結果を表1に一括して示す。但し、表1に
おける各めっき層の形成法は次の通りである。 Sn層形成法:No.1〜4(電気めっき法:硫酸酸性
浴、2A/dm2 )、No.5〜7(蒸着めっき法) Ni(Ni合金)層形成法:No.1,5(電気めっき
法:ワット浴、8A/dm2 )、No.4(電気めっき
法:市販の光沢剤添加、8A/dm2 )、No.2,6
(蒸着めっき法) Cu層形成法:No.6,7(電気めっき法:シアン
浴、2A/dm2
The results are collectively shown in Table 1. However, the method of forming each plating layer in Table 1 is as follows. Sn layer forming method: No. 1 to 4 (electroplating method: sulfuric acid acid bath, 2 A / dm 2 ), No. 5 to 7 (vapor deposition plating method) Ni (Ni alloy) layer forming method: No. 1, 5 (electroplating method: Watt bath, 8 A / dm 2 ), No. 4 (electroplating method: commercially available brightener addition, 8 A / dm 2 ), No. 4 2,6
(Evaporation plating method) Cu layer forming method: No. 6,7 (Electroplating method: Cyan bath, 2A / dm 2 )

【0037】[0037]

【表1】 [Table 1]

【0038】表1からも明らかであるように、実施例N
o.1〜7では磁気特性も試験前の値をそのまま維持し
ているのに対し、比較例No.1,2では発錆による外
観劣化およびめっき密着性の低下が著しく、また磁気特
性もかなり低下している。
As is clear from Table 1, Example N
o. In Comparative Examples Nos. 1 to 7, the magnetic properties also maintained the values before the test as they were. In Nos. 1 and 2, deterioration of appearance due to rusting and deterioration of plating adhesion were remarkable, and magnetic properties were considerably deteriorated.

【0039】実施例2 純度99.9%の電解鉄と純度99.9%のフェロボロ
ンおよび純度99%以上のPrを原料とし、これらを配
合し高周波溶解した後水冷銅鋳型を用いて表2に示す組
成の鋳塊を得た。この鋳塊を切断して鉄製カプセルに封
入し、950℃にて全圧下率76%の熱間圧延を行なっ
た後、1000℃×6時間および480℃×2時間の条
件で熱処理することにより、表2に示す磁気特性の希土
類磁石を得た。この磁石より20mm×30mm×3m
mの試験片を切り出し、表面研磨(No.150)およ
びアセトン脱脂の後、実施例1と同様にしてめっき処
理、着磁処理および耐食性試験を行なった。
Example 2 Electrolytic iron having a purity of 99.9%, ferroboron having a purity of 99.9% and Pr having a purity of 99% or more were used as raw materials, which were blended and subjected to high frequency melting, and then water-cooled copper molds were used. An ingot having the composition shown was obtained. By cutting this ingot, encapsulating it in an iron capsule, performing hot rolling with a total reduction of 76% at 950 ° C., and then heat treating it under the conditions of 1000 ° C. × 6 hours and 480 ° C. × 2 hours, The rare earth magnets having the magnetic characteristics shown in Table 2 were obtained. 20mm × 30mm × 3m from this magnet
A test piece of m was cut out, and after surface polishing (No. 150) and degreasing with acetone, plating treatment, magnetization treatment and corrosion resistance test were performed in the same manner as in Example 1.

【0040】結果を表3に示す。但し、表3における各
めっき層の形成法は次の通りである。 Sn層形成法:No.1〜3(電気めっき法:硫酸酸性
浴、2A/dm2 )、No.4〜7(蒸着めっき法) Ni(Ni合金)層形成法:No.1,6,7(電気め
っき法:ワット浴、8A/dm2 )、No.2,3(電
気めっき法:市販の光沢剤添加、8A/dm2 )、N
o.4,5(蒸着めっき法) Cu層形成法:No.5,7(電気めっき法:シアン
浴、2A/dm2
The results are shown in Table 3. However, the method of forming each plating layer in Table 3 is as follows. Sn layer forming method: No. 1 to 3 (electroplating method: sulfuric acid acid bath, 2 A / dm 2 ), No. 4 to 7 (vapor deposition plating method) Ni (Ni alloy) layer forming method: No. 1, 6, 7 (electroplating method: Watt bath, 8 A / dm 2 ), No. 2, 3 (electroplating method: commercial brightener addition, 8 A / dm 2 ), N
o. 4, 5 (vapor deposition plating method) Cu layer forming method: No. 5,7 (Electroplating method: Cyan bath, 2A / dm 2 )

【0041】[0041]

【表2】 [Table 2]

【0042】[0042]

【表3】 [Table 3]

【0043】表2,3に示した供試材は、いずれも本発
明の規定要件を満たすものであり、耐食性試験後の外観
劣化および磁気特性の低下は全く認められない。
The test materials shown in Tables 2 and 3 all satisfy the requirements of the present invention, and no deterioration of appearance and deterioration of magnetic properties are observed after the corrosion resistance test.

【0044】実施例3 前記実施例1と同様にして得た永久磁石の試験片に同様
の表面研磨及びアセトン脱脂を施したのち、表4に示す
構造の複合めっき層を形成した。尚中間層(Sn−Ni
系合金層)の形成法としては、No.1,3,4,5,
7,8はSn層上にNiまたはNi合金層を形成した
後、該めっき層を220℃で40分間熱処理する方法を
採用し、No.2,6はSn層上にNi蒸着めっきを施
す際に、基板を210℃に加熱しておく方法を採用し
た。この処理により中間層として形成されるSn−Ni
層の厚みは、断面のEPMAによって測定した。また市
販のワット浴を使用し、電流密度8A/dm2 でNi単
独めっきした磁石(Nd14%-B7%-Fe79% )を比較材として
作成した。
Example 3 A test piece of a permanent magnet obtained in the same manner as in Example 1 was subjected to the same surface polishing and degreasing with acetone, and then a composite plating layer having a structure shown in Table 4 was formed. The intermediate layer (Sn-Ni
As a method of forming the (base alloy layer), No. 1, 3, 4, 5,
For Nos. 7 and 8, a method of forming a Ni or Ni alloy layer on the Sn layer and then heat treating the plated layer at 220 ° C. for 40 minutes was adopted. For Nos. 2 and 6, a method of heating the substrate to 210 ° C. was adopted when Ni vapor deposition plating was performed on the Sn layer. Sn-Ni formed as an intermediate layer by this treatment
Layer thickness was measured by cross-section EPMA. Further, a commercially available Watt bath was used, and a magnet (Nd14% -B7% -Fe79%) plated with Ni alone at a current density of 8 A / dm 2 was prepared as a comparative material.

【0045】めっき処理された各供試材に実施例1と同
様の着磁処理を施したのち、同様にして断面観察および
耐食性試験を行った。尚、着磁処理直後の磁気特性は下
記の通りであった。 残留磁束密度(Br)=12.5KG 保磁力(iHc)=12.0KQe エネルギー積(BH)max =35.0MGOe
After subjecting each of the plated test materials to the same magnetizing treatment as in Example 1, cross-section observation and corrosion resistance test were conducted in the same manner. The magnetic properties immediately after the magnetization process were as follows. Residual magnetic flux density (Br) = 12.5 KG Coercive force (iHc) = 12.0 KQe Energy product (BH) max = 35.0 MGOe

【0046】結果を表4に一括して示す。但し、表4に
おける各めっき層の形成法は次の通りである。 Sn層形成法:No.1〜4,8(電気めっき法:硫酸
酸性浴、2A/dm2)、No.5〜7(蒸着めっき
法) Ni(Ni合金)層形成法:No.1,5(電気めっき
法:ワット浴、8A/dm2 )、No.4(電気めっき
法:市販の光沢剤添加、8A/dm2 )、No.2,6
(蒸着めっき法) Ni−P層形成法:No.3(無電解めっき法:市販
浴)、No.7,8(電気めっき法:市販浴、8A/d
2
The results are collectively shown in Table 4. However, the method of forming each plating layer in Table 4 is as follows. Sn layer forming method: No. 1-4, 8 (electroplating method: sulfuric acid acidic bath, 2 A / dm 2 ), No. 5 to 7 (vapor deposition plating method) Ni (Ni alloy) layer forming method: No. 1, 5 (electroplating method: Watt bath, 8 A / dm 2 ), No. 4 (electroplating method: commercially available brightener addition, 8 A / dm 2 ), No. 4 2,6
(Evaporation plating method) Ni-P layer forming method: No. No. 3 (electroless plating method: commercial bath), No. 3 7, 8 (electroplating method: commercial bath, 8 A / d
m 2 )

【0047】[0047]

【表4】 [Table 4]

【0048】表4からも明らかである様に、比較例1,
2(いずれもNi単独めっき材)はめっき界面で磁石に
割れが生じており、且つ耐食性試験後の外観および磁気
特性は明らかに低下している。これに対し本発明の規定
要件を満足する実施例No.1〜8にはこうした欠点は
全く認められない。尚図1,2は、表4の実施例No.
1および比較例No.1で得た各めっき材の断面金属組
織を示すSEM写真であり、前者では磁石の割れが全く
認められないのに対し、後者のNi単独めっき材では、
めっき界面側で磁石が水素吸収による割れを生じてい
る。
As is clear from Table 4, Comparative Example 1
In No. 2 (both Ni-only plated materials), the magnet had cracks at the plating interface, and the appearance and magnetic properties after the corrosion resistance test were clearly deteriorated. On the other hand, Example No. which satisfies the requirements of the invention. 1 to 8 have no such defects. Incidentally, FIGS.
1 and Comparative Example No. 2 is a SEM photograph showing a cross-sectional metallographic structure of each plated material obtained in 1., whereas no cracking of the magnet is observed in the former, whereas in the latter Ni-only plated material,
The magnet is cracked by hydrogen absorption on the plating interface side.

【0049】実施例4 前記実施例2の表2に示したRE−B−Fe系希土類磁
石(磁石No.A〜D)を使用し、実施例3と同様にし
て複合めっき処理、着磁処理、めっき界面の断面観察及
び耐食性試験を行ない、表5に示す結果を得た。但し、
表5における各めっき層の形成法は次の通りである。ま
た市販のワット浴を使用し、電流密度8A/dm2 でN
i単独めっきした磁石(Nd14%-B7%-Fe79% )を比較材と
して作成し、同様の試験を行なった。 Sn層形成法:No.1〜5(電気めっき法:硫酸酸性
浴、2A/dm2 )、No.6〜9(蒸着めっき法) Ni(Ni合金)層形成法:No.1,4(電気めっき
法:ワット浴、8A/dm2 )、No.2,7(電気め
っき法:市販の光沢剤添加、8A/dm2 )、No.
5,6(蒸着めっき法) Ni−P層形成法:No.3,8(無電解めっき法:市
販浴)、No.9(電気めっき法:市販浴、8A/dm
2
Example 4 Using RE-B-Fe rare earth magnets (magnet Nos. A to D) shown in Table 2 of Example 2 as in Example 3, a composite plating treatment and a magnetizing treatment were performed. Then, a cross-section observation of the plating interface and a corrosion resistance test were performed, and the results shown in Table 5 were obtained. However,
The method of forming each plating layer in Table 5 is as follows. Also, using a commercially available Watt bath, the current density is 8 A / dm 2 and N
A single-plated magnet (Nd14% -B7% -Fe79%) was prepared as a comparative material, and the same test was conducted. Sn layer forming method: No. 1 to 5 (electroplating method: sulfuric acid acidic bath, 2 A / dm 2 ), No. 6 to 9 (vapor deposition plating method) Ni (Ni alloy) layer forming method: No. 1, 4 (electroplating method: Watt bath, 8 A / dm 2 ), No. 2, 7 (electroplating method: commercially available brightener addition, 8 A / dm 2 ), No.
5, 6 (vapor deposition plating method) Ni-P layer forming method: No. No. 3, 8 (electroless plating method: commercial bath), No. 9 (electroplating method: commercial bath, 8 A / dm
2 )

【0050】また実施例No.5,6については、Sn
層形成後基板を210℃に加熱してからNiを蒸着めっ
きすることによって中間層を形成し、その他のものにつ
いては、2層めっき後にめっき材を220℃で40分間
加熱処理することによって中間層を形成した。
In addition, in Example No. For 5 and 6, Sn
After forming the layers, the substrate is heated to 210 ° C. and then Ni is deposited and plated to form an intermediate layer. For the other materials, the intermediate layer is formed by heating the plated material at 220 ° C. for 40 minutes after the two-layer plating. Formed.

【0051】[0051]

【表5】 [Table 5]

【0052】表5からも明らかである様に、比較例1,
2(いずれもNi単独めっき材)はめっき界面で磁石に
割れが生じており、且つ耐食性試験後の外観および磁気
特性は明らかに低下している。これに対し本発明の規定
要件を満足する実施例No.1〜9にはこうした欠点は
全く認められない。尚図3,4は、表5の実施例No.
3および比較例No.1で得た各めっき材の断面金属組
織を示すSEM写真であり、前者では磁石の割れが全く
認められないのに対し、後者のNi単独めっき材では、
めっき界面側で磁石が水素吸収による割れを生じてい
る。
As is clear from Table 5, Comparative Example 1,
In No. 2 (both Ni-only plated materials), the magnet had cracks at the plating interface, and the appearance and magnetic properties after the corrosion resistance test were clearly deteriorated. On the other hand, Example No. which satisfies the requirements of the invention. 1 to 9 have no such defects. Incidentally, FIGS.
3 and Comparative Example No. 2 is a SEM photograph showing a cross-sectional metallographic structure of each plated material obtained in 1., whereas no cracking of the magnet is observed in the former, whereas in the latter Ni-only plated material,
The magnet is cracked by hydrogen absorption on the plating interface side.

【0053】[0053]

【発明の効果】本発明は以上の様に構成されており、R
E−B−Fe系希土類磁石の表面に下地層としてSn層
を形成し、その上にNiまたはNi合金めっき層を形成
し、或はそれらの間に中間層としてNiよりも貴な金属
もしくは合金層またはSn−Ni系合金層を形成するこ
とによって耐食性を著しく高めることができ、優れた磁
気特性を長期間維持する高耐食性のRE−B−Fe系希
土類磁石を提供し得ることになった。
The present invention is constructed as described above, and R
A Sn layer is formed as an underlayer on the surface of the EB-Fe rare earth magnet, and a Ni or Ni alloy plating layer is formed thereon, or a metal or alloy nobler than Ni is formed as an intermediate layer therebetween. By forming the layer or the Sn—Ni alloy layer, the corrosion resistance can be remarkably enhanced, and the RE—B—Fe rare earth magnet with high corrosion resistance that maintains excellent magnetic characteristics for a long time can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で得た耐食性希土類磁石の、めっき界面
部における断面金属組織を示す図面代用SEM写真であ
る。
FIG. 1 is a drawing-substitute SEM photograph showing a cross-sectional metallographic structure at a plating interface portion of a corrosion-resistant rare earth magnet obtained in an example.

【図2】比較例で得た耐食性希土類磁石の、めっき界面
部における断面金属組織を示す図面代用SEM写真であ
る。
FIG. 2 is a drawing-substitute SEM photograph showing a cross-sectional metallographic structure at a plating interface portion of a corrosion resistant rare earth magnet obtained in a comparative example.

【図3】実施例で得た耐食性希土類磁石の、めっき界面
部における断面金属組織を示す図面代用SEM写真であ
る。
FIG. 3 is a drawing-substitute SEM photograph showing a cross-sectional metallographic structure at a plating interface portion of the corrosion-resistant rare earth magnets obtained in Examples.

【図4】比較例で得た耐食性希土類磁石の、めっき界面
部における断面金属組織を示す図面代用SEM写真であ
る。
FIG. 4 is a drawing-substitute SEM photograph showing a cross-sectional metallographic structure at a plating interface portion of the corrosion-resistant rare earth magnet obtained in Comparative Example.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 RE−B−Fe系焼結希土類磁石または
RE−TM−B系熱間加工希土類磁石(REは希土類元
素の1種以上、TMは遷移元素の一種以上を表わす:以
下同じ)の表面に、最下層がSn、表面層がNiもしく
はNi合金からなる複層構造の金属被覆層が形成された
ものであることを特徴とする高耐食性希土類磁石。
1. A RE-B-Fe-based sintered rare earth magnet or a RE-TM-B hot-worked rare earth magnet (RE represents one or more rare earth elements and TM represents one or more transition elements: the same applies hereinafter). A highly corrosion-resistant rare-earth magnet having a multi-layered metal coating layer, the lowermost layer of which is Sn and the surface layer of which is made of Ni or a Ni alloy.
【請求項2】 金属被覆層が、Sn層とNiまたはNi
合金層の他、それらの間に形成されたNiよりも貴な金
属または該金属の合金層からなるものである請求項1記
載の高耐食性希土類磁石。
2. The metal coating layer comprises a Sn layer and Ni or Ni.
The highly corrosion-resistant rare-earth magnet according to claim 1, which is composed of a metal nobler than Ni or an alloy layer of the metal formed between them in addition to the alloy layers.
【請求項3】 金属被覆層が、Sn層とNiまたはNi
合金層の他、それらの間に形成されたSn−Ni系合金
層からなるものである請求項1記載の高耐食性希土類磁
石。
3. The metal coating layer comprises a Sn layer and Ni or Ni.
The highly corrosion-resistant rare earth magnet according to claim 1, comprising an Sn-Ni alloy layer formed between the alloy layers, in addition to the alloy layers.
【請求項4】 RE−B−Fe系焼結希土類磁石または
RE−TM−B系熱間加工希土類磁石(RE,TMは前
と同じ意味)の表面にSn層、次いでNiもしくはNi
合金層を順次形成した後、これらをSnの融点未満の温
度で熱処理し、上記Sn層とNiまたはNi合金層の間
にSn−Ni系合金層を形成することを特徴とする高耐
食性希土類磁石の製法。
4. A Sn layer, then Ni or Ni, on the surface of a RE-B-Fe based sintered rare earth magnet or a RE-TM-B based hot-worked rare earth magnet (RE and TM have the same meanings as before).
A high corrosion resistance rare earth magnet characterized in that after sequentially forming alloy layers, these are heat-treated at a temperature lower than the melting point of Sn to form a Sn—Ni based alloy layer between the Sn layer and Ni or Ni alloy layer. Manufacturing method.
JP3299732A 1991-10-18 1991-10-18 High corrosion resistant rare earth magnet and manufacture thereof Withdrawn JPH05109519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3299732A JPH05109519A (en) 1991-10-18 1991-10-18 High corrosion resistant rare earth magnet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3299732A JPH05109519A (en) 1991-10-18 1991-10-18 High corrosion resistant rare earth magnet and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH05109519A true JPH05109519A (en) 1993-04-30

Family

ID=17876298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3299732A Withdrawn JPH05109519A (en) 1991-10-18 1991-10-18 High corrosion resistant rare earth magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH05109519A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294558A (en) * 2004-03-31 2005-10-20 Tdk Corp Rare earth magnet and manufacturing method thereof
JP2011009627A (en) * 2009-06-29 2011-01-13 Tdk Corp Metal magnet, and motor using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294558A (en) * 2004-03-31 2005-10-20 Tdk Corp Rare earth magnet and manufacturing method thereof
JP2011009627A (en) * 2009-06-29 2011-01-13 Tdk Corp Metal magnet, and motor using the same

Similar Documents

Publication Publication Date Title
EP1467385B1 (en) Rare earth element sintered magnet and method for producing rare earth element sintered magnet
EP0991085B1 (en) Corrosion-resisting permanent magnet and method for producing the same
US5332488A (en) Surface treatment for iron-based permanent magnet including rare-earth element
JPH0529119A (en) High corrosion-resistant rare earth magnet
JPS63217601A (en) Corrosion-resistant permanent magnet and manufacture thereof
WO2006054617A1 (en) Rare earth sintered magnet
JPH05226129A (en) Manufacture of highly corrosion-resistant rare-earth magnet
JPH05109519A (en) High corrosion resistant rare earth magnet and manufacture thereof
JP2009176880A (en) Permanent magnet
EP0923087B1 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH0569282B2 (en)
JPH0945567A (en) Rare earth-iron-boron permanent magnet manufacturing method
JPH05226125A (en) Manufacture of highly corrosion-resistant rare-earth magnet
US5286366A (en) Surface treatment for iron-based permanent magnet including rare-earth element
JP3914557B2 (en) Rare earth sintered magnet
JPH08279407A (en) R-fe-b permanent magnet being excellent in electrical insulating properties, heat resistance and corrosion resistance and manufacture thereof
JPH06290935A (en) Rare earth magnet
JPH04288804A (en) Permanent magnet and manufacture thereof
JPH05226126A (en) Highly corrosion-resistant rare-earth magnet
JP4770556B2 (en) magnet
JPH0541313A (en) High corrosion resistant rare earth magnet
JPH0554683B2 (en)
EP1675132A1 (en) R-T-B permanent magnet and plating film
JPH07249509A (en) Corrosion-resistant permanent magnet and its manufacture
JP3652816B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990107