JPH0510763B2 - - Google Patents

Info

Publication number
JPH0510763B2
JPH0510763B2 JP59177786A JP17778684A JPH0510763B2 JP H0510763 B2 JPH0510763 B2 JP H0510763B2 JP 59177786 A JP59177786 A JP 59177786A JP 17778684 A JP17778684 A JP 17778684A JP H0510763 B2 JPH0510763 B2 JP H0510763B2
Authority
JP
Japan
Prior art keywords
component
solid solution
dielectric ceramic
ceramic composition
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59177786A
Other languages
Japanese (ja)
Other versions
JPS6155805A (en
Inventor
Junichi Kato
Yoichiro Yokoya
Hiroshi Oochi
Masamitsu Nishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59177786A priority Critical patent/JPS6155805A/en
Publication of JPS6155805A publication Critical patent/JPS6155805A/en
Publication of JPH0510763B2 publication Critical patent/JPH0510763B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は誘電体磁器組成物、特にコンデンサ用
誘電体磁器組成物に関する。 従来例の構成とその問題点 セラミツクコンデンサ用の高誘電率を有する誘
電体磁器組成物を作るための材料として、チタン
酸バリウム系の材料が広く使用されている。この
系の材料を用いた従来の誘電体磁器組成物の比誘
電率は、その温度特性と密接な関係にあり、JIS
規格に定められたY級F特性(−25℃〜85℃の温
度範囲で誘電率の温度変化が20℃の値を基準にし
て+30%〜−80%以内)を満たす磁器組成物では
10000程度、Y級D特性(上記条件で+20%〜−
30%以内)では4000程度、Y級B特性(上記条件
で±10%以内)では1000程度である。かかるチタ
ン酸バリウム系の材料を用いた誘電体磁器組成物
は、その誘電損失tanδも低く、寿命特性等その他
の諸特性も優れているが、その焼成には1200〜
1400℃という相当高い温度を必要とする。このた
めチタン酸バリウム系の材料からなる組成物から
セラミツクコンデンサを作るときには、内部電極
として高価な白金またはパラジウム系の電極が必
要となる。 一方安価な銀系の電極が使用できる焼成温度の
低い誘電体組成物として、Pb(Fe1/2Nb1/2)O3
Pb(Fe2/3W1/3)O3,Pb(Mg1/3N2/3)O3,Pb
(Zn1/3Nb2/3)O3等の複合酸化物を組合せた誘電
体組成物が知られている。この系の材料からなる
誘電体組成物は、誘電率の温度変化が大きく、小
さい温度変化率が要求される前述したY級B特性
のものは知られていない。またこの種の誘電体組
成物で大きい比誘電率を示すものは、焼成後の粒
径が大きいため機械的強度が小さく、実用上さま
ざまな問題が発生することがある。 従つて焼成温度が低くて、電極として白金系ま
たはパラジウム系電極材料を使用しないですみ、
すぐれた温度特性を有し、かつ機械的強度がすぐ
れた誘電体磁器組成物が得られるならばその工業
的価値が大であることは明らかである。 発明の目的 本発明は、焼成温度が900〜1100℃と低く、か
つJIS規格で定められたY級D特性またはY級B
特性の温度変化率を有する誘電体磁器組成物であ
つて、しかも前記チタン酸バリウム系の誘電体磁
器組成物と同等の比誘電率を有するコンデンサ用
誘電体磁器組成物を提供することにある。 発明の構成 本発明のコンデンサ用誘電体磁器組成物は、
Pb(Fe2/3W1/3)O3,Pb(Mg1/2W1/2)O3,Pb
(Zn1/2W1/2)O3,およびPb(Ni1/2W1/2)O3よりな
る群より選択した少なくとも1種のタングステン
含有化合物と、Pb(Fe1/2Nb1/2)O3,Pb(Zn1/3
Nb2/3)O3,Pb(Mg1/3Nb2/3)O3およびPb(Ni1/3
Nb2/3)O3よりなる群より選択した少なくとも1
種以上のニオブ含有化合物とを含有する固溶体で
ある第1成分50〜90モル%、およびBaTiO3を主
成分とする固溶体である第2成分50〜10モル%か
らなる。 なお上記本発明による誘電体磁器組成物におい
て、誘電損失tanδはMnO2を添加することにより
改良されるのでこれを添加するのが好ましい。た
だし、MnO2の添加は0.2重量%程度でtanδは1%
以下となるが1重量%を越えると再びtanδは大き
くなるので、MnO2の添加量は1重量%以下にす
るのが好ましい。 上記第2成分であるBaTiO3を主成分とする固
溶体としては、他にSr,Zr,Snを含有する固溶
体を使用できる。例えばBa1-xSrxTiO3(xは0<
x≦0.2である)、BaTi1-yZryO3(yは0<y≦
0.15である)およびBaTi1-zSnzO3(zは0<z≦
0.1である)を使用できる。 上記第1成分中にタングステン含有成分を含有
しない場合には形成される誘電体磁器組成物の焼
成温度が1100℃を越えてしまい好ましくない。ま
たニオブ含有成分を含有しない場合には誘電率が
小さくなりチタン酸バリウム系の誘電体磁器と同
等の比誘電率が得られないので好ましくない。 上記第1成分が50モル%未満、従つて第2成分
が50モル%を越えると焼成温度が1100℃を越え好
ましくない。また上記第1成分が90モル%を越え
ると、従つて第2成分が10モル%未満となると85
℃の誘電率の変化が大きくなるため好ましくな
い。 また第2成分においてBaTiO3の含有率が少な
くなると例えばSr,Zr,Sn成分が大となると誘
電率の温度変化率が大きくなるので好ましくな
い。 本発明の誘電体磁器組成物を作るに当つては従
来より知られている任意の方法を使用できる。 実施例の説明 以下に実施例を挙げて本発明を説明する。 実施例 表1に示す各試料の第1成分を、それぞれ化学
的に純粋なPbO,Fe2O3,MgO,ZnO,NiO,
WO3およびNb2O5を用いて表1の各第1成分の
組成になるように秤量した。 また別に表1に示す各試料の第2成分を、それ
ぞれ化学的に純粋なBaCO3,SrCO3,TiO2
ZrO2およびSnO2を用いて表1の各第2成分の組
成になるように秤量した。更に本実施例の誘電体
磁器組成物ではMnO3を表1に示す割合で含有さ
せた。 各試料の組成割合になるように上記各成分をポ
リエチレンのポツトに入れ、更に純水とめのう玉
石を入れ、15時間攪拌混合し、めのう玉石を除き
乾燥した後、650〜850℃で予備燬焼した。この燬
焼物を再びポリエチレンポツトに入れて再び純水
とめのう玉石を入れて15時間粉砕し、めのう玉石
を除いた後乾燥した。その後各乾燥試料にポリビ
ニルアルコール水溶液をバインダーとして加え、
直径13mm、高さ10mmの円柱状に加圧成形し、バイ
ンダーを焼却した後、マグネシア容器に入れ、表
1に示す如き焼成温度で各試料を焼成した。得ら
れた各焼成試料を1mmの厚さに切断し、両面に焼
成試料の誘電的特性を測定するためCr−Auを蒸
着して電極を形成し、それぞれの試料について、
1KHz,1V/mmの電界で20℃での比誘電率、tanδ
および−25℃〜85℃での比誘電率の温度変化率を
測定した。これらの結果を表1に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a dielectric ceramic composition, particularly to a dielectric ceramic composition for a capacitor. Conventional Structure and Problems Barium titanate-based materials are widely used as materials for making dielectric ceramic compositions with high dielectric constants for ceramic capacitors. The dielectric constant of conventional dielectric ceramic compositions using this type of material is closely related to its temperature characteristics, and the JIS
A porcelain composition that satisfies the Y class F characteristics specified in the standard (temperature change in permittivity within the temperature range of -25°C to 85°C is within +30% to -80% based on the value at 20°C)
Approximately 10000, Y class D characteristics (+20% to - under the above conditions)
30% or less) is about 4000, and Y class B characteristics (within ±10% under the above conditions) is about 1000. Dielectric ceramic compositions using such barium titanate-based materials have low dielectric loss tan δ and are excellent in other properties such as life characteristics.
It requires a fairly high temperature of 1400℃. Therefore, when making a ceramic capacitor from a composition made of barium titanate-based materials, expensive platinum or palladium-based electrodes are required as internal electrodes. On the other hand, Pb(Fe 1/2 Nb 1/2 ) O 3 , Pb(Fe 1/2 Nb 1/2 ) O 3 ,
Pb(Fe2 /3W1 / 3 )O3,Pb(Mg1 / 3N2/ 3 )O3,Pb
Dielectric compositions in which complex oxides such as (Zn 1/3 Nb 2/3 )O 3 are combined are known. A dielectric composition made of this type of material is not known to have the above-mentioned Y-class B characteristics, which require a large change in dielectric constant with temperature and a small rate of change with temperature. Furthermore, dielectric compositions of this type that exhibit a large relative dielectric constant have a large particle size after firing and therefore have low mechanical strength, which may cause various practical problems. Therefore, the firing temperature is low and there is no need to use platinum-based or palladium-based electrode materials as electrodes.
It is clear that if a dielectric ceramic composition with excellent temperature characteristics and mechanical strength could be obtained, it would have great industrial value. Purpose of the invention The present invention has a low firing temperature of 900 to 1100°C, and has Y class D characteristics or Y class B characteristics specified by JIS standards.
The object of the present invention is to provide a dielectric ceramic composition for a capacitor, which has a characteristic temperature change rate and has a dielectric constant equivalent to that of the barium titanate-based dielectric ceramic composition. Structure of the Invention The dielectric ceramic composition for capacitors of the present invention includes:
Pb(Fe2 /3W1 /3 ) O3 ,Pb(Mg1 / 2W1/2 ) O3 ,Pb
(Zn 1/2 W 1/2 ) O 3 , and at least one tungsten-containing compound selected from the group consisting of Pb (Ni 1/2 W 1/2 ) O 3 and Pb (Fe 1/2 Nb 1 /2 ) O 3 , Pb (Zn 1/3
Nb 2/3 ) O 3 , Pb (Mg 1/3 Nb 2/3 ) O 3 and Pb (Ni 1/3
At least one selected from the group consisting of Nb 2/3 ) O 3
The first component is 50 to 90 mol % of a solid solution containing at least one niobium-containing compound, and the second component is 50 to 10 mol % of a solid solution containing BaTiO 3 as a main component. In the dielectric ceramic composition according to the present invention, the dielectric loss tan δ can be improved by adding MnO 2 , so it is preferable to add MnO 2 . However, the addition of MnO 2 is about 0.2% by weight and the tanδ is 1%.
However, if it exceeds 1% by weight, tan δ becomes large again, so it is preferable that the amount of MnO 2 added is 1% by weight or less. As the solid solution containing BaTiO 3 as the main component, which is the second component, a solid solution containing Sr, Zr, and Sn can also be used. For example, Ba 1-x Sr x TiO 3 (x is 0<
x≦0.2), BaTi 1-y Zr y O 3 (y is 0<y≦
0.15) and BaTi 1-z Sn z O 3 (z is 0<z≦
0.1) can be used. If the first component does not contain a tungsten-containing component, the firing temperature of the dielectric ceramic composition formed will exceed 1100° C., which is not preferable. Further, if the niobium-containing component is not contained, the dielectric constant becomes small and a dielectric constant equivalent to that of barium titanate-based dielectric ceramics cannot be obtained, which is not preferable. If the first component is less than 50 mol% and the second component is more than 50 mol%, the firing temperature will exceed 1100°C, which is not preferred. Furthermore, if the first component exceeds 90 mol%, and therefore the second component is less than 10 mol%, 85
This is not preferable because the change in dielectric constant with respect to °C becomes large. Furthermore, if the content of BaTiO 3 in the second component is low, for example, if the Sr, Zr, and Sn components are increased, the rate of change in dielectric constant with temperature increases, which is not preferable. Any conventionally known method can be used to produce the dielectric ceramic composition of the present invention. Description of Examples The present invention will be described below with reference to Examples. Example The first component of each sample shown in Table 1 was chemically pure PbO, Fe 2 O 3 , MgO, ZnO, NiO,
WO 3 and Nb 2 O 5 were weighed to have the composition of each first component shown in Table 1. Separately, the second component of each sample shown in Table 1 was chemically pure BaCO 3 , SrCO 3 , TiO 2 ,
ZrO 2 and SnO 2 were weighed so as to have the composition of each second component shown in Table 1. Furthermore, the dielectric ceramic composition of this example contained MnO 3 in the proportions shown in Table 1. Put each of the above ingredients into a polyethylene pot in the composition ratio of each sample, then add pure water and agate cobbles, stir and mix for 15 hours, remove the agate cobbles, dry, and pre-fire at 650-850℃. did. This roasted product was placed in a polyethylene pot again, pure water and agate cobbles were added thereto, and the pot was crushed for 15 hours. After removing the agate cobbles, it was dried. After that, a polyvinyl alcohol aqueous solution was added as a binder to each dried sample.
The samples were pressure-molded into a cylinder with a diameter of 13 mm and a height of 10 mm, and after the binder was incinerated, the samples were placed in a magnesia container and fired at the firing temperatures shown in Table 1. Each of the obtained fired samples was cut to a thickness of 1 mm, and Cr-Au was deposited on both sides to form electrodes in order to measure the dielectric properties of the fired samples.
Relative permittivity, tanδ at 20℃ at 1KHz, 1V/mm electric field
And the temperature change rate of dielectric constant from -25°C to 85°C was measured. These results are shown in Table 1.

【表】【table】

【表】 上記表1中*印を付したものは本発明の範囲外
の試料である。上記表1のデータから明らかな如
く、本発明による誘電体磁器組成物は1100℃以下
で焼成でき、このため、銀等の安価な内部電極材
料を使用できることが判る。また比誘電率は従来
の材料から作られたものと同等であり、しかも−
25℃〜85℃の温度範囲で、20℃の時の値を基準と
する誘電率範囲が−30%以内であり、JIS規格に
定められたY級D特性を全てが満足し、さらに±
10%以内であるY級B特性を満すものも得られる
ことが判る。 上記表1の本発明の範囲外の試料のデータから
Pb(Fe2/3W1/3)O3,Pb(Mg1/2W1/2)O3,Pb
(Zn1/2W1/2)O3,およびPb(Ni1/2W1/2)O3、即ち
第1成分中のタングステン含有成分を含まぬ計料
は焼成温度が1100℃以上となる(試料番号12参
照)。また第2成分BaTiO3を主成分とする成分
が50モル%を越えると、この場合にも焼成温度が
1100℃を越えてしまう(試料番号15,21,26参
照)。また第2成分中、Sr,Zr,Snが各々0.2,
0.15,0.1を越えると誘電率の温度変化率が−30
%以上となる(試料番号30,33,36参照)。 発明の効果 以上述べた如く、本発明による誘電体磁器組成
物はすぐれた温度特性を有し、また焼成温度を低
くできるため、安価な銀の如き内部電極材料を使
用した積層型セラミツクコンデンサを作成するこ
とができる。
[Table] Those marked with * in Table 1 above are samples outside the scope of the present invention. As is clear from the data in Table 1 above, the dielectric ceramic composition according to the present invention can be fired at a temperature of 1100° C. or lower, and therefore it is possible to use inexpensive internal electrode materials such as silver. In addition, the dielectric constant is equivalent to that made from conventional materials, and -
In the temperature range of 25℃ to 85℃, the dielectric constant range is within -30% based on the value at 20℃, all of them satisfy the Y class D characteristics specified in the JIS standard, and ±
It can be seen that products satisfying the Y-class B characteristics within 10% can also be obtained. From the data of the sample outside the scope of the present invention in Table 1 above
Pb(Fe2 /3W1 /3 ) O3 ,Pb(Mg1 / 2W1/2 ) O3 ,Pb
(Zn 1/2 W 1/2 ) O 3 and Pb (Ni 1/2 W 1/2 ) O 3 , that is, materials that do not contain tungsten-containing components in the first component, have a firing temperature of 1100°C or higher. (See sample number 12). Also, if the second component, whose main component is BaTiO 3 , exceeds 50 mol%, the firing temperature will also change in this case.
The temperature exceeds 1100℃ (see sample numbers 15, 21, and 26). In addition, in the second component, Sr, Zr, and Sn are each 0.2,
If it exceeds 0.15 or 0.1, the temperature change rate of dielectric constant will be -30
% or more (see sample numbers 30, 33, and 36). Effects of the Invention As described above, the dielectric ceramic composition according to the present invention has excellent temperature characteristics and the firing temperature can be lowered, so that a multilayer ceramic capacitor using an inexpensive internal electrode material such as silver can be produced. can do.

Claims (1)

【特許請求の範囲】 1 Pb(Fe2/3W1/3)O3,Pb(Mg1/2W1/2)O3,Pb
(Zn1/2W1/2)O3,およびPb(Ni1/2W1/2)O3よりな
る群より選択した少なくとも1種のタングステン
含有化合物と、Pb(Fe1/2Nb1/2)O3,Pb(Zn1/3
Nb2/3)O3,Pb(Mg1/3Nb2/3)O3およびPb(Ni1/3
Nb2/3)O3よりなる群より選択した少なくとも1
種以上のニオブ含有化合物とを含有する固溶体で
ある第1成分50〜90モル%、およびBaTiO3を主
成分とする固溶体である第2成分50〜10モル%か
らなることを特徴とするコンデンサ用誘電磁器組
成物。 2 第2成分のBaTiO3を主成分とする固溶体が
BaTiO3100%の固溶体である特許請求の範囲第
1項記載のコンデンサ用誘電体磁器組成物。 3 第2成分のBaTiO3を主成分とする固溶体が
Ba1-xSrxTiO3(式中xは0<x≦0.2である)で
表わされる固溶体である特許請求の範囲第1項記
載のコンデンサ用誘電体磁器組成物。 4 第2成分のBaTiO3を主成分とする固溶体が
BaTi1-yZryO3(式中yは0<y≦0.15である)で
表わされる固溶体である特許請求の範囲第1項記
載のコンデンサ用誘電体磁器組成物。 5 第2成分のBaTiO3を主成分とする固溶体が
BaTi1-zSnzO3(式中zは0<z≦0.1である)で
表わされる固溶体である特許請求の範囲第1項記
載のコンデンサ用誘電体磁器組成物。 6 更にMnO2を1重量%以下含有する特許請求
の範囲第1項〜第5項の何れか一つに記載のコン
デンサ用誘電体磁器組成物。
[Claims] 1 Pb (Fe 2/3 W 1/3 ) O 3 , Pb (Mg 1/2 W 1/2 ) O 3 , Pb
(Zn 1/2 W 1/2 ) O 3 , and at least one tungsten-containing compound selected from the group consisting of Pb (Ni 1/2 W 1/2 ) O 3 and Pb (Fe 1/2 Nb 1 /2 ) O 3 , Pb (Zn 1/3
Nb 2/3 ) O 3 , Pb (Mg 1/3 Nb 2/3 ) O 3 and Pb (Ni 1/3
At least one selected from the group consisting of Nb 2/3 ) O 3
A capacitor comprising 50 to 90 mol% of a first component which is a solid solution containing at least one niobium-containing compound, and 50 to 10 mol% of a second component which is a solid solution containing BaTiO3 as a main component. Dielectric ceramic composition. 2 The solid solution mainly composed of BaTiO 3 as the second component is
The dielectric ceramic composition for a capacitor according to claim 1, which is a solid solution of 100% BaTiO 3 . 3 The solid solution mainly composed of BaTiO 3 as the second component is
The dielectric ceramic composition for a capacitor according to claim 1, which is a solid solution represented by Ba 1-x Sr x TiO 3 (in the formula, x satisfies 0<x≦0.2). 4 The solid solution mainly composed of BaTiO 3 as the second component is
The dielectric ceramic composition for capacitors according to claim 1, which is a solid solution represented by BaTi 1-y Zr y O 3 (where y is 0<y≦0.15). 5 The solid solution mainly composed of BaTiO 3 as the second component is
The dielectric ceramic composition for a capacitor according to claim 1, which is a solid solution represented by BaTi 1-z Sn z O 3 (where z is 0<z≦0.1). 6. The dielectric ceramic composition for a capacitor according to any one of claims 1 to 5, further containing 1% by weight or less of MnO 2 .
JP59177786A 1984-08-27 1984-08-27 Dielectric porcelain composition Granted JPS6155805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59177786A JPS6155805A (en) 1984-08-27 1984-08-27 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59177786A JPS6155805A (en) 1984-08-27 1984-08-27 Dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JPS6155805A JPS6155805A (en) 1986-03-20
JPH0510763B2 true JPH0510763B2 (en) 1993-02-10

Family

ID=16037076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59177786A Granted JPS6155805A (en) 1984-08-27 1984-08-27 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JPS6155805A (en)

Also Published As

Publication number Publication date
JPS6155805A (en) 1986-03-20

Similar Documents

Publication Publication Date Title
EP0737655B1 (en) Non-reduced dielectric ceramic compositions
US4716134A (en) Dielectric ceramic composition
US4721692A (en) Dielectric ceramic composition
EP0180132A2 (en) High dielectric constant type ceramic composition
KR100241806B1 (en) Dielectric ceramic composition
JPH058524B2 (en)
JPH0510763B2 (en)
JPH01100051A (en) Dielectric porcelain composition
JP2789110B2 (en) High dielectric constant porcelain composition
JPS6152098B2 (en)
KR100268702B1 (en) compound of dielectric ceramic
JP2821768B2 (en) Multilayer ceramic capacitors
JPH0571538B2 (en)
JP2872513B2 (en) Dielectric porcelain and porcelain capacitor
JPH0361287B2 (en)
JP2621478B2 (en) High dielectric constant porcelain composition
KR19980046582A (en) High dielectric constant dielectric self composition
JPH0825791B2 (en) Non-reducing dielectric ceramic composition
KR920006730B1 (en) Ceramic material
KR0165557B1 (en) Ceramic composition
JP2837516B2 (en) Dielectric porcelain capacitors
JP2568565B2 (en) Dielectric porcelain composition
JPH054354B2 (en)
JPS5849661A (en) High dielectric constant ceramic composition
JPS63162571A (en) High permittivity ceramic composition

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term