JPH05107216A - Gas detecting material - Google Patents

Gas detecting material

Info

Publication number
JPH05107216A
JPH05107216A JP29824291A JP29824291A JPH05107216A JP H05107216 A JPH05107216 A JP H05107216A JP 29824291 A JP29824291 A JP 29824291A JP 29824291 A JP29824291 A JP 29824291A JP H05107216 A JPH05107216 A JP H05107216A
Authority
JP
Japan
Prior art keywords
iron oxide
carbon monoxide
gas
sensitivity
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29824291A
Other languages
Japanese (ja)
Other versions
JP2819362B2 (en
Inventor
Tatsuo Maeno
起男 前野
Hiroki Okumura
弘樹 奥村
Mamoru Nakano
守 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Chichibu Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Cement Co Ltd filed Critical Chichibu Cement Co Ltd
Priority to JP3298242A priority Critical patent/JP2819362B2/en
Publication of JPH05107216A publication Critical patent/JPH05107216A/en
Application granted granted Critical
Publication of JP2819362B2 publication Critical patent/JP2819362B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To obtain a detecting material having a high sensitivity to a carbon monoxide gas even at a relatively low temperature, by adding manganese of specified concentration to iron oxide. CONSTITUTION:When a small amount of manganese (Mn) is added to iron oxide in a gas detecting material constituted of the iron oxide, the sensitivity to a carbon monoxide gas at a low temperature from a room temperature to 100 deg.C is improved remarkably. In the case when an element constituted of the iron oxide is prepared in the region of a baking temperature of 700 to 800 degrees wherein the element has a practical strength, a sufficiently high sensitivity to carbon monoxide is obtained as well. The amount of this added Mn is 20 to 3000ppm for an iron element in the iron oxide, or 100 to 2000ppm desirably. In other words, the sensitivity Rair/Rco to the gas is high/specifically within the range of the amount of the added Mn being 20 to 3000ppm. The form of the iron oxide is not limited particularly and it is formed in powder or various molded bodies and in the shape of a thick film or thin film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃焼機器等から発生す
る有害ガスの一つである一酸化炭素ガスを検知するのに
有効なガス検知材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas detecting material effective for detecting carbon monoxide gas which is one of harmful gases generated from combustion equipment and the like.

【0002】[0002]

【従来の技術】近年、居住空間の気密性の向上と相まっ
て、ガス給湯器やファンヒーターなどの燃焼機器から排
出される一酸化炭素ガスによる空気汚染が問題になって
いる。一酸化炭素ガスによる空気汚染は、最悪の場合中
毒死などの重大事故に至ることもしばしばあり、一つの
社会問題ともなっている。また、火災などの際、その人
的被害をとりわけ大きくしているのは、建材物の燃焼に
よって発生する一酸化炭素ガスによる中毒死であるとい
われている。このように一酸化炭素は極めて有毒なガス
でありながら、これまで有効にこれを検知する手段がな
かった。
2. Description of the Related Art In recent years, air pollution due to carbon monoxide gas discharged from combustion equipment such as gas water heaters and fan heaters has become a problem, together with the improvement of airtightness of living spaces. Air pollution with carbon monoxide gas often leads to serious accidents such as death due to poisoning in the worst case, which is one social problem. In addition, it is said that, in the case of a fire or the like, what causes the human damage particularly is poisoning death due to carbon monoxide gas generated by the burning of building materials. Thus, although carbon monoxide is an extremely toxic gas, there has been no effective means for detecting it.

【0003】[0003]

【発明が解決しようとする課題】従来からの酸化錫を主
体とした半導体式可燃性ガスセンサを一酸化炭素ガスセ
ンサとして用いた場合、素子を250 度〜400 度に加熱し
て用いるのが一般的であるが、この場合、応答性,経時
安定性には優れるものの、消費電力が大きくなってしま
うという問題があり、また水素やエタノールなどの他の
ガスに対する選択性も悪い。一方、室温から100 度付近
の比較的低温で動作させた場合、選択性に優れ、消費電
力も少なくてすむ利点があるが、長時間安定に動作させ
ることは困難であった。そこで、これを解決する手段と
して、低温と高温の間で温度サイクルをかけ、低温側で
一酸化炭素を検知するというものがある。しかし、この
場合、複雑な信号処理回路が必要で、回路コストが高く
なるとともに、消費電力は、やはり低くすることができ
ない。また、酸化錫の材料に代わって、酸化鉄半導体を
用いた検知材料が、特開昭59-211851 号公報に報告され
ているが。この場合もやはり、センサを高温に加熱して
動作させるため、消費電力が大きく、一酸化炭素以外の
ガスに対しての選択性も十分ではない。更に、特開昭60
-238148 号公報によれば、金を金属酸化物上に担持した
触媒材料で、室温付近の低温であっても、極めて効率よ
く一酸化炭素ガスを酸化し、また、水素やアルコールな
どに対しても選択性を有する材料が報告されている。こ
の材料を用いた一酸化炭素ガスセンサも特開昭61-19534
0 号公報に開示されている。
When a conventional semiconductor combustible gas sensor mainly composed of tin oxide is used as a carbon monoxide gas sensor, the element is generally heated to 250 to 400 degrees and used. However, in this case, although the responsiveness and the stability over time are excellent, there is a problem that the power consumption becomes large, and the selectivity for other gases such as hydrogen and ethanol is also poor. On the other hand, when operated at a relatively low temperature from room temperature to around 100 degrees, it has the advantages of excellent selectivity and low power consumption, but stable operation for a long time was difficult. Therefore, as a means for solving this, there is a method of performing a temperature cycle between a low temperature and a high temperature and detecting carbon monoxide on the low temperature side. However, in this case, a complicated signal processing circuit is required, the circuit cost becomes high, and the power consumption cannot be reduced. Further, a detection material using an iron oxide semiconductor instead of the tin oxide material is reported in JP-A-59-211851. In this case as well, since the sensor is heated to a high temperature to operate, the power consumption is large and the selectivity for gases other than carbon monoxide is not sufficient. Furthermore, JP-A-60
According to JP-238148, a catalyst material in which gold is supported on a metal oxide is used to oxidize carbon monoxide gas extremely efficiently even at a low temperature near room temperature, and to hydrogen and alcohol. Also, a material having selectivity is reported. A carbon monoxide gas sensor using this material is also disclosed in JP-A-61-19534.
No. 0 publication.

【0004】しかし、この材料は、素子の焼成温度が40
0 度〜600度と比較的低い場合には、高い感度が得られ
るものの、これでは、素子の焼結性が十分とはいえず、
機械的強度も低いため信頼性上の問題があった。一方、
焼結性を上げるため高い温度で素子を焼成した場合、機
械的な強度は向上するものの、ガス感度の低いものしか
得られないという問題があった。本発明は、かかる事情
に鑑みてなされたものであり、室温から100 度の比較的
低温においても一酸化炭素ガスに対して、著しく高い感
度を有する一酸化炭素検知材料を提供することを目的と
している。
However, this material has a device firing temperature of 40%.
If the sensitivity is relatively low at 0 to 600 degrees, high sensitivity can be obtained, but this does not mean that the element has sufficient sinterability.
Since mechanical strength is also low, there was a problem in reliability. on the other hand,
When the element is fired at a high temperature in order to improve the sinterability, the mechanical strength is improved, but there is a problem that only one having low gas sensitivity can be obtained. The present invention has been made in view of the above circumstances, and an object thereof is to provide a carbon monoxide detection material having extremely high sensitivity to carbon monoxide gas even at a relatively low temperature from room temperature to 100 degrees Celsius. There is.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め、本発明者らは、酸化鉄に種々の材料を加えてその添
加の効果を鋭意研究した。その結果、酸化鉄に微量のM
n 元素を加えた場合に、低温における一酸化炭素ガス感
度が著しく向上し、かつ酸化鉄からなる素子が実用的な
強度を有する、焼成温度700 〜800 度の領域で素子を作
成した場合にも、十分高い一酸化炭素感度が得られるこ
とをつきとめた。しかも、添加物質を種々変えてその効
果を検討したが、Mn 元素を添加した場合に特異的に高
感度化することを見出した。このMn 添加量は、酸化鉄
における鉄元素に対して、20〜3000 ppmであり、望まし
くは、100 〜2000 ppmである。ここで、本発明の検知材
料において、酸化鉄の形状は特に限定されず、粉末や各
種の成形体、厚膜あるいは薄膜状とすることができる。
また、一般に、ガスセンサ材料は、ガスに対する増感効
果を促すために、白金,パラジウム,金などの貴金属触
媒が微粒子状態で、酸化物半導体表面に担持されている
が、本発明の場合も、これらの担持触媒を限定するもの
ではない。
In order to achieve the above object, the present inventors have conducted various studies on the effect of adding various materials to iron oxide. As a result, a small amount of M in iron oxide
When adding the n element, the sensitivity of carbon monoxide gas at low temperature is significantly improved, and the element made of iron oxide has practical strength. , And found that a sufficiently high carbon monoxide sensitivity can be obtained. Moreover, the effect was examined by changing various additives, and it was found that the sensitivity was specifically increased when the Mn element was added. The amount of Mn added is 20 to 3000 ppm, and preferably 100 to 2000 ppm, with respect to the iron element in iron oxide. Here, in the detection material of the present invention, the shape of iron oxide is not particularly limited, and may be powder, various molded bodies, thick film or thin film.
Further, in general, a gas sensor material has a noble metal catalyst such as platinum, palladium, or gold supported in the form of fine particles on the surface of an oxide semiconductor in order to promote a gas sensitizing effect. It does not limit the supported catalyst of.

【0006】[0006]

【実施例】以下に実施例を説明する。実施例1 四塩化チタンに、過酸化水素水を加えて作成したチタン
錯体溶液と、硝酸第二鉄水溶液と硝酸マンガン水溶液の
混合液に炭酸ナトリウム水溶液を加え、共沈生成物を得
た。ここで、鉄に対するチタンの含有量は3at%であ
り、マンガン元素の酸化鉄への添加量は、鉄元素に対し
て10 ppm〜1at%である。この生成物を充分水洗して乾
燥した後、400 度1時間の仮焼を行ない、ガス検知材料
を構成する酸化鉄半導体の原料粉末を得た。この粉末と
厚膜ペースト作成用のビークルとを混合し、印刷用のペ
ーストを作成した。ここで、予めアルミナ基板上に電気
信号を取り出す目的で形成した電極上に、この厚膜ペー
ストを印刷し、空気中で750度1時間の焼成を行なった
後、金を担持してガスセンサ素子とした。ここで、金の
担持は、まず、0.02 mol/リットルの塩化金酸溶液に炭
酸ナトリウム溶液を加え、pH 6.5に調整した溶液中に素
子を浸せきして70度で60分保持し、酸化鉄素子の表面に
金の水酸化物を析出させた、次に、素子を水洗した後、
400 度1時間の熱処理を行ない、金の水酸化物を熱分解
させ、酸化鉄表面に金が担持されたガスセンサ素子を得
た。図1はマンガン元素の添加量に対する一酸化炭素ガ
スの検出感度の特性図であり、横軸に鉄元素に対するマ
ンガンの添加量(ppm )を対数目盛で示し、縦軸に一酸
化炭素ガス感度(RAIR /RCO)を示した。ここで、R
AIR は、大気中の抵抗値を示し、RCOは、一酸化炭素ガ
ス中での抵抗値である。なお、ここでの測定雰囲気は、
常温常湿中で行ない、素子温度は70度、一酸化炭素濃度
は300 ppm である。この特性図からわかるように、マン
ガンの添加量が、20〜3000 ppmの範囲内で、特異的にガ
ス感度が高感度化することが認められる。
EXAMPLES Examples will be described below. Example 1 A sodium complex aqueous solution was added to a titanium complex solution prepared by adding hydrogen peroxide solution to titanium tetrachloride, and a mixed solution of ferric nitrate aqueous solution and manganese nitrate aqueous solution to obtain a coprecipitation product. Here, the content of titanium with respect to iron is 3 at%, and the addition amount of manganese element to iron oxide is 10 ppm to 1 at% with respect to iron element. The product was thoroughly washed with water, dried, and then calcined at 400 ° C. for 1 hour to obtain a raw material powder of an iron oxide semiconductor constituting a gas detection material. This powder was mixed with a vehicle for preparing a thick film paste to prepare a paste for printing. Here, this thick film paste was printed on an electrode previously formed on an alumina substrate for the purpose of extracting an electric signal, and after firing in air for 750 ° C. for 1 hour, gold was carried to form a gas sensor element. did. Here, the gold was loaded by first adding a sodium carbonate solution to a 0.02 mol / liter chloroauric acid solution, immersing the element in a solution adjusted to pH 6.5, and holding the element at 70 degrees for 60 minutes. Gold hydroxide was deposited on the surface of, then, after washing the element with water,
Heat treatment was carried out at 400 ° C. for 1 hour to thermally decompose the gold hydroxide to obtain a gas sensor element in which gold was supported on the iron oxide surface. FIG. 1 is a characteristic diagram of the detection sensitivity of carbon monoxide gas with respect to the addition amount of manganese element. The horizontal axis shows the addition amount (ppm) of manganese with respect to the iron element in a logarithmic scale, and the vertical axis shows the sensitivity of carbon monoxide gas ( R AIR / R CO ). Where R
AIR represents the resistance value in the atmosphere, and R CO is the resistance value in carbon monoxide gas. The measurement atmosphere here is
The device temperature is 70 ° C and the carbon monoxide concentration is 300 ppm. As can be seen from this characteristic diagram, it is recognized that the gas sensitivity is specifically enhanced in the range where the addition amount of manganese is in the range of 20 to 3000 ppm.

【0007】実施例2 四塩化チタンに、過酸化水素水を加えて作成した錯体溶
液と、硝酸第二鉄水溶液と硝酸マンガン水溶液の混合液
に炭酸ナトリウム水溶液を加え、共沈生成物を得た。こ
こで、鉄に対するチタンの含有量は3at%であり、マン
ガン元素の添加量は、鉄元素に対して0.1 at%である。
同様にして、銅,亜鉛,クロム,ニッケル,コバルトに
ついても硝酸塩の形で添加し、夫々の元素が鉄元素に対
して0.1 at%含まれる共沈生成物を作成した。また、同
時に添加を行なわない酸化鉄の共沈生成物についても作
成した。これらの生成物を十分水洗し乾燥した後、400
度1 時間の仮焼を行ない、ガス検知材料を構成する酸化
鉄半導体の原料粉末を得た。次に、実施例1と同様にし
て夫々の添加元素について素子を作成し、空気中で750
度1時間の焼成を行なった。更に、実施例1 と同様にし
て金を担持し、ガスセンサ素子とした。このようにして
作成したガスセンサ素子の動作温度70度における一酸化
炭素300 ppm (常温常湿)でのガス感度(RAIR
CO)を表1に示した。この結果より、マンガン添加に
よって特異的に感度が向上していることがわかる。
EXAMPLE 2 A sodium carbonate aqueous solution was added to a complex solution prepared by adding hydrogen peroxide solution to titanium tetrachloride and a mixed solution of ferric nitrate aqueous solution and manganese nitrate aqueous solution to obtain a coprecipitation product. .. Here, the content of titanium with respect to iron is 3 at%, and the amount of addition of the manganese element is 0.1 at% with respect to the iron element.
Similarly, copper, zinc, chromium, nickel, and cobalt were also added in the form of nitrates to prepare a coprecipitation product containing 0.1 at% of each element with respect to the iron element. In addition, a coprecipitation product of iron oxide which was not added at the same time was also prepared. After washing these products thoroughly with water and drying, 400
Calcination was performed once for 1 hour to obtain the raw material powder of the iron oxide semiconductor that constitutes the gas detection material. Next, elements were prepared for each of the additive elements in the same manner as in Example 1, and the elements were formed in air at 750
Firing was performed once for 1 hour each. Furthermore, gold was carried in the same manner as in Example 1 to obtain a gas sensor element. The gas sensitivity of the thus prepared gas sensor element at the operating temperature of 70 ° C. at 300 ppm of carbon monoxide (normal temperature and normal humidity) (R AIR /
R CO ) is shown in Table 1. From this result, it can be seen that the sensitivity is specifically improved by the addition of manganese.

【0008】更に、マンガンを添加した素子と添加しな
かったものについて、素子の動作温度を室温から300 度
まで変えて一酸化炭素の感度特性を測定した結果が、表
2である。この結果より、マンガン添加を行なうことで
室温から100 度付近の低温領域で、一酸化炭素感度が顕
著に向上していることがわかる。なお、感度は一酸化炭
素300 ppm の常温常湿で測定している。
Further, Table 2 shows the results of measuring the sensitivity characteristics of carbon monoxide between the element to which manganese was added and the element to which manganese was not added, while changing the operating temperature of the element from room temperature to 300 degrees. From these results, it can be seen that the addition of manganese significantly improves the sensitivity of carbon monoxide in the low temperature range from room temperature to around 100 degrees. The sensitivity was measured at room temperature and normal humidity of 300 ppm carbon monoxide.

【0009】実施例3 四塩化チタンに、過酸化水素水を加えて作成した錯体溶
液と、硝酸第二鉄水溶液と硝酸マンガン水溶液の混合液
に炭酸ナトリウム水溶液を加え、共沈生成物を得た。こ
こで、鉄に対するチタンの含有量は3at%であり、マン
ガン元素の添加量は、鉄元素に対して0.1 at%とした。
また、同時にマンガン添加を行なわない原料も作成し
た。これらの生成物を十分水洗し乾燥した後、400 度1
時間の仮焼を行ない、ガス検知材料を構成する酸化鉄半
導体の原料粉末を得た。この粉末を用い、実施例1と同
様にして厚膜素子を作成し、この素子を空気中で700 度
1時間の焼成を行なった。次に、夫々の素子に白金,パ
ラジウム,金を鉄元素に対して1.0 〜5.0 at%の範囲で
担持し、ガスセンサ素子とした。白金及びパラジウムを
担持するガスセンサ素子は、素子に夫々所定の塩化白金
酸溶液もしくは塩化パラジウム溶液を含浸させた後、H
2 5%/N2 の水素気流中で400 度1時間の熱処理を行
ない、更に水洗後650 度1時間の再熱処理を行なって作
成した。金を担持するガスセンサ素子は、素子に所定の
硝酸金水溶液を含浸させ乾燥後、600 度1時間の熱処理
を行なうことで作成した。このようにして作成したガス
センサ素子の70度における一酸化炭素感度(300ppm 、
常温常湿)を表3に示した。このように、いずれの場合
もマンガン添加により一酸化炭素感度は顕著に向上して
いる。
EXAMPLE 3 A sodium carbonate aqueous solution was added to a complex solution prepared by adding hydrogen peroxide solution to titanium tetrachloride and a mixed solution of ferric nitrate aqueous solution and manganese nitrate aqueous solution to obtain a coprecipitation product. .. Here, the content of titanium with respect to iron was 3 at%, and the amount of addition of the manganese element was 0.1 at% with respect to the iron element.
At the same time, a raw material to which manganese was not added was also prepared. After washing these products thoroughly with water and drying,
Calcination was performed for a period of time to obtain a raw material powder of iron oxide semiconductor constituting the gas detection material. Using this powder, a thick film element was prepared in the same manner as in Example 1, and the element was baked in air at 700 ° C. for 1 hour. Next, platinum, palladium, and gold were loaded on the respective elements in the range of 1.0 to 5.0 at% with respect to the iron element to form gas sensor elements. A gas sensor element carrying platinum and palladium is prepared by impregnating the element with a prescribed chloroplatinic acid solution or palladium chloride solution, and
2 at 5% / N 2 of the hydrogen stream subjected to heat treatment at 400 degrees for 1 hour, was prepared by further performing reheat treatment of 650 degrees for 1 hour After washing with water. The gas sensor element supporting gold was prepared by impregnating the element with a predetermined aqueous solution of gold nitrate, drying, and then heat-treating at 600 ° C. for 1 hour. The carbon monoxide sensitivity (300ppm,
Table 3 shows the temperature and humidity. Thus, in any case, the carbon monoxide sensitivity is remarkably improved by the addition of manganese.

【0010】[0010]

【発明の効果】以上説明したように、本発明によれば酸
化鉄に対して、マンガン元素を添加することによって、
低温においても一酸化炭素ガスに対して極めて高感度な
ガス検知材料を提供できる。このため、実用的な焼結強
度を得るため、700 度〜800 度の比較的高い温度でガス
センサ素子を焼成させた場合においても、一酸化炭素に
対して、十分に高いガス感度を得ることができる。
As described above, according to the present invention, by adding manganese element to iron oxide,
It is possible to provide a gas detection material having extremely high sensitivity to carbon monoxide gas even at low temperatures. Therefore, in order to obtain practical sintering strength, it is possible to obtain sufficiently high gas sensitivity to carbon monoxide even when the gas sensor element is fired at a relatively high temperature of 700 to 800 degrees. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】マンガン元素の添加量に対する一酸化炭素ガス
の検出感度の特性図。
FIG. 1 is a characteristic diagram of the detection sensitivity of carbon monoxide gas with respect to the added amount of elemental manganese.

フロントページの続き (72)発明者 中野 守 埼玉県熊谷市大字三ケ尻5310番地 秩父セ メント株式会社内フアインセラミツクス本 部内Front page continuation (72) Inventor Mamoru Nakano 5310 Mikashiri, Kumagaya, Saitama Prefecture Chichibu Cement Co., Ltd. Huain Ceramics Division

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 酸化鉄からなるガス検知材料において、
酸化鉄にマンガン元素を添加することを特徴とするガス
検知材料。
1. A gas detection material comprising iron oxide,
A gas detection material, characterized in that elemental manganese is added to iron oxide.
【請求項2】 マンガン元素の添加量が、酸化鉄の鉄元
素に対して20〜3000ppm であることを特徴とする請求項
1記載のガス検知材料。
2. The gas detection material according to claim 1, wherein the addition amount of manganese element is 20 to 3000 ppm with respect to the iron element of iron oxide.
JP3298242A 1991-10-17 1991-10-17 Gas detection material Expired - Fee Related JP2819362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3298242A JP2819362B2 (en) 1991-10-17 1991-10-17 Gas detection material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3298242A JP2819362B2 (en) 1991-10-17 1991-10-17 Gas detection material

Publications (2)

Publication Number Publication Date
JPH05107216A true JPH05107216A (en) 1993-04-27
JP2819362B2 JP2819362B2 (en) 1998-10-30

Family

ID=17857079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3298242A Expired - Fee Related JP2819362B2 (en) 1991-10-17 1991-10-17 Gas detection material

Country Status (1)

Country Link
JP (1) JP2819362B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52150695A (en) * 1976-06-09 1977-12-14 Matsushita Electric Ind Co Ltd Detecting element for inflammable gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52150695A (en) * 1976-06-09 1977-12-14 Matsushita Electric Ind Co Ltd Detecting element for inflammable gas

Also Published As

Publication number Publication date
JP2819362B2 (en) 1998-10-30

Similar Documents

Publication Publication Date Title
CN102608183B (en) Nitrogen-oxygen sensor
CA1208424A (en) Gas sensor
JPS61260605A (en) Ceramic humidity sensor
JP4456839B2 (en) NOx detection cell, manufacturing method thereof, and NOx detection apparatus including the cell
JPH05107216A (en) Gas detecting material
JPH1172476A (en) Nitrogen oxide gas sensor
JP2589130B2 (en) Oxygen sensor element
JP3197457B2 (en) Ammonia gas sensor and method of manufacturing the same
JPS6366448A (en) Gas detector
JPS6036017B2 (en) Manufacturing method of reducing gas detection element
JP2595123B2 (en) Carbon monoxide gas sensor
JP3271635B2 (en) Thick film gas sensor and method of manufacturing the same
JPH10246714A (en) Gas sensor material
EP0261275A1 (en) A hydrogen gas detecting element and method of producing same
JP3171734B2 (en) Carbon monoxide gas sensing element
JPH07198651A (en) Thin film type gas sensor
JP2000055854A (en) Gas sensor
JP2006071479A (en) Manufacturing method of sensitive material for ammonia gas and manufacturing method of ammonia gas sensor
KR940006687B1 (en) Manufacturing method of thick film semiconductor oxygen sensor
JPS58113849A (en) Semiconductor gas sensor
JPS5840696B2 (en) gas sensing element
JP3966616B2 (en) CO gas sensor and manufacturing method thereof, CO gas detection method
JPS59120946A (en) Gaseous freon detecting element
JPH09264863A (en) Carbon dioxide sensor and manufacture thereof
JPS6222417B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees