JPH0510417B2 - - Google Patents

Info

Publication number
JPH0510417B2
JPH0510417B2 JP60097384A JP9738485A JPH0510417B2 JP H0510417 B2 JPH0510417 B2 JP H0510417B2 JP 60097384 A JP60097384 A JP 60097384A JP 9738485 A JP9738485 A JP 9738485A JP H0510417 B2 JPH0510417 B2 JP H0510417B2
Authority
JP
Japan
Prior art keywords
less
steel plate
laser
steel
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60097384A
Other languages
Japanese (ja)
Other versions
JPS61257458A (en
Inventor
Kazuhiko Gunda
Hidenori Shirasawa
Shunichi Hashimoto
Kazuhiro Mimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP9738485A priority Critical patent/JPS61257458A/en
Publication of JPS61257458A publication Critical patent/JPS61257458A/en
Publication of JPH0510417B2 publication Critical patent/JPH0510417B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、伸びフランジ加工性にすぐれたレー
ザ加工用鋼板に関する。 (従来の技術) 自動車用部材や建築用部材等に冷間加工性のす
ぐれた各種鋼板のプレス成形品が実用に供されて
いる。従来、このようなプレス成形品を製造する
場合は、通常、熱延鋼板や冷延鋼板からプレス打
抜きにてプレス成形用の素材鋼板を得た後、更に
所要のプレス成形を行なうが、穴あけを要すると
きは、ポンチ打抜きによることが多い。このよう
なプレス成形用素材鋼板や打抜き穴部のプレス成
形においては、伸びフランジ加工を伴うことが多
いので、従来、かかる成形においては、加工時の
亀裂の発生を防止するために、例えば、鋼板にお
けるC量やMnS等の非金属介在物量を低減させ、
或いは非金属介在物の形状を制御する等の手段に
よつて、鋼板に良好な伸びフランジ加工性を有せ
しめている。 しかし、近年に至つて、機械加工における数値
制御技術及びレーザ切断技術の発達によつて、複
雑な形状の鋼板をレーザ切断してプレス成形用の
素材鋼板を製作し、更に、プレス成形後の穴あけ
をレーザ加工によつて行なう方法が提案され、ま
た、一部では実用化されている。上述した機械的
な打抜き加工材における伸びフランジ加工性につ
いては、従来より種々の研究がなされているが、
上記レーザ加工技術は、従来の機械的剪断技術と
は基本的に異なつて、鋼板の伸びフランジ加工性
にも大きい影響を与えるものと考えられるが、従
来、冶金学的な研究は殆どなされていない。 (発明の目的) そこで、本発明者らは、従来の打抜き加工と比
較して、レーザ切断した鋼板の伸びフランジ加工
性を鋭意研究した結果、鋼板に所定の化学組成を
有せしめることによつて、レーザ切断部の伸びフ
ランジ加工性に格段にすぐれるレーザ加工用鋼板
を得ることができることを見出して、本発明に至
つたものである。 即ち、本発明は、レーザ切断部の伸びフランジ
加工性にすぐれるレーザ加工用鋼板を提供するこ
とを目的とする。 以下、本発明において、伸びフランジ加工性に
すぐれるレーザ加工用鋼板というとき、これは、
上記したように、レーザ切断部の伸びフランジ加
工性にすぐれるレーザ加工用鋼板を意味する。 (発明の構成) 本発明による伸びフランジ加工性のすぐれたレ
ーザ加工用鋼板は、重量%で C 0.03〜0.25%、 Si 2.5%以下、 Mn 0.1〜2.5%、 P 0.15%以下、 S 0.020%以下、及び Al 0.1%以下を有し、 残部鉄及び不可避的不純物よりなり、且つ、 式値K=C+Si/25+Mn/10+P/10+10S+Cu/15
+ Ni/50+Cr/20 +Mo/20+2Nb+V/10+5B とするとき、 0.14≦K≦0.50 を満たすとを特徴とする。 先ず、本発明鋼板における化学成分の限定理由
について説明する。 本発明鋼板は、特に冷間加工用途に好適であ
り、この場合には、Cは、その添加量が少ないほ
ど好ましいが、反面、本発明に従つて、レーザ切
断部の伸びフランジ加工性にすぐれる鋼板を得る
ためには、少なくとも0.03%を添加することが必
要である。例えば、C量が0.01%程度の極低炭素
鋼の場合は、後述するように、所定の式値が本発
明による範囲内にあつても、伸びフランジ加工性
にすぐれるレーザ加工用鋼板を得ることができな
い。他方、Cは、これを過多に添加するときは、
レーザ切断部のすぐれた伸びフランジ加工性を確
保することができるが、鋼板の冷間加工性や溶接
性を著しく劣化させるので、Cの添加量の上限は
0.25%とする。 Siの添加は、レーザ切断部の伸びフランジ加工
性の改善に役立つが、過多に加すれば、鋼板にお
ける表面疵の発生や製造費用の上昇を招くので、
添加量の上限を2.5%とする。 Mnは、鋼の熱間圧延時のFeS生成による熱間
割れを防止するために、少なくとも0.1%を添加
することが必要である。しかし、余りに多量に添
加するときは、鋼板の冷間加工性を損なうので、
添加量の上限を2.5%とする。 Pは、その含有量が少ないほど、鋼板の冷間加
工性の観点から好ましいが、本発明においては、
鋼の強化元素として必要に応じて添加してもよ
い。しかし、0.15%を越えて多量に添加するとき
は、鋼の脆化が著しくなるので、添加量は0.15%
以下とする。 Sは、打抜き加工材の伸びフランジ加工性にと
つては、含有量は低いほど好ましいが、レーザ加
工材の場合には、S量は大きい影響を与えない。
しかし、含有量が余りに多いときは、鋼板の清浄
度が劣化し、また、鋼中欠陥が多くなるので、含
有量は0.020%以下とする。 リムド鋼についても、本発明は適用し得るが、
キルド鋼の場合、表面疵を防止するために、Al
の添加量は0.1%以下とする。 本発明においては、鋼板は、化学成分として、
Cu,Ni,Cr,Mo,Nb,V及びBよりなる群か
ら選ばれる少なくとも1種の元素を含有していて
もよい。 Cuは、レーザ切断部の伸びフランジ加工性の
改善に有効であるが、過多に添加するときは、鋼
板に表面疵を生じさせるので、添加量は1%以下
とする。 Niは、レーザ切断部のミクロン組織の微細化
効果を有し、高強度鋼板の伸びフランジ加工性の
改善に有効である。しかし、添加量が1%を越え
ても、上記効果が飽和し、経済性の点からも好ま
しくないので、添加量を1%以下とする。 前述したように、Cuは多量に添加するときは、
鋼板に表面疵を生じさせるので、特に、Cuを0.4
%以上添加するときは、Niとの複合添加として、
その改善を図ることが好ましい。 Cr及びMoは、Cuと同様にレーザ切断部の伸び
フランジ加工性の改善に有効であるが、多量の添
加は経済性を損なうので、添加量は、Crについ
ては2.5%以下、Moについては0.5%以下とする。 Nb及びVも、共にレーザ切断部の伸びフラン
ジ加工性の改善に有効であるが、材料の強度設計
上、0.1%を越えるときは、この効果が飽和する
ので、添加量の上限は、それぞれ0.1%とする。 Bは、C及びMnとの複合添加によつて、レー
ザ切断部の伸びフランジ加工性の改善に有効であ
る。しかし、0.01%を越えて多量に添加しても、
その効果が飽和するので、0.01%を添加量の上限
とする。 本発明による鋼板は、上記した化学組成を有す
ると共に、 式値K=C+Si/25+Mn/10+P/10+10S+Cu/15
+ Ni/50+Cr/20 +Mo/20+2Nb+V/10+5B とするとき、 0.14≦K≦0.50 を満たすことが必要である。以下にその理由を説
明する。 種々の化学組成及び強度を有する鋼板について
の穴拡げ試験を行なつた結果を図面に示す。即
ち、種々の化学組成を有し、従つて、種々の上記
式値Kをもつ鋼板にレーザ切断又はポンチ打抜法
によつて10mm径切穴を加工し、穴拡げ試験を行な
つた。その結果、ポンチ打抜きによる穴の穴拡げ
率に対するレーザ加工による穴の穴拡げ率の比
は、上記式値Kが大きくなるにつれて増大する。 しかし、前記したように、極低炭素鋼について
は、式値が所定の範囲内にあつても、伸びフラン
ジ加工性の改善効果は得られず、また、式値が
0.14よりも小さいときは、伸びフランジ加工性の
改善効果が得られない。他方、式値が0.50を越え
るときは、鋼板のレーザ切断部の硬化が極めて高
くなり、場合によつては、局部的な焼き割れも生
じやすくなり、鋼板母材の張出し加工性、伸びフ
ランジ加工性等のプレス成形性や、硬化部の延
性、厚物ではビード下割れ等の溶接性の劣化とあ
わせて、種々の問題が生じる。このように、式値
が0.50を越えるときは、得られる鋼板が実用上、
冷間加工性及び溶接性が著しく劣化し、実用に適
さなくなるので、本発明においては、上記式値の
範囲を0.14以上、0.50以下とし、好ましくは、
0.20以上、0.50以下とする。 従つて、本発明によれば、強度及びS含有量が
同じであつても、化学組成を本発明に従つて所定
の範囲とし、且つ、これら合金元素量によつて規
定される上記式値を所定の範囲に規制することに
よつて、レーザ切断部の伸びフランジ加工性に格
段にすぐれるレーザ加工用鋼板を得ることができ
る。 尚、本発明による鋼板は、厚板ミル、熱延ミ
ル、冷延ミルのいずれの方法によつて製造するこ
とができる。 (発明の効果) 以上のように、本発明による鋼板は、所定の化
学組成を有すると共に、前記した式値を所定の範
囲に調整してなり、レーザ切断部の伸びフランジ
加工性に格段にすぐれるレーザ加工用鋼板を得る
ことができる。 (実施例) 以下に実施例を挙げて本発明を説明する。 実施例 厚板ミル、熱延ミル、冷延ミルのいずれかによ
つて、表に示す化学組成と式値Kとを有する鋼板
を製造した。これら鋼板にレーザ切断又はポンチ
打抜き法によつて10mm径切穴を加工し、穴拡げ試
験を行なつた。ポンチ打抜きによる穴の穴拡げ率
に対するレーザ加工による穴の穴拡げ率の比と前
記式値Kとの関係を図面に示す。本発明によるレ
ーザ加工用鋼板によれば、ポンチ打抜き法による
穴に比べて、レーザ切断による穴が伸びフランジ
加工性にすぐれることが明らかである。
(Industrial Application Field) The present invention relates to a steel plate for laser processing that has excellent stretch flanging properties. (Prior Art) Press-formed products of various steel sheets with excellent cold workability have been put into practical use as automobile parts, construction parts, and the like. Conventionally, when manufacturing such press-formed products, the material steel plate for press-forming is obtained by press punching from a hot-rolled steel plate or cold-rolled steel plate, and then the required press-forming is performed. When necessary, punching is often used. Press forming of such press forming material steel sheets and punched holes often involves stretch flange processing. By reducing the amount of C and the amount of non-metallic inclusions such as MnS,
Alternatively, by controlling the shape of nonmetallic inclusions, a steel plate is made to have good stretch flanging properties. However, in recent years, with the development of numerical control technology and laser cutting technology in machining, it has become possible to laser cut steel plates with complex shapes to produce raw steel plates for press forming, and also to drill holes after press forming. A method using laser processing has been proposed, and some have been put into practical use. Various studies have been conducted on the stretch flanging properties of the mechanically punched materials mentioned above.
The above laser processing technology is fundamentally different from conventional mechanical shearing technology, and is thought to have a large impact on the stretch-flange formability of steel sheets, but so far, little metallurgical research has been conducted. . (Purpose of the Invention) Therefore, as a result of intensive research on the stretch flange workability of laser cut steel sheets in comparison with conventional punching, the present inventors found that by giving the steel sheet a predetermined chemical composition, The inventors have discovered that it is possible to obtain a steel plate for laser machining that has extremely excellent stretch flanging properties at the laser cut portion, and has thus arrived at the present invention. That is, an object of the present invention is to provide a steel plate for laser processing which has excellent stretch flange workability at the laser cut portion. Hereinafter, in the present invention, when referring to a steel plate for laser processing with excellent stretch flangeability, this refers to:
As mentioned above, this refers to a steel plate for laser processing that has excellent stretch flanging properties at the laser cut portion. (Structure of the Invention) The steel plate for laser processing with excellent stretch flanging property according to the present invention has the following properties in terms of weight percentage: C 0.03 to 0.25%, Si 2.5% or less, Mn 0.1 to 2.5%, P 0.15% or less, S 0.020% or less. , and has Al 0.1% or less, the balance consists of iron and unavoidable impurities, and the formula value K = C + Si / 25 + Mn / 10 + P / 10 + 10 S + Cu / 15
It is characterized by satisfying 0.14≦K≦0.50 when +Ni/50+Cr/20 +Mo/20+2Nb+V/10+5B. First, the reason for limiting the chemical components in the steel sheet of the present invention will be explained. The steel sheet of the present invention is particularly suitable for cold working applications, and in this case, the smaller the amount of C added, the more preferable it is. It is necessary to add at least 0.03% in order to obtain a steel plate with a For example, in the case of ultra-low carbon steel with a C content of about 0.01%, a steel plate for laser processing with excellent stretch flangeability can be obtained even if the predetermined formula value is within the range according to the present invention, as described later. I can't. On the other hand, when adding too much C,
Although it can ensure excellent stretch flange workability of the laser cut section, the upper limit of the amount of C added is
The rate shall be 0.25%. Adding Si helps improve the stretch flange workability of the laser cut section, but adding too much Si can cause surface flaws in the steel plate and increase manufacturing costs.
The upper limit of the amount added is 2.5%. It is necessary to add at least 0.1% of Mn in order to prevent hot cracking due to FeS formation during hot rolling of steel. However, when adding too much, it impairs the cold workability of the steel plate.
The upper limit of the amount added is 2.5%. The smaller the content of P, the more preferable it is from the viewpoint of cold workability of the steel sheet, but in the present invention,
It may be added as a steel strengthening element if necessary. However, when adding a large amount exceeding 0.15%, the embrittlement of the steel becomes significant, so the addition amount is 0.15%.
The following shall apply. The lower the content of S is, the more preferable it is for the stretch-flange workability of punched materials, but in the case of laser processed materials, the amount of S does not have a large effect.
However, if the content is too high, the cleanliness of the steel plate will deteriorate and defects will increase in the steel, so the content should be 0.020% or less. Although the present invention can also be applied to rimmed steel,
In the case of killed steel, Al
The amount added shall be 0.1% or less. In the present invention, the steel plate has, as a chemical component,
It may contain at least one element selected from the group consisting of Cu, Ni, Cr, Mo, Nb, V and B. Cu is effective in improving the stretch flange workability of the laser cut section, but when added in excess, it causes surface flaws in the steel plate, so the amount added is limited to 1% or less. Ni has the effect of refining the microstructure of the laser-cut portion, and is effective in improving the stretch flange workability of high-strength steel sheets. However, even if the amount added exceeds 1%, the above effects are saturated and this is not preferable from an economic point of view, so the amount added is set to 1% or less. As mentioned above, when adding a large amount of Cu,
In particular, Cu should be added to 0.4
When adding % or more, as a composite addition with Ni,
It is preferable to try to improve this. Cr and Mo, like Cu, are effective in improving the stretch flange workability of laser cut parts, but adding large amounts impairs economic efficiency, so the amount of addition should be 2.5% or less for Cr and 0.5% for Mo. % or less. Both Nb and V are effective in improving the stretch flange workability of laser cut parts, but due to material strength design, this effect is saturated when the amount exceeds 0.1%, so the upper limit of the amount added is 0.1% for each. %. When B is added in combination with C and Mn, it is effective in improving the stretch flange workability of the laser cut portion. However, even if added in large amounts exceeding 0.01%,
Since the effect reaches saturation, the upper limit of the amount added is set at 0.01%. The steel plate according to the present invention has the chemical composition described above, and the formula value K=C+Si/25+Mn/10+P/10+10S+Cu/15
+Ni/50+Cr/20 +Mo/20+2Nb+V/10+5B, it is necessary to satisfy 0.14≦K≦0.50. The reason is explained below. The drawings show the results of hole expansion tests conducted on steel plates with various chemical compositions and strengths. That is, holes with a diameter of 10 mm were cut in steel plates having various chemical compositions and therefore various formula values K by laser cutting or punch punching, and a hole expansion test was conducted. As a result, the ratio of the hole expansion rate of the hole formed by laser processing to the hole expansion rate of the hole formed by punching increases as the formula value K increases. However, as mentioned above, for ultra-low carbon steel, even if the formula value is within the specified range, the effect of improving stretch flange formability cannot be obtained;
When it is smaller than 0.14, the effect of improving stretch flangeability cannot be obtained. On the other hand, when the formula value exceeds 0.50, the hardening of the laser-cut portion of the steel plate becomes extremely high, and in some cases, localized quench cracks are likely to occur, resulting in poor stretchability and stretch flange processing of the steel plate base material. Various problems occur in addition to deterioration in press formability such as hardness, ductility of hardened parts, and weldability such as under-bead cracking in thick materials. In this way, when the formula value exceeds 0.50, the obtained steel plate is practically
Since cold workability and weldability will be significantly deteriorated and it will become unsuitable for practical use, in the present invention, the range of the above formula value is set to 0.14 or more and 0.50 or less, preferably,
Must be 0.20 or more and 0.50 or less. Therefore, according to the present invention, even if the strength and S content are the same, the chemical composition is set within a predetermined range according to the present invention, and the above formula values defined by the amounts of these alloying elements are By regulating it within a predetermined range, it is possible to obtain a steel plate for laser machining that has excellent stretch flange workability at the laser cut portion. Note that the steel plate according to the present invention can be manufactured by any method including a plate mill, a hot rolling mill, and a cold rolling mill. (Effects of the Invention) As described above, the steel plate according to the present invention has a predetermined chemical composition and the above-mentioned formula values are adjusted to a predetermined range, and the stretch flange processability of the laser cut portion is improved significantly. A steel plate for laser processing can be obtained. (Example) The present invention will be described below with reference to Examples. Example A steel plate having the chemical composition and formula value K shown in the table was manufactured using either a plate mill, a hot rolling mill, or a cold rolling mill. A 10 mm diameter hole was cut into these steel plates by laser cutting or punch punching, and a hole expansion test was performed. The relationship between the formula value K and the ratio of the expansion rate of the hole by laser machining to the expansion rate of the hole by punch punching is shown in the drawing. According to the steel plate for laser processing according to the present invention, it is clear that the holes formed by laser cutting have excellent stretch flanging properties compared to the holes formed by punching.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

図面は、鋼板にレーザ切断法及びポンチ打抜き
法にて10mm径切穴を加工し、穴拡げ試験を行なつ
たときのポンチ打抜き法による穴の穴拡げ率に対
するレーザ切断法による穴の穴拡げ率の比と、式
値Kとの関係を示すグラフである。
The drawing shows the hole expansion rate of the hole by the laser cutting method compared to the hole expansion rate of the hole by the punch punching method when a 10 mm diameter hole was cut in a steel plate using the laser cutting method and the punch punching method and a hole expansion test was performed. It is a graph showing the relationship between the ratio and the formula value K.

Claims (1)

【特許請求の範囲】 1 重量%で C 0.03〜0.25%、 Si 2.5%以下、 Mn 0.1〜2.5%、 P 0.15%以下、 S 0.020%以下、及び Al 0.1%以下を有し、 残部鉄及び不可避的不純物よりなり、且つ、 式値K=C+Si/25+Mn/10+P/10+10S+Cu/15
+ Ni/50+Cr/20 +Mo/20+2Nb+V/10+5B とするとき、 0.14≦K≦0.50 を満たすことを特徴とする伸びフランジ加工性に
すぐれたレーザ加工用鋼板。 2 重量%で (a) C 0.03〜0.25%、 Si 2.5%以下、 Mn 0.1〜2.5%、 P 0.15%以下、 S 0.020%以下、及び Al 0.1%以下を含有すると共に、 (b) Cu 1%以下、 Ni 1%以下、 Cr 2.5%以下、 Mo 0.5%以下、 Nb 0.1%以下、 V 0.1%以下、及び B 0.01%以下、 よりなる群から選ばれる少なくとも1種の元素を
含有し、 残部鉄及び不可避的不純物よりなり、且つ、 式値K=C+Si/25+Mn/10+P/10+10S+Cu/15
+ Ni/50+Cr/20 +Mo/20+2Nb+V/10+5B とするとき、 0.14≦K≦0.50 を満たすことを特徴とする伸びフランジ加工性に
すぐれたレーザ加工用鋼板。
[Claims] 1% by weight: C 0.03-0.25%, Si 2.5% or less, Mn 0.1-2.5%, P 0.15% or less, S 0.020% or less, and Al 0.1% or less, with the balance being iron and unavoidable. and the formula value K=C+Si/25+Mn/10+P/10+10S+Cu/15
A steel plate for laser processing with excellent stretch flangeability, which satisfies 0.14≦K≦0.50 when +Ni/50+Cr/20 +Mo/20+2Nb+V/10+5B. 2. Contains (a) C 0.03 to 0.25%, Si 2.5% or less, Mn 0.1 to 2.5%, P 0.15% or less, S 0.020% or less, and Al 0.1% or less, and (b) Cu 1% Contains at least one element selected from the group consisting of: Ni 1% or less, Cr 2.5% or less, Mo 0.5% or less, Nb 0.1% or less, V 0.1% or less, and B 0.01% or less, the balance being iron. and unavoidable impurities, and the formula value K=C+Si/25+Mn/10+P/10+10S+Cu/15
A steel plate for laser processing with excellent stretch flangeability, which satisfies 0.14≦K≦0.50 when +Ni/50+Cr/20 +Mo/20+2Nb+V/10+5B.
JP9738485A 1985-05-07 1985-05-07 Steel sheet for laser processing having superior suitability to stretch flanging Granted JPS61257458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9738485A JPS61257458A (en) 1985-05-07 1985-05-07 Steel sheet for laser processing having superior suitability to stretch flanging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9738485A JPS61257458A (en) 1985-05-07 1985-05-07 Steel sheet for laser processing having superior suitability to stretch flanging

Publications (2)

Publication Number Publication Date
JPS61257458A JPS61257458A (en) 1986-11-14
JPH0510417B2 true JPH0510417B2 (en) 1993-02-09

Family

ID=14191013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9738485A Granted JPS61257458A (en) 1985-05-07 1985-05-07 Steel sheet for laser processing having superior suitability to stretch flanging

Country Status (1)

Country Link
JP (1) JPS61257458A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6205911B2 (en) * 2013-07-04 2017-10-04 新日鐵住金株式会社 Steel plate blank, laser cutting steel plate and laser cutting steel plate manufacturing method
JP6417977B2 (en) * 2015-01-29 2018-11-07 新日鐵住金株式会社 Steel plate blank

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57101653A (en) * 1980-12-15 1982-06-24 Kobe Steel Ltd Hot rolled steel plate for wheel rim
JPS57108241A (en) * 1980-12-24 1982-07-06 Kobe Steel Ltd High strength steel plate with superior formability, especially strength flanging property
JPS57110650A (en) * 1980-12-26 1982-07-09 Kobe Steel Ltd High strength hot rolled steel plate with superior stretch flanging property and resistance weldability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57101653A (en) * 1980-12-15 1982-06-24 Kobe Steel Ltd Hot rolled steel plate for wheel rim
JPS57108241A (en) * 1980-12-24 1982-07-06 Kobe Steel Ltd High strength steel plate with superior formability, especially strength flanging property
JPS57110650A (en) * 1980-12-26 1982-07-09 Kobe Steel Ltd High strength hot rolled steel plate with superior stretch flanging property and resistance weldability

Also Published As

Publication number Publication date
JPS61257458A (en) 1986-11-14

Similar Documents

Publication Publication Date Title
EP0068598B1 (en) Dual phase-structured hot rolled high-tensile strength steel sheet and a method of producing the same
JPH10130776A (en) High ductility type high tensile strength cold rolled steel sheet
US20220112575A1 (en) A high strength high ductility complex phase cold rolled steel strip or sheet
JP2008208406A (en) Steel material having small material anisotropy and excellent fatigue crack propagation properties, and producing method therefor
RU2731223C1 (en) High-strength welded cold-resistant steel and article made therefrom
RU2615667C1 (en) Method of producing hot-rolled sheets of low-alloyed steel of k65 strength grade for longitudinal electric-welded pipes
JP2000256777A (en) High tensile strength steel plate excellent in strength and low temperature toughness
US20220112586A1 (en) Cold rolled steel sheet
JPH0510418B2 (en)
JP2541070B2 (en) Method for producing high nickel alloy clad steel sheet with excellent brittle fracture propagation stopping properties of base material
EP3686293B1 (en) A high strength high ductility complex phase cold rolled steel strip or sheet
JPH0510417B2 (en)
JP3420371B2 (en) Chrome steel sheet with excellent formability and weatherability
JPS6152317A (en) Manufacture of hot rolled steel plate having superior toughness at low temperature
SE542818C2 (en) A high strength high ductility complex phase cold rolled steel strip or sheet
JP2828755B2 (en) Manufacturing method of low yield ratio 80 ▲ kgff / ▲ mm ▼▼ 2 上 class steel sheet with excellent weldability
JPH09170048A (en) High strength hot rolled steel plate for working, excellent in fatigue characteristic and bore expandability
JPH07150291A (en) High strength hot rolled steel sheet for working excellent in fatigue property
JPH06104861B2 (en) Manufacturing method of V added high toughness high strength steel sheet
JP2905639B2 (en) Method for producing 780 N / mm2 grade steel sheet with extremely low yield ratio
JPH0967645A (en) Thin steel sheet excellent in stretch-flanging property after shearing and sheet stock using the same thin steel sheet
JPH0995730A (en) Production of building steel for low temperature use
JPH0514782B2 (en)
JP3003495B2 (en) Steel material excellent in workability and method for producing the same
JPH04333526A (en) Hot rolled high tensile strength steel plate having high ductility and its production