JPH05102645A - Hybrid integrated circuit - Google Patents

Hybrid integrated circuit

Info

Publication number
JPH05102645A
JPH05102645A JP4090909A JP9090992A JPH05102645A JP H05102645 A JPH05102645 A JP H05102645A JP 4090909 A JP4090909 A JP 4090909A JP 9090992 A JP9090992 A JP 9090992A JP H05102645 A JPH05102645 A JP H05102645A
Authority
JP
Japan
Prior art keywords
integrated circuit
hybrid integrated
substrate
resin
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4090909A
Other languages
Japanese (ja)
Other versions
JP2951102B2 (en
Inventor
Yuusuke Igarashi
優助 五十嵐
Masaki Takeda
正喜 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP4090909A priority Critical patent/JP2951102B2/en
Publication of JPH05102645A publication Critical patent/JPH05102645A/en
Application granted granted Critical
Publication of JP2951102B2 publication Critical patent/JP2951102B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

PURPOSE:To prevent a solder joint crack caused by temperature cycle at the solder junction of a circuit element mounted on a hybrid integrated circuit board. CONSTITUTION:A circuit element mounted on a hybrid integrated circuit board 1 is coated for protection with coating resin 6 which has a thermal expansion coefficient a close to that of the board 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は混成集積回路に関し、特
に混成集積回路基板上の導電路に半田接続された回路素
子の半田接合部におけるストレスによる接合不良を改善
できる混成集積回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hybrid integrated circuit, and more particularly to a hybrid integrated circuit capable of improving joint failure due to stress at a solder joint portion of a circuit element soldered to a conductive path on a hybrid integrated circuit board.

【0002】[0002]

【従来の技術】従来の混成集積回路を図6に示す。混成
集積回路基板(21)は表面をアルマイト処理したアル
ミニウム基板を用い、基板(21)上に絶縁樹脂層を介
して所望形状の導電路(22)が形成されている。かか
る導電路(22)上あるいは導電路(22)間に半導体
チップ、チップコンデンサー、印刷抵抗体等の回路素子
(23)、樹脂封止型半導体素子および電解コンデンサ
ー等の大型の電子部品(図示されない)が半田接続さ
れ、導電路(22)を介して相互に接続され、所定の回
路機能を有している。
2. Description of the Related Art A conventional hybrid integrated circuit is shown in FIG. The hybrid integrated circuit board (21) is an aluminum substrate whose surface is anodized, and a conductive path (22) having a desired shape is formed on the board (21) via an insulating resin layer. Large electronic components (not shown) such as a semiconductor chip, a chip capacitor, a circuit element (23) such as a printed resistor, a resin-sealed semiconductor element and an electrolytic capacitor on or between the conductive path (22). ) Are connected by soldering and are connected to each other via the conductive path (22), and have a predetermined circuit function.

【0003】[0003]

【発明が解決しようとする課題】かかる構造の混成集積
回路上に搭載されるチップ抵抗、チップコンデンサー等
のチップ部品、半導体チップ、樹脂封止型半導体素子お
よび電解コンデンサー等の大型の電子部品は一般に半田
で接続されているため以下の問題が発生する。チップ部
品を例にして説明すると、アルミニウム基板をベース基
板とした基板の熱膨張係数αが23×10-6/℃であ
り、上記したチップ部品、例えばチップ抵抗の熱膨張係
数αが7×10-6/℃、チップコンデンサーの熱膨張係
数αが10×10-6/℃であるため両者の膨張係数αが
著しく異なるために温度サイクルによってチップ部品と
導電路を接続する半田固着部分に温度サイクルによるス
トレスが加わり、半田固着部分にクラックが発生し接続
不良となる問題がある。
Generally, large-sized electronic parts such as chip resistors, chip capacitors and other chip parts, semiconductor chips, resin-sealed semiconductor elements and electrolytic capacitors mounted on a hybrid integrated circuit having such a structure are generally used. Since they are connected with solder, the following problems occur. Taking a chip component as an example, the substrate having an aluminum substrate as a base has a coefficient of thermal expansion α of 23 × 10 −6 / ° C., and the above-mentioned chip component, for example, a chip resistor has a coefficient of thermal expansion of 7 × 10 6. -6 / ° C, the coefficient of thermal expansion α of the chip capacitor is 10 × 10 -6 / ° C, so the expansion coefficient α of both is significantly different. There is a problem that stress is applied to the solder and cracks occur in the solder-fixed portion, resulting in poor connection.

【0004】次にクラックが発生するメカニズムについ
て説明する。上記したようにアルミニウム基板の膨張係
数αが23×10-6/℃、チップ部品の膨張係数αが7
〜10×10-6/℃であり、チップ部品を接合する半田
の膨張係数αが約23×10 -6/℃であるため、室温状
態では図7Aの如く、基板、半田、チップ部に応力が加
わらない。
Next, regarding the mechanism of cracks,
Explain. As described above, the expansion coefficient of the aluminum substrate
The number α is 23 × 10-6/ ° C, expansion coefficient α of chip parts is 7
~ 10 x 10-6/ ° C, solder for joining chip components
Expansion coefficient α is about 23 × 10 -6/ ° C, so room temperature
In the state, as shown in FIG. 7A, stress is applied to the board, solder, and chip.
I don't know.

【0005】しかし、高温状態では図7Bの如く、基板
と半田のαがチップ部品より大きいため矢印方向に引張
られ、その結果、接合半田は矢印の方向にのみすそが広
がるように変形する。又、低温状態では図7Cに示す如
く、反対の矢印方向に圧縮力が加えられその結果、接合
半田は矢印方向にのみすそが広がる。例えば、−50〜
+150℃の条件の厳しい温度サイクル条件で数十〜数
百サイクルくり返すことにより、上述したようにαの著
しく異なるチップ部品と半田の接合面にクラックが発生
する。何故なら、温度サイクルにより微結晶状態にある
半田成分のスズと鉛成分が分離し凝集して半田内に連続
的な鉛層を形成するため機械的強度を低下させるからで
ある。
However, in the high temperature state, as shown in FIG. 7B, since α of the substrate and the solder is larger than the chip component, the solder is pulled in the direction of the arrow, and as a result, the joint solder is deformed so that the skirt spreads only in the direction of the arrow. Further, in the low temperature state, as shown in FIG. 7C, a compressive force is applied in the opposite arrow direction, and as a result, the joint solder spreads only in the arrow direction. For example, -50 to
By repeating several tens to several hundreds of cycles under a severe temperature cycle condition of + 150 ° C., cracks are generated on the joint surface between the chip component and the solder having significantly different α as described above. This is because the tin and lead components of the microcrystalline solder component are separated and agglomerated by the temperature cycle to form a continuous lead layer in the solder, which lowers the mechanical strength.

【0006】この問題は、上述したチップ抵抗のみなら
ず、その電極端子が半田付けされる樹脂封止型半導体素
子および電解コンデンサー等の大型の電子部品の半田接
続領域においても同様に発生する。さらに、同様の問題
は上述したチップ部品等の半田接続部分のみならず、印
刷抵抗体においても生ずる。印刷抵抗体においてはチッ
プ部品の如き半田接合部がないため接続不良の問題はな
いが、印刷抵抗体の抵抗値を変化させるという印刷抵抗
体特有の問題が発生する。即ち、印刷抵抗体が形成され
た混成集積回路は一般的には種々の信頼性試験が行われ
る。例えば、かかる混成集積回路を高温長時間保存した
後、常温に放置すると温度変化によって印刷抵抗体自体
が硬化収縮して初期設定の抵抗値をマイナスに変化させ
精度が要求される部分においては不良になるという問題
がある。
This problem occurs not only in the above-mentioned chip resistor, but also in the solder connection area of a large electronic component such as a resin-sealed semiconductor element to which its electrode terminal is soldered and an electrolytic capacitor. Further, the same problem occurs not only in the solder connection portion of the above-mentioned chip component etc. but also in the printed resistor. Since the printed resistor does not have a solder joint such as a chip part, there is no problem of connection failure, but a problem peculiar to the printed resistor occurs that the resistance value of the printed resistor is changed. That is, a hybrid integrated circuit having a printed resistor formed thereon is generally subjected to various reliability tests. For example, if such a hybrid integrated circuit is stored at high temperature for a long time and then left at room temperature, the printed resistor itself will cure and shrink due to temperature change, and the initial resistance value will change to a negative value, resulting in a defect in a part requiring accuracy. There is a problem of becoming.

【0007】また、印刷抵抗体は負のTCRを有してい
るため混成集積回路上に搭載したときには、TCRの変
化率を低くすることが望まれる。例えば、20KΩの抵
抗体のTCRは約−900ppm/℃であるが、この抵
抗体をアルミニウム基板上に搭載すると基板の膨張係数
αが23×10-6/℃、抵抗体の膨張係数αが12×1
-6/℃であるため、基板が温度変化によって引張られ
たとき抵抗体自体も引張られる。その結果、抵抗体は引
張られるものの抵抗値自体はプラスに変化するため、抵
抗体のTCRは−280ppm/℃まで小さくなる。
Further, since the printed resistor has a negative TCR, it is desired to reduce the rate of change of TCR when mounted on a hybrid integrated circuit. For example, the TCR of a resistor of 20 KΩ is about −900 ppm / ° C., but when this resistor is mounted on an aluminum substrate, the expansion coefficient α of the substrate is 23 × 10 −6 / ° C. and the expansion coefficient α of the resistor is 12 × 1
Since it is 0 −6 / ° C., when the substrate is pulled by the temperature change, the resistor itself is also pulled. As a result, the resistor is pulled, but the resistance value itself changes to a positive value, and the TCR of the resistor is reduced to -280 ppm / ° C.

【0008】しかし、精度が要求される抵抗体を考える
と、TCRを最小限に小さくすることが望ましい中、従
来構造では上記した約−280ppm程度にしか抑制で
きないという課題が残る。上述した問題は金属基板、特
にアルミニウム基板をベースとした集積回路特有の問題
であり、プリント基板等の他の基板をベースとした集積
回路では問題にならない。何故なら、そのようなベース
基板であってはチップ部品あるいは印刷抵抗体の膨張係
数αと基板の膨張係数αの差による上述した問題が発生
しないからである。
However, considering a resistor that requires precision, it is desirable to minimize the TCR, but the conventional structure has a problem that it can be suppressed to about -280 ppm. The above-mentioned problem is a problem peculiar to an integrated circuit based on a metal substrate, particularly an aluminum substrate, and does not occur on an integrated circuit based on another substrate such as a printed circuit board. This is because such a base substrate does not cause the above-mentioned problems due to the difference between the expansion coefficient α of the chip component or the printed resistor and the expansion coefficient α of the substrate.

【0009】この発明は上述した課題に鑑みて為された
ものであり、この発明の目的は、混成集積回路基板上に
搭載した回路素子等の半田接続部分に、温度サイクル時
に加わるストレスによるクラックの発生および印刷抵抗
体の抵抗値の変動を抑制する混成集積回路を提供する事
である。
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to prevent cracks due to stress applied during a temperature cycle in a solder connection portion of a circuit element or the like mounted on a hybrid integrated circuit board. It is an object of the present invention to provide a hybrid integrated circuit that suppresses generation and variation in the resistance value of a printed resistor.

【0010】[0010]

【課題を解決するための手段】上述した課題を解決し、
目的を達成するために、この発明に係わる混成集積回路
は、混成集積回路基板上に形成された所望形状の導電路
とその導電路の所定位置に接続された回路素子とを備え
た混成集積回路の、基板の熱膨張係数αと実質的に略近
似した熱膨張係数αを有した被覆樹脂で回路素子を被覆
封止したことを特徴としている。
[Means for Solving the Problems]
To achieve the object, a hybrid integrated circuit according to the present invention is provided with a conductive path of a desired shape formed on a hybrid integrated circuit substrate and a circuit element connected to a predetermined position of the conductive path. The circuit element is characterized in that the circuit element is coated and sealed with a coating resin having a thermal expansion coefficient α substantially similar to the thermal expansion coefficient α of the substrate.

【0011】[0011]

【作用】以上のように構成される混成集積回路において
は、混成集積回路基板上に搭載された回路素子を基板の
膨張係数αと近似させた膨張係数αを有した樹脂で被覆
され、膨張係数αが著しく異なる回路素子は膨張係数α
が近似した基板と樹脂で挾持された構造となり、混成集
積回路の使用等による温度サイクルが生じたとしても基
板と樹脂との伸縮が略同一であるため挾持配置されたチ
ップ状の回路素子および樹脂封止型半導体素子等にあっ
ては温度サイクルによるそれらの半田接合部に加わるス
トレスを著しく抑制することができる。
In the hybrid integrated circuit configured as described above, the circuit element mounted on the hybrid integrated circuit board is covered with the resin having the expansion coefficient α approximated to the expansion coefficient α of the board, and the expansion coefficient is Circuit elements with significantly different α have expansion coefficient α
The structure is sandwiched between the substrate and the resin, and even if a temperature cycle occurs due to the use of a hybrid integrated circuit, the expansion and contraction of the substrate and the resin are almost the same. In a sealed semiconductor element or the like, stress applied to those solder joints due to temperature cycles can be significantly suppressed.

【0012】また、印刷抵抗体にあっては、抵抗値のT
CRを従来よりも小さくすることができ、且つ硬化収縮
による初期設定の抵抗値の変化を著しく抑制することが
できる。
In the case of a printed resistor, the resistance value T
CR can be made smaller than before, and the change in the initial resistance value due to curing shrinkage can be significantly suppressed.

【0013】[0013]

【実施例】以下に図1〜図5に示した実施例に基づいて
本発明の混成集積回路を説明する。図1は本発明の混成
集積回路を示す要部拡大斜視断面図であり、(1)は混
成集積回路基板、(2)は絶縁樹脂層、(3)は導電
路、(4)はチップコンデンサーおよびチップ抵抗、
(5)は印刷抵抗体、(6)は被覆樹脂層、(7)は半
導体チップ、(8)は樹脂封止型半導体素子、(9)は
電解コンデンサー等の大型の電子部品である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The hybrid integrated circuit of the present invention will be described below based on the embodiments shown in FIGS. FIG. 1 is an enlarged perspective sectional view showing an essential part of a hybrid integrated circuit of the present invention. (1) is a hybrid integrated circuit board, (2) is an insulating resin layer, (3) is a conductive path, and (4) is a chip capacitor. And chip resistance,
(5) is a printed resistor, (6) is a coating resin layer, (7) is a semiconductor chip, (8) is a resin-sealed semiconductor element, and (9) is a large electronic component such as an electrolytic capacitor.

【0014】混成集積回路基板(1)としてはアルミニ
ウム基板表面をアルマイト処理したものあるいはアルミ
ニウム基板表面にAl23を混入した絶縁樹脂(2)を
塗布したものを用い、良好な放熱特性を得ている。斯る
基板(1)上には銅箔が貼着され、その銅箔を所望の形
状にエッチングして所望形状の導電路(3)が形成され
ている。導電路(3)上の所定位置にはニッケルメッキ
が施されている。
As the hybrid integrated circuit substrate (1), an aluminum substrate whose surface is anodized or an aluminum substrate whose surface is coated with an insulating resin (2) mixed with Al 2 O 3 is used to obtain good heat dissipation characteristics. ing. A copper foil is attached to the substrate (1), and the copper foil is etched into a desired shape to form a conductive path (3) having a desired shape. Nickel plating is applied to predetermined positions on the conductive paths (3).

【0015】導電路(3)上には所望の回路機能を構成
するべく、半導体チップ(7)、チップコンデンサー、
チップ抵抗(4)および印刷抵抗体(5)等の複数の回
路素子が基板(1)上の所定位置に搭載形成されてい
る。チップコンデンサー、チップ抵抗(4)、半導体チ
ップ(7)等のチップ部品、QFP等の表面実装型の樹
脂封止型半導体素子(8)および電解コンデンサー等の
大型の電子部品(9)は周知の如く、半田により導電路
(3)と接合され、トランジスタ、LSIチップ等の半
導体チップ(7)にあっては半田以外にAgペーストに
よって導電路(3)と接続される場合もある。また、印
刷抵抗体(5)においては、Agペースト層(図示しな
い)を介して所望の導電路(3)間に印刷形成され、本
実施例においてはエポキシ樹脂100、カーボン8、無
機フィラー30〜100、有機溶剤100の組成で形成
されたエポキシ樹脂ベースのカーボンレジン印刷抵抗ペ
ーストを用いて形成されている。
On the conductive path (3), a semiconductor chip (7), a chip capacitor, and a chip capacitor are formed to form a desired circuit function.
A plurality of circuit elements such as a chip resistor (4) and a printed resistor (5) are mounted and formed at predetermined positions on the substrate (1). Chip capacitors, chip resistors (4), chip parts such as semiconductor chips (7), surface mount resin-sealed semiconductor elements (8) such as QFP, and large electronic parts (9) such as electrolytic capacitors are well known. As described above, the conductive path (3) may be joined by solder, and the semiconductor chip (7) such as a transistor or an LSI chip may be connected to the conductive path (3) by Ag paste instead of solder. Further, in the printed resistor (5), it is printed and formed between desired conductive paths (3) via an Ag paste layer (not shown). In this embodiment, the epoxy resin 100, carbon 8, inorganic fillers 30 to 30 are formed. It is formed by using an epoxy resin-based carbon resin printing resistor paste formed with a composition of 100 and 100 of an organic solvent.

【0016】また、耐熱性を向上させる場合には、ビス
マレイミド型あるいはマレイミド型ポリイミド樹脂に分
子量300〜3000のエポキシ樹脂を10〜80部添
加して変性させたエポキシ変性ポリイミド樹脂100、
カーボン8、無機フィラー30、有機溶剤110の重量
比で組成したエポキシ変性したポリイミド樹脂ベースの
カーボンレジン印刷抵抗ペーストを用いる。
For improving heat resistance, an epoxy-modified polyimide resin 100 obtained by modifying a bismaleimide type or maleimide type polyimide resin by adding 10 to 80 parts of an epoxy resin having a molecular weight of 300 to 3000,
An epoxy-modified polyimide resin-based carbon resin printing resistor paste composed of carbon 8, an inorganic filler 30, and an organic solvent 110 in a weight ratio is used.

【0017】本発明の特徴とするところは、斯上したチ
ップコンデンサー、チップ抵抗(4)、半導体チップ
(7)、樹脂封止型半導体素子(8)および電解コンデ
ンサー等の大型の電子部品(9)の半田接続部もしくは
印刷抵抗体を、基板のαと略近似させたαを有する樹脂
で被覆することにある。チップコンデンサー、チップ抵
抗(4)および半導体チップ(7)若しくは印刷抵抗体
(5)は全体を被覆するように保護され、樹脂封止型半
導体素子(8)および電解コンデンサー等の大型の電子
部品(9)は半田接続部分に選択的にあるいは部品全体
に被覆保護される。
A feature of the present invention is that large-sized electronic parts (9) such as the chip capacitor, the chip resistor (4), the semiconductor chip (7), the resin-sealed semiconductor element (8), and the electrolytic capacitor. ), The solder connection portion or the printed resistor is coated with a resin having α that is approximately similar to α of the substrate. The chip capacitor, the chip resistor (4) and the semiconductor chip (7) or the printed resistor (5) are protected so as to cover the whole, and large-sized electronic parts (such as a resin-sealed semiconductor element (8) and an electrolytic capacitor ( 9) is selectively protected at the solder connection portion or is covered and protected on the entire component.

【0018】本発明に用いる被覆樹脂(6)は温度サイ
クル条件に設定して種々に変更される。例えば、温度サ
イクル条件が−50〜+150℃範囲である場合、その
条件の上限以上の150℃以上のガラス転移温度(T
G)を有するエポキシ系樹脂を用い、その樹脂中に約5
7重量比%の無機フィラー(シリカ等)を混入させるこ
とにより被覆樹脂(6)のαを約25×10-6/℃に調
整することができる。ガラス転移温度(TG)を温度サ
イクル条件の上限以下に設定すると温度サイクルの上昇
状態のときに樹脂成分組成が変化し基板αと調整した樹
脂α自体が変化するためである。
The coating resin (6) used in the present invention is variously changed by setting temperature cycle conditions. For example, when the temperature cycle condition is in the range of -50 to + 150 ° C, the glass transition temperature (T) of 150 ° C or higher, which is higher than the upper limit of the condition.
Epoxy resin having G) is used, and about 5% is contained in the resin.
By mixing 7% by weight of an inorganic filler (silica or the like), α of the coating resin (6) can be adjusted to about 25 × 10 −6 / ° C. This is because when the glass transition temperature (TG) is set to be lower than or equal to the upper limit of the temperature cycle condition, the resin component composition changes when the temperature cycle increases and the resin α itself adjusted with the substrate α changes.

【0019】αを基板(1)と略近似させた被覆樹脂
(6)をチップコンデンサー、チップ抵抗(4)および
印刷抵抗体(5)に塗布し熱硬化させることにより、チ
ップコンデンサー、チップ抵抗(4)にあっては温度サ
イクルによる半田接合部へのクラックの発生の防止、ま
た印刷抵抗体(5)にあってはTCRを極めて小さくで
き且つ高温保存における抵抗変化率をも極めて小さくす
ることができる。
A coating resin (6) in which α is approximately approximated to the substrate (1) is applied to the chip capacitor, the chip resistor (4) and the printed resistor (5) and thermally cured, whereby the chip capacitor and the chip resistor ( In the case of 4), it is possible to prevent the occurrence of cracks in the solder joint portion due to the temperature cycle, and in the case of the printed resistor (5), the TCR can be made extremely small and the resistance change rate at high temperature storage can be made extremely small. it can.

【0020】次に本発明の被覆樹脂(6)を用いて被覆
すると何故チップコンデンサー、チップ抵抗(4)、半
導体チップ(7)、樹脂封止型半導体素子(8)および
電解コンデンサー等の大型の電子部品(9)の半田接合
部にクラックが生じない点について、図2に示したチッ
プコンデンサーに基ずいて説明する。図2Aはチップコ
ンデンサー(4)に被覆樹脂(6)を塗布し、200℃
〜250℃の温度で加熱させ被覆樹脂(6)を熱硬化さ
せたときの断面図である。被覆樹脂(6)を熱硬化させ
るときに上記した加熱により基板(1)、半田、チップ
コンデンサー(4)には夫々のαに応じて引張力が加え
られる。
Next, the resin is coated with the coating resin (6) of the present invention, which is why a large size such as a chip capacitor, a chip resistor (4), a semiconductor chip (7), a resin-sealed semiconductor element (8) and an electrolytic capacitor is produced. The fact that cracks do not occur at the solder joints of the electronic component (9) will be described based on the chip capacitor shown in FIG. 2A shows that the coating resin (6) is applied to the chip capacitor (4) and the temperature is set to 200 ° C.
FIG. 3 is a cross-sectional view when the coating resin (6) is heated at a temperature of up to 250 ° C. to be thermoset. When the coating resin (6) is thermoset, a tensile force is applied to the substrate (1), the solder, and the chip capacitor (4) according to each α by the above-mentioned heating.

【0021】即ち、熱硬化することにより基板(1)、
半田、チップコンデンサー(4)が引張られた状態で被
覆樹脂(6)が硬化するために、温度サイクルではチッ
プコンデンサー(4)は略近似したαを有した基板、半
田、被覆樹脂で囲まれた状態(チップコンデンサー
(4)の全体が樹脂モールドされた状態)となり、チッ
プコンデンサー(4)は図Bに示す如く常に圧縮応力が
加わり半田層が従来の如き、温度サイクルによって変形
しないため半田成分の微結晶状態が保持され半田接合部
とコンデンサー等(4)の界面にクラックの発生が生じ
ないものである。
That is, the substrate (1) is cured by heat,
In the temperature cycle, the chip capacitor (4) was surrounded by the substrate, the solder, and the coating resin having approximately a because the coating resin (6) was cured while the solder and the chip capacitor (4) were pulled. As shown in FIG. B, the chip capacitor (4) is always subjected to compressive stress as shown in FIG. B, and the solder layer is not deformed by the temperature cycle as in the conventional case. The microcrystalline state is maintained and cracks do not occur at the interface between the solder joint and the capacitor (4).

【0022】ところで、αをマッチングさせてない樹脂
でチップコンデンサーを被覆保護すると、基板のαが約
25×10-6/℃であるのに対し、通常のエポキシ樹脂
のαは約50×10-6/℃である。両者のαが著しく異
なるため、樹脂の熱硬化時においては接合部にストレス
は生じないが、熱硬化温度以下の温度では、樹脂が基板
に対して相対的に縮むために、被覆樹脂が周辺の回路パ
ターンが被覆される場合には、そのパターンが剥離する
問題がある。従って、基板のαとマッチングさせてない
樹脂を用いた場合には被覆領域を避けてパターンを形成
しなければならず、高集積小型化ができないという不具
合が生じる。また、被覆領域で基板が歪む不具合もあ
る。
By the way, when the chip capacitor is covered and protected with a resin that does not match α, α of the substrate is about 25 × 10 −6 / ° C., whereas α of ordinary epoxy resin is about 50 × 10 −. 6 / ° C. Since α of both is remarkably different, stress does not occur in the joint portion during thermosetting of the resin, but at a temperature below the thermosetting temperature, the resin shrinks relatively to the substrate, so the coating resin is When the circuit pattern is covered, there is a problem that the pattern peels off. Therefore, when a resin that is not matched with α of the substrate is used, it is necessary to form the pattern while avoiding the covering region, which causes a problem that high integration and miniaturization cannot be achieved. There is also a problem that the substrate is distorted in the covered area.

【0023】図3は基板のαと略近似させた被覆樹脂
(6)でチップコンデンサー(4)を被覆したもの
(A)と従来の被覆しないもの(B)との温度サイクル
試験での半田接合部クラック発生不良率を示した特性図
である。尚、温度サイクル条件は−40℃(30分)〜
+125℃(30分)で行い、アルミニウム基板上に
3.2×1.6mmのチップコンデンサーを搭載した。
図3から明らかな如く、従来の(B)では670サイク
ルで不良が発生し始め、1000サイクルでは試験サン
プル数8個中全てのサンプルで半田クラックによる接続
不良が発生した。それに対して、本発明の(A)では2
000サイクルにおいても半田接合部のクラックの発生
が全くないことが確認された。
FIG. 3 is a solder joint in a temperature cycle test between a chip capacitor (4) coated with a coating resin (6) which is approximately approximated to α of the substrate (A) and a conventional uncoated one (B). It is a characteristic view showing a partial crack generation defective rate. The temperature cycle condition is -40 ° C (30 minutes) ~
It was carried out at + 125 ° C. (30 minutes), and a 3.2 × 1.6 mm chip capacitor was mounted on an aluminum substrate.
As is clear from FIG. 3, in the conventional (B), a defect started to occur in 670 cycles, and in 1000 cycles, a connection defect due to a solder crack occurred in all of the 8 test samples. On the other hand, in (A) of the present invention, 2
It was confirmed that no cracks were generated at the solder joint even after 000 cycles.

【0024】一方、印刷抵抗体(5)を本発明の被覆樹
脂(6)で被覆すると印刷抵抗体(5)のTCRを従来
よりも小さくすることができ温度変化に対して従来より
も抵抗変動の極めて少ない混成集積回路を提供すること
ができる。また、印刷抵抗体(5)が膨張係数αの近似
した基板(1)と被覆樹脂(6)で挾持された構造とな
るため高温保存における抵抗変化率を従来より著しく改
善することができる。
On the other hand, when the printed resistor (5) is coated with the coating resin (6) of the present invention, the TCR of the printed resistor (5) can be made smaller than before, and the resistance variation with respect to temperature change can be made more than before. It is possible to provide a hybrid integrated circuit having an extremely small number. Further, since the printed resistor (5) has a structure in which it is sandwiched between the substrate (1) and the coating resin (6) having a coefficient of expansion α close to each other, the rate of change in resistance during high temperature storage can be significantly improved as compared with the prior art.

【0025】図4は20KΩの印刷抵抗体上に被覆樹脂
(b)を被覆したものと被覆しないものとの温度変化に
よる抵抗変化率を示す特性図であり、また図5は高温保
存抵抗変化率を示す特性図である。測定条件として高温
保存抵抗変化特性では常温125℃で1000時間にお
ける抵抗変化率を測定したものである。尚、抵抗体は本
実施例で用いられるアルミニウム基板上に形成して測定
したものである。
FIG. 4 is a characteristic diagram showing the resistance change rate depending on the temperature change between the case where the coating resin (b) is coated on the 20 KΩ printed resistor and the case where it is not coated, and FIG. 5 is the high temperature storage resistance change rate. It is a characteristic view showing. As a measurement condition, the high temperature storage resistance change characteristic is a resistance change rate at room temperature of 125 ° C. for 1000 hours. The resistors were measured by forming them on the aluminum substrate used in this example.

【0026】図4及び図5においてAは膨張係数αを基
板の膨張係数αと近似させた被覆樹脂を被覆したもので
あり、Bは従来の如き被覆樹脂を被覆しないものであ
る。図4及び図5から明らかな如く、TCRにおいてA
はBよりも抵抗値が変化しないことが明確である。何故
なら、基板(1)のαと被覆樹脂(6)とのαが略同一
のためαの小さい印刷抵抗体(5)が挾持された構造に
なるため、印刷抵抗体(5)の上下に応力が加わるため
TCRが小さくなる。
In FIGS. 4 and 5, A is a coating resin coated with a coefficient of expansion α approximating the expansion coefficient α of the substrate, and B is a coating resin which is not coated with a conventional coating resin. As is clear from FIG. 4 and FIG.
It is clear that the resistance value does not change more than that of B. Because the α of the substrate (1) and the α of the coating resin (6) are substantially the same, the printed resistor (5) having a small α is sandwiched between the printed resistor (5) and the printed resistor (5). Since stress is applied, the TCR becomes smaller.

【0027】また、高温保存試験後においては、AはB
より極めて改善されることは明確である。何故なら、印
刷抵抗体(5)が高温保存状態におかれた場合、樹脂の
硬化収縮がさらに進み抵抗値を低下される動きを生じ
る。本発明の被覆樹脂(6)はエポキシ当量計算された
速硬化性の硬化剤を用いる為、高温保存において硬化収
縮が少ない。従って抵抗体(5)の硬化収縮を阻害する
働きを示す為抵抗値の低下を防げるためである。
After the high temperature storage test, A is B
It is clear that it will be much more improved. This is because when the printed resistor (5) is stored in a high temperature storage state, the curing shrinkage of the resin further proceeds and the resistance value is lowered. Since the coating resin (6) of the present invention uses a fast-curing curing agent whose epoxy equivalent is calculated, it has little curing shrinkage when stored at high temperature. Therefore, it has the function of inhibiting the curing shrinkage of the resistor (5), so that the resistance value can be prevented from lowering.

【0028】詳述した実施例ではチップコンデンサー等
のチップ部品および印刷抵抗体に限定して説明したが、
本発明はそれらの回路素子に限定されるものではなく、
ベアチップあるいはディスクリート部品の半田接合部分
において用いても同様の効果が期待できる。そして、特
に大型のチップコンデンサー等のチップ部品を半田接合
する場合に特に有効である。それは、チップ部品等が大
型になるに従って、半田接合部分にストレスが加わるか
らである。又、全ての印刷抵抗体上に塗布形成すること
も可能であるが、基板上の印刷抵抗体数が多くなる場合
には基板のそりを考慮して精度が要求される印刷抵抗体
のみを選択して塗布形成すると更に効果的である。
Although the embodiments described in detail have been limited to the chip components such as the chip capacitors and the printed resistors,
The present invention is not limited to those circuit elements,
The same effect can be expected when it is used in a solder joint portion of a bare chip or a discrete component. And, it is particularly effective when soldering chip components such as a large chip capacitor. This is because as the chip parts and the like become larger, stress is applied to the solder joint portion. It is also possible to form by coating on all printed resistors, but if the number of printed resistors on the substrate is large, select only those resistors that require precision in consideration of the warpage of the substrate. It is even more effective to form by coating.

【0029】[0029]

【発明の効果】以上に詳述した如く、本発明に依れば、
基板の熱膨張係数αと略近似した膨張係数αを有した被
覆樹脂で基板上に搭載されたチップコンデンサー等のチ
ップ部品及び印刷抵抗体等の回路素子を被覆することに
より、チップ部品にあっては極めて温度差のある温度サ
イクルによる半田接合部のクラック発生を完全に防止す
ることができる。
As described above in detail, according to the present invention,
By coating a chip component such as a chip capacitor and a circuit element such as a printed resistor mounted on the substrate with a coating resin having a coefficient of expansion α that is approximately similar to the coefficient of thermal expansion α of the substrate It is possible to completely prevent cracking of the solder joint portion due to a temperature cycle having an extremely different temperature.

【0030】また、本発明に依れば上述した被覆樹脂で
印刷抵抗体を被覆することにより、印刷抵抗体のTCR
を極めて従来よりも小さくすることができ温度変化に対
して抵抗変動の少ない混成集積回路を提供することがで
きると共に、更に高温保存における抵抗変化率をも極め
従来よりも抑制できる。その結果、本発明の混成集積回
路では極めて厳しい温度サイクル条件においても信頼性
の優れた混成集積回路を実現できる。
Further, according to the present invention, by coating the printed resistor with the above-mentioned coating resin, the TCR of the printed resistor can be obtained.
It is possible to provide a hybrid integrated circuit in which the resistance change with respect to temperature change is small, and it is possible to further reduce the resistance change rate at high temperature storage, and to suppress the resistance change more than before. As a result, the hybrid integrated circuit of the present invention can realize a highly reliable hybrid integrated circuit even under extremely severe temperature cycle conditions.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の混成集積回路を示す要部拡大斜
視断面図である。
FIG. 1 is an enlarged perspective sectional view of an essential part showing a hybrid integrated circuit of the present invention.

【図2】図2は本発明の被覆樹脂を塗布したときの半田
接合部における応力を説明する図である。
FIG. 2 is a diagram for explaining stress in a solder joint portion when a coating resin of the present invention is applied.

【図3】図3は温度サイクル試験における半田接合部の
クラック発生不良率を示す特性図である。
FIG. 3 is a characteristic diagram showing a crack generation defect rate of a solder joint portion in a temperature cycle test.

【図4】図4は印刷抵抗体の温度変化による抵抗変化率
を示す特性図である。
FIG. 4 is a characteristic diagram showing a rate of change in resistance of a printed resistor with temperature change.

【図5】図5は印刷抵抗体の高温保存による抵抗変化率
を示す特性図である。
FIG. 5 is a characteristic diagram showing a resistance change rate of a printed resistor when stored at high temperature.

【図6】従来の混成集積回路を示す断面図である。FIG. 6 is a sectional view showing a conventional hybrid integrated circuit.

【図7】図7は従来の半田接合部における応力を説明す
る図である。
FIG. 7 is a diagram illustrating stress in a conventional solder joint.

【符号の説明】[Explanation of symbols]

(1) 混成集積回路基板 (2) 絶縁樹脂層 (3) 導電路 (4) チップコンデンサー等のチップ部品 (5) 印刷抵抗体 (6) 被覆樹脂 (7) 半導体チップ (8) 樹脂封止型半導体素子 (9) 電子部品 (1) Hybrid integrated circuit board (2) Insulating resin layer (3) Conductive path (4) Chip component such as chip capacitor (5) Printed resistor (6) Coating resin (7) Semiconductor chip (8) Resin-sealed type Semiconductor element (9) Electronic components

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 混成集積回路基板上に形成された所望形
状の導電路とその導電路の所定位置に接続された回路素
子とを備えた混成集積回路であって、前記基板の熱膨張
係数αと実質的に略近似した熱膨張係数αを有した被覆
樹脂で前記回路素子を被覆封止したことを特徴とする混
成集積回路。
1. A hybrid integrated circuit comprising a conductive path of a desired shape formed on a hybrid integrated circuit substrate and a circuit element connected to a predetermined position of the conductive path, wherein the thermal expansion coefficient α of the substrate. A hybrid integrated circuit characterized in that the circuit element is coated and sealed with a coating resin having a thermal expansion coefficient α substantially substantially similar to the above.
【請求項2】 混成集積回路基板上に形成された所望形
状の導電路とその導電路の所定位置に半田接続された半
導体チップ、チッブコンデンサー、チップ抵抗等の回路
素子とを備えた混成集積回路であって、前記基板の熱膨
張係数αと実質的に略近似した熱膨張係数αを有した被
覆樹脂で前記回路素子を被覆封止したことを特徴とする
混成集積回路。
2. A hybrid integrated circuit comprising a conductive path of a desired shape formed on a hybrid integrated circuit substrate and a circuit element such as a semiconductor chip, a chip capacitor, and a chip resistor soldered to a predetermined position of the conductive path. The hybrid integrated circuit, wherein the circuit element is covered and sealed with a covering resin having a coefficient of thermal expansion α substantially similar to the coefficient of thermal expansion α of the substrate.
【請求項3】 混成集積回路基板上に形成された所望形
状の導電路とその導電路の所定位置に半田接続された樹
脂封止型半導体素子および電解コンデンサー等の大型の
電子部品とを備えた混成集積回路であって、少なくとも
前記樹脂封止型半導体素子、電子部品の接続電極部を前
記基板の熱膨張係数αと実質的に略近似した熱膨張係数
αを有した被覆樹脂で被覆封止したことを特徴とする混
成集積回路。
3. A conductive path of a desired shape formed on a hybrid integrated circuit board, and a resin-sealed semiconductor element solder-connected to a predetermined position of the conductive path, and a large electronic component such as an electrolytic capacitor. A hybrid integrated circuit, in which at least the resin-sealed semiconductor element and the connection electrode portion of an electronic component are covered and sealed with a covering resin having a thermal expansion coefficient α substantially similar to the thermal expansion coefficient α of the substrate. A hybrid integrated circuit characterized by the above.
【請求項4】 混成集積回路基板上に形成された所望形
状の導電路とその導電路間の所定位置に印刷された少な
くとも一つの印刷抵抗体とを備えた混成集積回路であっ
て、前記印刷抵抗体を前記基板の熱膨張係数αと実質的
に略近似した熱膨張係数αを有した被覆樹脂で被覆封止
したことを特徴とする混成集積回路。
4. A hybrid integrated circuit comprising: a conductive path having a desired shape formed on a hybrid integrated circuit substrate; and at least one printed resistor printed at a predetermined position between the conductive paths. A hybrid integrated circuit in which a resistor is coated and sealed with a coating resin having a thermal expansion coefficient α substantially similar to the thermal expansion coefficient α of the substrate.
【請求項5】 絶縁金属基板上に形成された所望形状の
導電路とその導電路の所定位置に半田接続された回路素
子とを備えた混成集積回路であって、前記基板の熱膨張
係数αと実質的に略近似した熱膨張係数αを有し且つ温
度サイクルの上限温度以上のガラス転移温度を有するエ
ポキシ系樹脂の被覆樹脂で前記回路素子を被覆封止した
ことを特徴とする混成集積回路。
5. A hybrid integrated circuit comprising a conductive path of a desired shape formed on an insulating metal substrate and a circuit element solder-connected to a predetermined position of the conductive path, wherein the coefficient of thermal expansion α of the substrate. A hybrid integrated circuit characterized in that the circuit element is covered and sealed with a coating resin of an epoxy resin having a thermal expansion coefficient α substantially substantially similar to that and having a glass transition temperature equal to or higher than an upper limit temperature of a temperature cycle. ..
JP4090909A 1991-05-23 1992-04-10 Hybrid integrated circuit Expired - Lifetime JP2951102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4090909A JP2951102B2 (en) 1991-05-23 1992-04-10 Hybrid integrated circuit

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-118812 1991-05-23
JP11881291 1991-05-23
JP4090909A JP2951102B2 (en) 1991-05-23 1992-04-10 Hybrid integrated circuit

Publications (2)

Publication Number Publication Date
JPH05102645A true JPH05102645A (en) 1993-04-23
JP2951102B2 JP2951102B2 (en) 1999-09-20

Family

ID=26432312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4090909A Expired - Lifetime JP2951102B2 (en) 1991-05-23 1992-04-10 Hybrid integrated circuit

Country Status (1)

Country Link
JP (1) JP2951102B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002099877A3 (en) * 2001-06-02 2003-07-31 Microsemi Corp Enhanced performance surface mount semiconductor package devices and methods
JP2006253354A (en) * 2005-03-10 2006-09-21 Sanyo Electric Co Ltd Circuit device and its manufacturing method
JP2007123425A (en) * 2005-10-26 2007-05-17 Seiko Epson Corp Manufacturing method of printed circuit board
CN100397627C (en) * 2004-09-30 2008-06-25 三洋电机株式会社 Circuit device and manufacturing method thereof
CN100399552C (en) * 2004-09-28 2008-07-02 三菱电机株式会社 Semiconductor element
US7521290B2 (en) 2006-02-22 2009-04-21 Sanyo Electric Co., Ltd. Method of manufacturing circuit device
US7529093B2 (en) 2004-11-26 2009-05-05 Sanyo Electric Co., Ltd. Circuit device
US7595235B2 (en) 2004-02-20 2009-09-29 Nec Tokin Corporation Solid electrolytic capacitor, transmission-line device, method of producing the same, and composite electronic component using the same
US7935899B2 (en) 2005-08-31 2011-05-03 Sanyo Electric Co., Ltd. Circuit device and method of manufacturing the same
US7957158B2 (en) 2006-10-31 2011-06-07 Sanyo Electric Co., Ltd. Circuit device
US8203848B2 (en) 2005-08-31 2012-06-19 Sanyo Electric Co., Ltd. Circuit device and method of manufacturing the same
US8450837B2 (en) 2010-09-24 2013-05-28 On Semiconductor Trading, Ltd. Circuit device having an improved heat dissipitation, and the method of manufacturing the same
US9275930B2 (en) 2010-09-24 2016-03-01 Semiconductor Components Industries, Llc Circuit device and method of manufacturing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009081279A (en) * 2007-09-26 2009-04-16 Sanyo Electric Co Ltd Hybrid integrated circuit device
US10014609B2 (en) 2016-11-28 2018-07-03 Molex, Llc Connector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840378A (en) * 1971-09-25 1973-06-13
JPS6266696A (en) * 1985-09-19 1987-03-26 株式会社日立製作所 Electronic circuit board

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840378A (en) * 1971-09-25 1973-06-13
JPS6266696A (en) * 1985-09-19 1987-03-26 株式会社日立製作所 Electronic circuit board

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002099877A3 (en) * 2001-06-02 2003-07-31 Microsemi Corp Enhanced performance surface mount semiconductor package devices and methods
US7595235B2 (en) 2004-02-20 2009-09-29 Nec Tokin Corporation Solid electrolytic capacitor, transmission-line device, method of producing the same, and composite electronic component using the same
CN100399552C (en) * 2004-09-28 2008-07-02 三菱电机株式会社 Semiconductor element
CN100397627C (en) * 2004-09-30 2008-06-25 三洋电机株式会社 Circuit device and manufacturing method thereof
US7529093B2 (en) 2004-11-26 2009-05-05 Sanyo Electric Co., Ltd. Circuit device
JP4545022B2 (en) * 2005-03-10 2010-09-15 三洋電機株式会社 Circuit device and manufacturing method thereof
JP2006253354A (en) * 2005-03-10 2006-09-21 Sanyo Electric Co Ltd Circuit device and its manufacturing method
US7935899B2 (en) 2005-08-31 2011-05-03 Sanyo Electric Co., Ltd. Circuit device and method of manufacturing the same
US8203848B2 (en) 2005-08-31 2012-06-19 Sanyo Electric Co., Ltd. Circuit device and method of manufacturing the same
JP2007123425A (en) * 2005-10-26 2007-05-17 Seiko Epson Corp Manufacturing method of printed circuit board
US7521290B2 (en) 2006-02-22 2009-04-21 Sanyo Electric Co., Ltd. Method of manufacturing circuit device
US7957158B2 (en) 2006-10-31 2011-06-07 Sanyo Electric Co., Ltd. Circuit device
US8450837B2 (en) 2010-09-24 2013-05-28 On Semiconductor Trading, Ltd. Circuit device having an improved heat dissipitation, and the method of manufacturing the same
US9275930B2 (en) 2010-09-24 2016-03-01 Semiconductor Components Industries, Llc Circuit device and method of manufacturing the same
US9722509B2 (en) 2010-09-24 2017-08-01 Semiconductor Components Industries, Llc Hybrid circuit device
US9793826B2 (en) 2010-09-24 2017-10-17 Semiconductor Components Industries, Llc Method of manufacturing a circuit device
KR20180029217A (en) 2010-09-24 2018-03-20 세미컨덕터 콤포넨츠 인더스트리즈 엘엘씨 Circuit apparatus and method of manufacturing the same
US9998032B2 (en) 2010-09-24 2018-06-12 Semiconductor Components Industries, Llc Method of manufacturing a circuit device

Also Published As

Publication number Publication date
JP2951102B2 (en) 1999-09-20

Similar Documents

Publication Publication Date Title
US5243133A (en) Ceramic chip carrier with lead frame or edge clip
JP2951102B2 (en) Hybrid integrated circuit
US6625037B2 (en) Printed circuit board and method manufacturing the same
US7180007B2 (en) Electronic circuit device and its manufacturing method
US5288944A (en) Pinned ceramic chip carrier
US7876570B2 (en) Module with embedded electronic components
US6059172A (en) Method for establishing electrical communication between a first object having a solder ball and a second object
JP2930186B2 (en) Semiconductor device mounting method and semiconductor device mounted body
US3414775A (en) Heat dissipating module assembly and method
JP2002043723A (en) Wiring board and electronic parts module using the same
KR0157671B1 (en) Electronic circuit device
JPH0677631A (en) Mounting method of chip component onto aluminum board
JPS6153852B2 (en)
JPH0773110B2 (en) Semiconductor integrated circuit device
JPH11177016A (en) Composite integrated circuit device
JP3951903B2 (en) Semiconductor device and method for manufacturing semiconductor device package
US5829667A (en) Method for strengthening a solder joint when attaching integrated circuits to printed circuit boards
JPH0637438A (en) Hybrid integrated circuit
JPH05259633A (en) Electronic circuit device
JPH0964227A (en) Ceramic package and its manufacture
JPH04346489A (en) Hybrid integrated circuit
JPH0212949A (en) Circuit device using semiconductor chip
JPH04348594A (en) Multilayer hybrid integrated circuit
JPH0864711A (en) Semiconductor package
JPH01238132A (en) Electrode for solder join and manufacture of the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 13