JPH05102479A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH05102479A
JPH05102479A JP25685491A JP25685491A JPH05102479A JP H05102479 A JPH05102479 A JP H05102479A JP 25685491 A JP25685491 A JP 25685491A JP 25685491 A JP25685491 A JP 25685491A JP H05102479 A JPH05102479 A JP H05102479A
Authority
JP
Japan
Prior art keywords
region
drain
source
ion implantation
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25685491A
Other languages
Japanese (ja)
Inventor
Nobutoshi Aoki
伸俊 青木
Tomohisa Mizuno
智久 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25685491A priority Critical patent/JPH05102479A/en
Publication of JPH05102479A publication Critical patent/JPH05102479A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a MOS FET structure with high driving capability and performance. CONSTITUTION:The channel region is provided with a first conductive region 2 whose conductivity type is opposite to that of the substrate; the source 8 and drain 7 regions are provided with a second conductive regions 6 deeper than the level of their pn junction. These conductive regions have a well region asymmetric with respect to the source 8 and the drain 7. This gives an MOS FET which has a high driving capability, a less substrate bias effect of threshold and a high punch-through breakdown voltage between the drain and the substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置に関するもの
で、特にトランジスタの構造に使用されるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a semiconductor device structure.

【0002】[0002]

【従来の技術】図4を参照しながら従来技術のnチャネ
ルトランジスタを説明する。図4においてp型シリコン
基板(10)にゲート酸化膜(11)を介してゲート電
極(12)があり、ソース・ドレイン領域にはn+ 領域
(13)が形成される。
2. Description of the Related Art A conventional n-channel transistor will be described with reference to FIG. In FIG. 4, there is a gate electrode (12) on a p-type silicon substrate (10) via a gate oxide film (11), and n + in the source / drain regions. A region (13) is formed.

【0003】[0003]

【発明が解決しようとする課題】図4に示した従来構造
のMOSFETでは、ゲートバイアスをかけた時にチャ
ネルに空乏層が形成される。この空乏層中の空乏層電荷
は実効ゲート電界を強めキャリアの易動度が減少してし
まう。また反転層中にかかるゲート電界を減少させキャ
リア濃度が減少するなど駆動能力の低下を引き起こす。
さらに基板バイアスを加えた場合に閾値が増大する問題
(back gate bias 効果)がある。
In the conventional MOSFET shown in FIG. 4, when a gate bias is applied, a depletion layer is formed in the channel. The depletion layer charge in this depletion layer strengthens the effective gate electric field and reduces carrier mobility. In addition, the gate electric field applied to the inversion layer is reduced, and the carrier concentration is reduced, which causes a reduction in driving ability.
Further, there is a problem that the threshold value increases when a substrate bias is applied (back gate bias effect).

【0004】[0004]

【課題を解決するための手段】ウェルの深さをチャネル
部とソース・ドレイン拡散層部で変え、チャネル部では
浅くし、ソース・ドレイン拡散層部では深くする。この
ときチャネル部の少なくてもソース側の領域の深さはゲ
ート空乏層幅とウェル−基板間の空乏層幅とを加えたも
のより浅くする。またチャネル部のドレイン側の領域は
punch-throughを防止するためにソース側より深くしチ
ャネル部を非対称にする。さらにチャネル部の少なくと
もソース側の領域の濃度を拡散部の濃度より低くする。
これによりMOSFETの空乏層電荷量を抑えることが
できる。
[Means for Solving the Problems] The depth of the well is changed between the channel portion and the source / drain diffusion layer portion so that it is shallow in the channel portion and deep in the source / drain diffusion layer portion. At this time, the depth of at least the source side region of the channel portion is made shallower than the sum of the gate depletion layer width and the well-substrate depletion layer width. The drain side region of the channel is
To prevent punch-through, make the channel deeper than the source side to make the channel part asymmetric. Further, the concentration of at least the source side region of the channel portion is made lower than the concentration of the diffusion portion.
As a result, the charge amount of the depletion layer of the MOSFET can be suppressed.

【0005】[0005]

【作用】本発明による半導体装置によれば、キャリアの
易動度の高い高駆動能力のMOSFETが得られる。ま
た基板バイアスを加えた場合に閾値が増加してしまう効
果を抑えることができる。さらにソースとドレイン領域
を非対称にする事によって、高いドレイン−基板間のパ
ンチスルー耐圧が得られ、ドレイン電極に大きな電圧を
加えることができる。
According to the semiconductor device of the present invention, a MOSFET having a high carrier mobility and a high driving capability can be obtained. Further, it is possible to suppress the effect of increasing the threshold value when the substrate bias is applied. Further, by making the source and drain regions asymmetrical, a high punch-through breakdown voltage between the drain and the substrate can be obtained, and a large voltage can be applied to the drain electrode.

【0006】[0006]

【実施例】図1〜3を参照しながら本発明の実施例をn
チャネルMOSFETを例に述べる。N型シリコン基板
(1)にB+ をイオン注入して深さ0.1μmの第1の
Pウェル(2)を形成し、その後15nmのゲート酸化
膜(3)とゲート電極(4)及びレジスト膜(5)を形
成する。この結果の概略図が図1である。なお第1のp
ウェル(2)はエピタキシャル成長によって形成しても
よい。
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to FIGS.
A channel MOSFET will be described as an example. B + on N-type silicon substrate (1) Is ion-implanted to form a first P well (2) having a depth of 0.1 μm, and then a 15 nm gate oxide film (3), a gate electrode (4) and a resist film (5) are formed. FIG. 1 is a schematic diagram of the result. The first p
The well (2) may be formed by epitaxial growth.

【0007】その後As+ イオン注入を行ってドレイン
拡散層(7)及びソース拡散層(8)を形成する。さら
にゲート電極(4)とレジスト膜(5)をマスクにして
+ イオン注入を行って第1のpウェルより深い第2の
pウェルを形成する。ここまでの模式図を図2に示し
た。なおこの場合第2のpウェル(6)の濃度は第1の
pウェルの濃度よりも濃くする。さらにゲート電極
(4)とレジスト膜(5)をマスクにしてドレイン拡散
膜(7)側から斜めB+ イオン注入を行って第1のpウ
ェル(2)と第2のpウェル(6)の中間領域のp層の
幅を広げる(9)。その後レジスト膜をエッチングす
る。ここまでの模式図が図3に示した。なおこの斜めB
+ イオン注入の際にソース側からチャネル中央部にかけ
てのチャネル領域にB+ が入り込まないようにストッピ
ングパワーの大きなレジストを選ぶか、或いはB+ イオ
ンが入り込んでもかまわないようにあらかじめ第1のp
ウェル(2)の濃度を設定しておくなどの手段を用いな
くてはならない。
After that, As+ Drain by performing ion implantation
A diffusion layer (7) and a source diffusion layer (8) are formed. Furthermore
Using the gate electrode (4) and the resist film (5) as a mask
B+ Ion implantation is performed to make the second deeper than the first p-well.
Form a p-well. The schematic diagram up to this point is shown in Fig. 2.
It was In this case, the concentration of the second p-well (6) is
Make it darker than the p-well concentration. Further gate electrode
Drain diffusion using (4) and resist film (5) as a mask
B diagonal from membrane (7) side+ Ion implantation is performed and the first p
Of the p-layer in the intermediate region between the well (2) and the second p-well (6).
Increase the width (9). Then etch the resist film
It The schematic diagram up to this point is shown in FIG. This diagonal B
+ From the source side to the center of the channel during ion implantation
B in all channel regions+ Stoppy so that it does not enter
Choose a resist with high power, or B+ Io
The first p
Do not use any means such as setting the concentration of the well (2).
It shouldn't be.

【0008】なお第1のpウェル(2)と第2のpウェ
ル(6)との交わる領域におけるpウェルのドレイン側
の幅yDはゲート空乏層幅Wg1とシリコン基板(1)に
よる空乏層幅Ws1との和より大きくなるように選ぶ。即
ちyD>Wg1+Ws10 また図3の(9)に相当する領域
を作る為の斜めB+ イオン注入は第2のウェルを作るB
+ イオン注入よりも先に行ってもかまわない。
The width yD on the drain side of the p well in the region where the first p well (2) and the second p well (6) intersect is determined by the gate depletion layer width W g1 and the depletion layer by the silicon substrate (1). Choose to be greater than the sum of width W s1 . That is, yD> W g1 + W s10 and the diagonal B + for creating a region corresponding to (9) in FIG. Ion implantation creates a second well B
+ It may be performed before the ion implantation.

【0009】またウェルの深さをチャネル部とソース・
ドレイン拡散層部で変え、チャネル部では浅くし、ソー
ス・ドレイン拡散層部では深くする。このときチャネル
部の少なくてもソース側の領域の深さはゲート空乏層幅
とウェル−基板間の空乏層幅とを加えたものより浅くす
る。
In addition, the depth of the well is set to the channel portion and the source.
The drain diffusion layer is changed, and the channel is made shallow, and the source / drain diffusion layer is made deep. At this time, the depth of at least the source side region of the channel portion is made shallower than the sum of the gate depletion layer width and the well-substrate depletion layer width.

【0010】[0010]

【発明の効果】本発明の実施例の図1〜3に示したよう
に、ドレイン側のチャネル部の第1のpウェルの幅yD
がyD>Wg1+Ws1の関係があるためにドレインと基板
間のパンチスルー耐圧が向上する。また少なくともソー
ス側のチャネル部のpウェルの幅がゲート空乏層とウェ
ル−基板間の空乏層幅とを加えたものより浅くなってい
るために、MOSFETのチャネル空乏層電荷がSi基
板(1)の電圧Vsubによって変動を受け、Vsub
を上げることによってチャネル空乏層電荷を低減化する
ことができる。これにより高駆動能力やSファクターの
改善さらに閾値の基板バイアス効果の低減化が期待でき
る。さらにドレイン部のウェル領域が広げられているた
めにドレイン−基板間のパンチスルー耐圧が向上し大き
なドレイン電圧をかけることができる。
As shown in FIGS. 1 to 3 of the embodiment of the present invention, the width yD of the first p-well of the channel portion on the drain side is yD.
Since yD> W g1 + W s1 is satisfied, the punch-through breakdown voltage between the drain and the substrate is improved. Further, since the width of at least the p-well of the channel portion on the source side is shallower than the sum of the gate depletion layer and the depletion layer width between the well and the substrate, the channel depletion layer charge of the MOSFET is Si substrate (1). Of the voltage Vsub
By increasing the value, the charge of the channel depletion layer can be reduced. As a result, it can be expected that the high driving ability and the S factor are improved, and the substrate bias effect of the threshold value is reduced. Further, since the well region of the drain portion is widened, the punch-through breakdown voltage between the drain and the substrate is improved and a large drain voltage can be applied.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明を説明する工程断面図。FIG. 1 is a process sectional view illustrating the present invention.

【図2】 本発明を説明する工程断面図。2A to 2C are process cross-sectional views illustrating the present invention.

【図3】 本発明を説明する工程断面図。3A to 3C are process cross-sectional views illustrating the present invention.

【図4】 従来のnチャネルMOSFETの断面図。FIG. 4 is a sectional view of a conventional n-channel MOSFET.

【符号の説明】[Explanation of symbols]

1…シリコン基板 2…第1のpウェル 3…ゲート絶
縁膜 4…ゲート電極 5…レジスト膜 6…第2のpウェル 7…ドレイン拡
散領域 8…ソース拡散領域 9…非対称化の為に作られたウェル領域 10…シリコ
ン基板 11…ゲート絶縁膜 12…ゲート電極 13
…ソース・ドレイン拡散領域
DESCRIPTION OF SYMBOLS 1 ... Silicon substrate 2 ... 1st p well 3 ... Gate insulating film 4 ... Gate electrode 5 ... Resist film 6 ... 2nd p well 7 ... Drain diffusion region 8 ... Source diffusion region 9 ... It is made for asymmetry. Well region 10 ... Silicon substrate 11 ... Gate insulating film 12 ... Gate electrode 13
… Source / drain diffusion regions

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 MOSFETのチャネル領域に基板と反
対の第1の導伝領域を持ち、またソース・ドレインの拡
散領域にはそのpn接合の深さより深い第2の導伝領域
を有し、これらの導伝領域の深さをチャネル部とソース
・ドレイン拡散層部で変え、チャネル部では浅くし、ソ
ース・ドレイン拡散層部では深くし、チャネル部の少な
くてもソース側の領域の深さはゲート空乏層幅とウェル
ー基板間の空乏層幅とを加えたものより浅くし、かつこ
れらの導伝層がソース・ドレインに関し非対称な構造で
あることを特徴とする半導体装置。
1. A channel region of a MOSFET has a first conduction region opposite to a substrate, and a diffusion region of a source / drain has a second conduction region deeper than the depth of its pn junction. The depth of the conduction region is changed in the channel part and the source / drain diffusion layer part, and it is made shallow in the channel part and deep in the source / drain diffusion layer part, and the depth of the source side region is at least the channel part. A semiconductor device which is shallower than the sum of the width of the gate depletion layer and the width of the depletion layer between the well and the substrate, and these conductive layers have an asymmetric structure with respect to the source / drain.
【請求項2】 第1の導伝領域と第2の導伝領域との交
わる領域における導伝領域のドレイン側の幅yDと第1
の導伝領域と第2の導伝領域との交わる領域における導
伝領域のソース側の幅ySとの間にyS<yDの関係が
あることを特徴とする請求項1記載の半導体装置。
2. The drain-side width yD of the conductive region in the region where the first conductive region and the second conductive region intersect with each other,
2. The semiconductor device according to claim 1, wherein there is a relationship of yS <yD between the source-side width yS of the conductive region in the region where the conductive region of 1) and the second conductive region intersect.
【請求項3】 ゲート電圧によるチャネル空乏層幅Wg1
及び半導体基板電圧による第1の導伝領域内の空乏層幅
s1とyD>Wg1+Ws1の関係があることを特徴とする
請求項1記載の半導体装置。
3. The channel depletion layer width W g1 depending on the gate voltage
2. The semiconductor device according to claim 1, wherein there is a relation of yD> W g1 + W s1 with the depletion layer width W s1 in the first conduction region depending on the semiconductor substrate voltage.
【請求項4】 イオン注入またはエピタキャシル成長に
より第1の導伝領域を形成し、その後イオン注入により
第2の導伝領域を形成し、さらに斜めイオン注入法によ
り第1の導伝領域を非対称化することを特徴とする請求
項1記載の半導体装置の製造方法。
4. A first conduction region is formed by ion implantation or epitaxy growth, then a second conduction region is formed by ion implantation, and the first conduction region is made asymmetric by an oblique ion implantation method. The method for manufacturing a semiconductor device according to claim 1, wherein
【請求項5】 イオン注入またはエピタキャシル成長に
より第1の導伝領域を形成し、その後斜めイオン注入法
により第1の導伝領域を非対称化しさらにイオン注入に
より第2の導伝領域を形成することを特徴とする請求項
1記載の半導体装置の製造方法。
5. A first conduction region is formed by ion implantation or epitaxy growth, and then the first conduction region is made asymmetric by an oblique ion implantation method, and further, a second conduction region is formed by ion implantation. The method for manufacturing a semiconductor device according to claim 1, wherein
JP25685491A 1991-10-04 1991-10-04 Semiconductor device and manufacture thereof Pending JPH05102479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25685491A JPH05102479A (en) 1991-10-04 1991-10-04 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25685491A JPH05102479A (en) 1991-10-04 1991-10-04 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH05102479A true JPH05102479A (en) 1993-04-23

Family

ID=17298339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25685491A Pending JPH05102479A (en) 1991-10-04 1991-10-04 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH05102479A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7465637B2 (en) 2005-09-14 2008-12-16 Elpida Memory, Inc. Method for manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7465637B2 (en) 2005-09-14 2008-12-16 Elpida Memory, Inc. Method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US4587713A (en) Method for making vertical MOSFET with reduced bipolar effects
US6277675B1 (en) Method of fabricating high voltage MOS device
US5465000A (en) Threshold adjustment in vertical DMOS devices
JP2826924B2 (en) Method of manufacturing MOSFET
US6917054B2 (en) Semiconductor device
JP3489871B2 (en) MOS transistor and manufacturing method thereof
JPH0629532A (en) Mosfet and its manufacture
JP2008140817A (en) Semiconductor device
JPH0237777A (en) Vertical type field-effect transistor
JP2933796B2 (en) Method for manufacturing semiconductor device
JPH05102479A (en) Semiconductor device and manufacture thereof
JPH04346272A (en) Semiconductor device and manufacture thereof
JP3397999B2 (en) Method for manufacturing semiconductor device
JP3276872B2 (en) Semiconductor device and method of manufacturing semiconductor device
JPH1012870A (en) Semiconductor device and its manufacture
JP3274038B2 (en) Semiconductor device
JP3120440B2 (en) Semiconductor bidirectional switch
JPH05235346A (en) Semiconductor device and manufacture thereof
JPH06338616A (en) Vertical mos device and manufacture thereof
JPH1098183A (en) Semiconductor device and manufacture thereof
JPS6017946A (en) Semiconductor device
JP3213560B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP2537649B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP3223125B2 (en) Semiconductor device and method of manufacturing semiconductor device
JPH01144683A (en) Insulated-gate field-effect transistor