JPH049987B2 - - Google Patents

Info

Publication number
JPH049987B2
JPH049987B2 JP58158934A JP15893483A JPH049987B2 JP H049987 B2 JPH049987 B2 JP H049987B2 JP 58158934 A JP58158934 A JP 58158934A JP 15893483 A JP15893483 A JP 15893483A JP H049987 B2 JPH049987 B2 JP H049987B2
Authority
JP
Japan
Prior art keywords
stream
feed
methane
refrigerant
rich
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58158934A
Other languages
English (en)
Other versions
JPS5981483A (ja
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Publication of JPS5981483A publication Critical patent/JPS5981483A/ja
Publication of JPH049987B2 publication Critical patent/JPH049987B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • F25J1/0216Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle using a C3 pre-cooling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0237Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0237Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
    • F25J1/0238Purification or treatment step is integrated within one refrigeration cycle only, i.e. the same or single refrigeration cycle provides feed gas cooling (if present) and overhead gas cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0237Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
    • F25J1/0239Purification or treatment step being integrated between two refrigeration cycles of a refrigeration cascade, i.e. first cycle providing feed gas cooling and second cycle providing overhead gas cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • F25J1/0267Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer using flash gas as heat sink
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0296Removal of the heat of compression, e.g. within an inter- or afterstage-cooler against an ambient heat sink
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/62Separating low boiling components, e.g. He, H2, N2, Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/66Separating acid gases, e.g. CO2, SO2, H2S or RSH
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/68Separating water or hydrates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/08Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/60Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being hydrocarbons or a mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/60Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being (a mixture of) hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/90Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/66Closed external refrigeration cycle with multi component refrigerant [MCR], e.g. mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Tea And Coffee (AREA)
  • Fats And Perfumes (AREA)

Description

【発明の詳細な説明】 本発明は天然ガスのようなメタンリツチガス流
の液化方法に関する。本発明はまたガス流の液化
に先立つてメタンリツチ供給原料からより重質の
炭化水素の分離および除去に関する。特に、本発
明はメタンリツチ供給原料の処理において冷凍物
のより効率的な回収および利用に関する。
天然ガスおよびその他のメタンリツチな供給原
料は往々にしてかかる燃料が最終的に利用される
地域から遠い地域で生産される。遠方の生産地か
ら他の地域まで天然ガスを輸送する問題は天然ガ
スを海外に出荷しなければならない場合に特に切
実である。パイプラインのない場合には輸送コス
トは天然ガスの液化を必要とする。天然ガスの液
化はエネルギー集約的でありそしてこの液化を行
う系はかなりの距離にわたつて輸送される燃料と
して天然ガスの競争経済を維持させるためには極
めて効率のよいものでなくてはならない。天然ガ
スの種々の液化法または天然ガス液体すなわちメ
タンより重い炭化水素の分離は従来技術に記載さ
れている。
米国特許第3292380号明細書には、炭化水素ガ
ス流から凝縮成分を除去する方法が記載されてい
る。この方法では、供給原料を気相と液相に分離
する前に蒸留塔からのオーバーヘツドと熱交換さ
せ、その気相をタービン中で膨脹させそして蒸留
塔に送られる。液相の一部もまた蒸留塔に供給さ
れる。液化されないオーバーヘツド気相は蒸留塔
から除去されそしてより重質の炭化水素例えばエ
タンおよびLPGは塔から底流として除去される。
この米国特許は凝縮成分の除去にだけ係り、天然
ガスの液化に係るものではない。
米国特許第4004430号明細書はまたメタンリツ
チな流れから天然ガス流体を除去する方法を開示
している。メタンリツチな気体性生物は極低温蒸
留塔の天然ガス液体生成物から分離される。ここ
でもまた、メタンリツチな生成物は液化されな
い。
米国特許第4061481号明細書には、蒸留塔の気
体炭化水素成分から凝縮性炭化水素液体の分離法
を開示している。供給原料はより低圧に膨脹させ
る前およびその後で蒸留塔のオーバーヘツドと熱
交換させられる。蒸留塔からのオーバーヘツドメ
タンリツチ流の液化は記載されていない。
米国特許第4065278号明細書は本出願人自身の
出願に係るものであつて天然ガスの液化法に係
り、この方法では凝縮性のより高次の炭化水素を
天然ガス流から除去した後にメタンリツチの気体
が液化される。この米国特許では、追加の熱交換
束を用いて蒸留塔からメタンリツチなオーバーヘ
ツドの初期冷却を与え、この際追加の熱交換束は
低温冷媒を利用している。
米国特許第4203741号明細書は炭化水素ガス供
給液用の分離器系を開示している。供給流は分離
または蒸留塔への複数の供給物に分けられる。供
給液の一つは膨脹されそして蒸留塔からのオーバ
ーヘツドと熱交換される。この方法では天然ガス
液体とメタンリツチでありうる蒸留生成物が生成
される。
第58回GPA年会(1979年3月19〜21日)に提
出されたJerry G.Gulsby氏の論文には、エタン
拒絶プラントが記載されているが、この場合炭化
水素導入ガスは脱メタン塔のオーバーヘツド流と
熱交換されそして膨脹された後で脱メタン装置に
導入される。脱メタン装置からのオーバーヘツド
流は再圧縮されるが液化されない。
「Oil and Gas Journal」1972年3月13日号の
他の論文には、メタンからエタンよりも重質の炭
化水素を分離させる極低温系が記載されており、
その場合より重質の炭化水素が液化される。処理
される供給ガスのメタン留分は液化されない。脱
メタン塔への供給物の少くとも一部はかかる塔か
らのオーバーヘツド流と熱交換される。
従来技術には本発明の利点すなわち膨脹された
供給物が比較的高圧でスクラブ塔の頂部に加えら
れそしてメタンリツチなオーバーヘツドが効率の
よい方法で2束熱交換機中で液化される天然ガス
液化法が提供され、この際スクラブ塔への液体供
給物または還流物は高レベル冷媒からの冷凍力と
供給物の等エントロピー膨脹により与えられそし
て、底レベル冷媒により与えられるものではない
ことは開示されていない。
従来技術にはまた本発明の別の利点すなわち天
然ガス流の分離と液化プロセスの組合せにおい
て、より重質の炭化水素を天然ガスから分離させ
た後にメタンリツチの天然ガスを液化させ、分離
またはスクラブ塔からのメタンリツチなオーバー
ヘツドをスクラブ塔に導入される供給流とインタ
ークーラー中で熱交換させることを開示していな
い。これによつて天然ガス液体の回収とメタン液
化が組合された系の操作効率が増大される。
本発明は天然ガスのようなメタンリツチ炭化水
素ガス供給原料の効率的液化方法からなる。4137
〜13790kPa(600〜2000psia)の供給原料は第1
の冷媒との熱交換により冷却される。この冷却さ
れた供給原料は機械的エネルギーを得ながら等エ
ントロピー膨脹により供給原料の臨界圧以下の圧
力に低下させられる。
なお比較的高い圧力下にあるこの膨脹された流
れはスクラブ塔の塔頂に導入され、そこで少量の
重質炭化水素が塔底流として冷媒として取り出さ
れそしてメタンリツチの留分は塔頂流として取り
出される。このメタンリツチの留分は等エントロ
ピーに由来する機械的エネルギーを利用する圧縮
機により高圧に再圧縮される。次に、この圧縮メ
タンは2管束熱交換機中の第2の多成分冷媒と熱
交換して冷却、液化およびサブクールされる。次
にこのサブクールされた液体生成物をLNG製品
として取り出す。
本発明の第2の態様はメタンからの重質炭化水
素の分離方法と天然ガスのようなメタンリツチな
炭化水素ガス供給原料からのメタンの液化にあ
る。本発明の方法では、最初に供給原料は第1の
冷媒との熱交換により冷却された後等エントロピ
ー膨脹および分離器またはスクラブ塔からの塔頂
物との熱交換による冷却の組合せにより圧力が低
下させられる。スクラブ塔では、供給原料はメタ
ンリツチの気体塔頂流と重質炭化水素液体塔底流
とに分離される。この塔頂流は供給原料との熱交
換により加温された後等エントロピー膨脹段階の
膨脹機から導かれるエネルギーにより運転される
圧縮機で圧縮される。次にこの圧縮されたメタン
リツチの塔頂流は第2の低レベル冷媒と熱交換し
て主熱交換器内で冷却、液化およびサブクールさ
れる。
この第2の態様の1つの例では供給原料の圧力
減少はまず供給物を膨脹機により等エントロピー
膨脹させ次にそれを塔に導入される前の塔頂流と
冷却器中で熱交換して冷却することによつて行な
われる。
この第2の態様の別の例では、まず供給原料を
塔からの塔頂流と冷却熱交換により冷却させた後
次に冷却された供給原料を等エントロピー膨脹さ
せそしてこの膨脹された供給原料を塔に導入す
る。
より低い圧力では、まず供給原料を相分離して
液体供給物を重質炭化水素に富んだ塔に供給する
と同時に気相は前記の塔から塔頂分との冷却熱交
換により冷却された後にさらに相分離することが
できる。液相は塔に直接供給され、一方気相は等
エントロピー膨脹され、部分的に液化されそして
塔頂に供給されそこで液体は塔還流分として使用
される。このような三重の供給により、供給原料
の重質炭化水素留分からメタン留分を分離するに
あたつて塔の作業効率が増大される。
米国特許第4065278号のような従来方法を越え
る本発明の各種態様の利点は、液化主熱交換器中
の熱交換束の数を少い資本的支出で減少させるこ
とができることである。
本発明の第2の利点は供給流の等エントロピー
膨脹を利用して液体供給物の生産またはスクラブ
塔への還流に必要な冷凍力を提供することであ
る。
本発明の第2の態様の他の利点は冷却熱交換器
の使用でありこれによりスクラブ塔の操作が改良
されまたメタンを液化してスクラブ塔への供給物
を冷却する主熱交換器から高価な低レベル冷媒の
使用がさけられることである。
本発明のさらに他の利点は高レベル冷媒を使用
してスクラブ塔からの圧縮塔頂流を冷却してメタ
ンの液化に使用される主熱交換器中の高価な低レ
ベル冷媒の要求をさらに減ずることにある。
前述した利点を利用して本発明では従来技術に
比して著しい仕事率で操作することができる。こ
のような仕事率は、LNG生産の毎時モル当り冷
凍圧縮機馬力と考えられる特定の態様を基準とし
て従来技術より3.2〜8.8%改良される。
本発明の種々の態様をさらに詳しく説明する。
その概括的なフロー図は一般的に対応される米国
特許第4065278号明細書におけるフロー図に似て
いて、その公開されたものは参考までにここに記
載されている。炭化水素の供給原料すなわち本発
明の工程において処理しうる原料は、一般に天然
ガスまたはその他のメタン含有気体流であつて、
その中のメタン含有割合は供給される気体流の60
モル%から約90モル%でその残りは窒素とエタ
ン、プロパン、より長い炭化水素の鎖状分子など
のような重質炭化水素からなる気体流である。本
発明は、メタンリツチの留分が輸送とそれに続い
ての燃料としての使用のために液化され、一方で
は重質炭化水素類が凝縮されてそれ自身が燃料と
してまた冷媒として冷凍用入力を必要とせずに利
用されうるようにするために、供給気体流のメタ
ンリツチの留分を少くとも重質炭化水素留分のあ
るものから分離するものである。
第1A図を参照すると、高圧6875〜13790kPa
(1000〜2000psia)の天然ガス供給流がこの図に
示されたフロー図において処理されうる。代表的
な供給原料は9807kPa(1431psia)であつて、メ
タン98%、エタン4%、プロパン0.6%、ブタン
0.3%、イソブタン0.1%、窒素0.8%および重質炭
化水素と水との微量からなる。ライン10におけ
る供給流は、最初に、冷凍の閉サイクル系統によ
つて冷却されるカスケード式熱交換器14,16
および18の一連の熱交換器により−37℃(−34
〓)まで冷却される。その冷媒は一般にC2,C3
又はC4のパラフイン系炭化水素のような単一成
分の炭化水素である。プロパンはこの第一冷凍閉
サイクル系統において使用される好ましい単一成
分冷媒である。何故ならば、その操業上の温度と
圧力においてそれの冷凍能率がよく、かつプロパ
ンはメイクアツプ用に別の液体天然ガスから供給
することができる。この冷凍閉サイクル系統は高
いレベルの冷媒から構成される。何故ならばそれ
が天然ガスの液化を含む工程に対して比較的温か
い温度にあるからである。比較的温かい温度であ
るが故に、高いレベルの冷媒が低いレベルの冷媒
よりも比較的高価でなく使用される。予冷された
高圧の供給原料はライン20の系路によつて導か
れて、膨脹タービン44に入る。このタービンで
は、原料が−47℃(−88〓)、4999kPa(725psia)
にまで圧力を減ぜられる一方、機械的エネルギー
が発生される。ライン46で蒸気と液体とを含有
する膨脹された供給原料はスクラブ塔28の頂部
に導入される。このスクラブ塔の頂部への供給物
は供給原料中の重質炭化水素類からメタンリツチ
の留分の充分な分別をなさしめて、メイクアツプ
用冷媒を供給する。スクラブ塔28は略々
4999kPa(725psia)の圧力で操業される。拾質炭
化水素類はライン48でスクラブ塔28から取り
出され、その重質炭化水素類の部分はスクラブ塔
用のリボイルを提供するために、リボイル熱交換
器50を通つてサイクルされる。ライン48で塔
低流の残りはNGL又は液化天然ガスとして一般
に知られている製品として取り出される。供給流
の組成としては、重質炭化水素の組成は、34.7%
のエタン、17.8%のプロパン、13.5%のブタン、
4%のイソブタン、および残りぱペンタン、イソ
ペンタン、ヘプタンからなる。
メタンリツチの気体流はライン52でスクラブ
塔28からの塔頂分として取り出される。この塔
頂流は−67℃(−87〓)の温度にある。この塔頂
流は膨脹タービン44によつて駆動される圧縮機
54に向けられる。このようにして、原料供給流
の圧力を減圧することで引出されたエネルギーは
失なわれずに。スクラブ塔28からの製品流れの
圧縮のために使用される。塔頂流は圧縮機の入口
で約4999kPa(約725psia)の圧力から圧縮機54
の出口では7150kPa(1037psia)の圧力まで圧縮
される。この点では、ライン56で塔頂流はまた
−44℃(−47〓)の温度にある。
スクラブ塔28での部分的除去にもかかわらず
可成りの重質炭化水素類を含みうるメタンリツチ
の流れは、主熱交換器60に導入される。主熱交
換器60では、流れがLNGまたは液体天然ガス
として取り出され、貯蔵されまたは輸送されるた
めに、冷却され液化され且つ更に冷却される。メ
タンに富む流れは先づ、好ましくは多成分の炭化
水素冷媒を利用して、コイル巻熱交換器60の管
群束62内で冷却される。この多成分の炭化水素
冷媒は低いレベルで操業される第2の冷凍クロー
ズドサイクル系統を構成する。何故ならば天然ガ
スを液化し且つ更に冷却するためには、その系統
は充分に低い温度になければならないからであ
る。このような低いレベルの冷凍は使用するのに
費用が掛る。何故ならば液化のために必要な低温
度すなわち−157℃(−250〓)に冷媒を維持する
ためには、相当の動力の入力を必要とするからで
ある。流れはこの第1の管群束内において液化さ
れて熱交換器60から取り出され、弁64を通つ
て膨脹される。弁64では流れの温度は約−129
℃(約−200〓)であり、圧力は2068kPa
(300psia)まで減圧される。液化された流れは、
次いで第2管群束66を通つて案内されて多成分
媒体と向流して更に冷却がなされる。流れはその
熱交換器60をライン68で約−157℃(約−250
〓)で1862kPa(270psia)において出て行く。流
れは、プラント用燃料を供給するように、相分離
器72内で少量の蒸気化したメタンを除去するた
めに、弁70を通して膨脹される。容器72内へ
の流れの約3%はライン80でプラント燃料とし
て取り出される。残りの流れは容器72の底部か
ら液体生産物として取り出され、ポンプ装置74
によつて貯槽76へと移送される。生産物の液体
天然ガスは、次いでライン78で系外へ送出のた
め取り出される。天然ガスの貯蔵中に生ずる気相
のメタンは取り出されて圧縮機84で圧縮されプ
ラント用燃料としてその中に包含される。ライン
80で主燃料流れは多成分冷媒と向流して熱交換
器82で温められる。ライン80からとポンプ8
4からとの流れが合わされたプラント用燃料は圧
縮機88で圧縮されライン90で系外に送出され
てこのプラントのための動力の供給に利用され
る。
メタンリツチの流れの液化のための冷媒は、一
般的には多成分の炭化水素成分、窒素、メタン、
エタン及びプロパンからなる。この実施例におい
て利用された特定の多成分冷媒は、エタン47%、
メタン41%、プロパン8.9%および窒素2.9%から
なる。メイクアツプの多成分組成の冷媒は、弁に
よつて制御されているライン198を通つて、液
化冷凍サイクル内へ導入される。メイクアツプの
冷媒とライン196でリサイクル冷媒とは、圧縮
機152で圧縮され、冷水熱交換器154内で圧
縮後の冷却がなされる。圧縮の第2段階は圧縮器
156によつてなされ、その圧縮後には冷凍熱交
換器158による冷却が続いてなされる。これ
は、多成分冷媒の圧力を、ライン196で約−40
℃(約−40〓)の温度での40psiaの圧力から、ラ
イン160で約12℃(約54〓)の温度での
4399kPa(638psia)の圧力にまで増加させる。加
圧された比較的温かい多成分組成の冷媒は、次い
でカスケード式の一連の蒸発熱交換器162,1
64および166において冷却される。この蒸発
熱交換器では多成分組成の冷媒が単一成分の冷媒
と向流して冷却され、その単一成分冷媒は熱交換
器中に蒸発される。その多成分組成の冷媒がライ
ン168でカスケード式熱交換器を出るときに
は、その冷媒は約4275kPa(約620psia)の圧力に
あり、温度は−34.4℃(−30〓)である。
この多成分冷媒は容器170中で相分離され
る。流れの大約25%はライン182中で蒸気とし
て取り出されそして冷媒流の残り75%はライン1
72で流体として取り出される。液状冷凍剤は主
熱交換器60の束状管回路176に入りそして−
129℃(−200〓)に冷却され、その後熱交換器か
ら取り出されそして弁178を介して減圧され
る。減圧された液体は次いでスプレーレツド18
0を経て熱交換器60中の管束の低い方の部分に
スプレーされる。
多成分冷媒相分離器170からの蒸気のライン
182で取り出されそしてその流れからライン1
84で分流が更に取り出される。ライン182中
の気相冷媒全体はライン188を経て熱交換器6
0の温部端に向けられる。気化された冷媒は管束
管回路中で冷却されそして約−157℃(約−250
〓)に液化され、その後取り出されそして弁19
2を経て減圧にされる。ライン184中の分流は
熱交換器82におけるプラント用燃料生成物との
熱交換によつて約−157℃(約−250〓)の温度に
冷却液化され、その後弁186を経て減圧にされ
そして主熱交換器60中で液化された蒸気流と一
緒になる。一緒にされた流れは次いでスプレーヘ
ツド194を経て熱交換器の内部管束上スプレー
される。冷媒は次いでライン196で熱交換器6
0の底部からの除去により再循環せしめられる。
天然ガスを液化するに使用されたこの多成分冷媒
は初期単一成分冷媒との熱交換および主熱交換6
0中で起る圧力低下の組合せによりそれ自体冷却
される。単一成分冷媒との熱交換は上述したよう
なカスケード系列の熱交換で生ずる。初期の単一
成分冷媒のためのこの冷凍サイクルは以下に更に
説明されよう。
好ましくはプロパンである単一成分冷媒は圧縮
装置92中の一連の段階で大約1375kPa
(200psia)の圧力に圧縮される。圧縮された単一
成分冷媒は次いで後冷却されそして冷水熱交換器
94および96中で全体的に凝縮され、その後で
液体受け器98に送られる。液状冷媒は更に冷水
熱交換器100中でサブクールされその後ライン
102を経て冷却に使用するために送られる。冷
媒は弁140を経て膨脹されそして供給−吸引ド
ラム108に送られる。ドラム108の気相の冷
媒は再圧縮のためにライン110で取り出され
る。ドラム108中の冷媒の液相部分はライン1
18で取り出されそして流れ120に分れる。こ
の流れはもう一度ライン122で分れる。ライン
118中の残りの流れは弁126中で膨脹され、
その後供給−吸引ドラム128中に導入される。
ライン122中の分流は蒸発熱交換器14で供給
分と熱交換される。ライン120中の残余の流れ
は蒸発熱交換器162において多成分冷媒を含有
する第2の冷凍系と熱交換される。これは初期の
単一成分冷媒と第2の多成分冷媒との間の3個の
カスケード冷凍熱交換のうちの最初のものであ
る。これらの両方のサイクルは閉じられておりそ
して熱交換器中では間接的にのみ熱交換される。
気化された今やライン124中にある単一成分冷
媒はライン122で導入された気化された単一成
分冷媒と混合されそしてライン116を経て第1
の供給−吸引ドラム108に戻される。
供給−吸引ドラム128の単成分冷媒は気相と
液相に分離される。この気相は圧縮機92中での
再圧縮のためにライン130で取り出される。液
相はライン132で取り出され、その際流れは1
34に分れるのが残りの流れ弁140において膨
脹されその後で供給−吸引ドラム142に導入さ
れる。ライン134中の液体状冷媒流れは更にラ
イン136に分かれ、これは第3のカスケード蒸
発熱交換器16中で供給分を冷却する。ライン1
34中の残りの流れは一連の3個のカスケード蒸
発熱交換器の第2のもの、この場合特に交換器1
64中の多成分冷媒からなる第2の冷媒を冷却す
るのに使用される。ライン138中の今や気化さ
れた単一成分冷媒はライン136に導入された今
や気化された冷媒と混合されそして供給−吸引ド
ラム128に戻される。
ライン132および弁140を経て供給−吸引
ドラム142に送られた単一成分冷媒はまた気相
と液相とに分離される。気相はライン144を経
て再圧縮のために圧縮機へ供給される。液相冷媒
は更に熱交換で使用するためにライン146で送
られる。側流148が取り出され、その際冷媒は
蒸発熱交換器18中で供給分流を冷却しその際気
化される。ライン146中の残余の単一成分冷媒
は蒸発熱交換器166中で多成分冷媒を含む第2
冷凍回路を冷却する。このようにして、単一冷媒
はスクラブ塔28へのメタン供給分を冷却するの
に使用される。単一成分冷媒はそれが交換器18
および166を離れる際に気化されそして合され
た気体流は供給−吸引ドラム142に戻される。
本発明のプロセス回路は米国特許第4065278号
明細書記載の先行技術に比べていくつかの利点を
有している。本発明のもつとも重要な利点の一つ
は主熱交換器60における管束数の減少であり、
管束36を含む先行技術において示される3管束
構成から本発明の熱交換器60におけるような2
管束構成(第1A図参照)になる。第1A図の態
様の別の利点は全供給分がカラム28中にそのカ
ラムの頂部近くの点において導入されることであ
る。これによつて単一の供給物がスクラブ塔用の
すべての液体還流を供給する。
第1A図の態様は重質炭化水素が存在するとし
ても少ししかないがその除去が所望の場合あるい
はそのような炭化水素が存在しない場合の供給原
料を処理するのに特に適している。重質炭化水素
を有する供給原料を処理することが必要または有
利であると認められそして炭化水素が除去される
場合、第1A図の方法の別の態様を使用すること
ができそこで付加的な処理上の利点が得られる。
この別のまたは第2の態様を第1B図に示す。
第1B図について、以下に操作の好ましい態様
を記載する。第1B図の方法は中程度の圧力供給
(4137〜7585kPa(600〜1100psia))で操作するこ
とができる。典型的には6102kPa(885psia)にお
ける供給はメタン83%、エタン10.5%、プロパン
3.7%、ブタン1%、イソブタン0.65%、窒素0.35
%および極微量の高級炭化水素および水からなつ
ている。第1B図はこれが必要ならばライン10
の供給物からの水の最初の分離を示す。水の分離
は熱交換器12中で冷却し次に突出ドラム11に
通しそして吸収剤床13を切換えることにより行
なわれる。また、二酸化炭素はそのようなプロセ
ス処理で除去することができる。次に、供給物は
第1A図について述べたように第1冷媒に対して
同様な予冷を通過する。しかしながら、第1B図
は重質炭化水素の除去のために特に工夫されたも
のであつてスクラブ塔への供給流はこの目的のた
めの第1A図と著しく異つている。
供給天然ガスは比較的中位の圧力レベルにある
ので、供給物が分別に入る前に数回相分離してか
かる分別処理を改善することができる。この点
で、ライン20の供給物を相分離器22に導入し
てここで18.5%の供給物からなる液相をライン2
6の底部流として取り出しそして−53℃(−64
〓)における液体供給物としてスクラブ塔28に
導入する前に弁24中で5930kPa(860psia)から
3654kPa(530psia)に減圧される。容器22から
の蒸気オーバーヘツドをライン30で取り出しこ
こでそれを前記スクラブ塔28からのオーバーヘ
ツドと一緒に冷却熱交換器32において−53℃
(−65〓)まで冷却する。ライン34でさらに冷
却したオーバーヘツドを第2の相分離器36へ導
入する。再び、16%の流れ34からなる液相をラ
イン38における底部流として除去しそして第2
の流体供給流として−73℃(−99〓)におけるス
クラブ塔へ導入する前に弁40で膨脹させる。容
器36からの気相をライン42により膨脹機ター
ビン44に導入しそこで機械エネルギーを発生さ
せながら減圧する。ライン46における蒸気およ
び液体を含む膨脹供給物をスクラブ塔28の上部
へ導入する。スクラブ塔へのこれら3種の供給物
は供給原料の重質炭化水素留分からのメタンに富
んだ留分の分別における改良された効率を与え
る。第1A図で起るよりさらに実質的な分離は第
1B図の配置におけるスクラブ塔28において行
なわれる。かかる分離を達成するためには、塔へ
の供給物の圧力をさらに大幅に降下させることが
必要でありそして供給物のさらに高度の冷却を行
なうことが必要である。したがつて、相分離され
た供給物、冷却およびタービン膨脹が一緒になつ
て塔28における分離が改良される。
ライン52における塔頂流を冷却熱交換器32
へ導入してスクラブ塔28への供給物の一部を予
冷しそして塔頂流の冷却値の一部を回収する。塔
頂流は約−40℃(−40〓)で熱交換器32を出て
そして膨頂機44によつて駆動される圧縮機54
に向かう。次に、圧縮されたメタンに富んだ流れ
を第1の冷却回路の単一成分冷媒と蒸発式熱交換
器58中で熱交換して冷却する。流れは熱交換器
58を−37℃(−35〓)で出る。
次に、第1B図の交換器58からのメタンに富
んだ流れを冷却し、液化しそして第1A図に示し
た配置において上述したようにしてサブクールを
行なう。
この第2の態様(第1B図)はまた従来技術の
3管束形状を2管束熱交換器60に減少させさら
にコストの節減を図る利点を有する。さらに、第
2の態様はNGLが除去される場合他の利点を与
える。本発明のスクラブ塔28からの圧縮された
塔頂流は冷却と膨脹を行つた後、従来技術の主熱
交換器における高価な3管束形状を必要とするよ
り高価な低レベル(比較的冷たい)多成分冷媒よ
りもむしろ高レベル(比較的温い)単一成分冷媒
と熱交換して簡単な蒸発式熱交換器58で冷却さ
れる。第1B図に示された本発明の従来技術以上
の別の利点はカラムからのメタンに富んだ塔頂流
に対してスクラブ塔への還流供給物の熱交換であ
る。冷却機32で起るこの熱交換はさらに冷たい
還流供給物を塔28へ与えるので分別がさらによ
くなる。交換器32で起る冷却により熱交換され
た供給物は塔28へ入る前にさらに二つの相に分
離される。それ故、本発明の第1B図における態
様は三つの別個の供給物がすべてそれ自身適当な
レベルで蒸留塔へ導入されるという利点を与える
ので、最初の分別が既に起りそして蒸留塔を従来
技術以上のかなりの効率で操作することができ
る。本発明の別の利点は相分離器から分離された
流れをすべてカラムへ直接供給できることであ
る。従来技術ではカラム28への供給において、
分離された相を再び一緒にして一つだけカラムに
供給されていた。しかしながら、第1B図に示し
た本発明の態様では、各相分離はそれぞれカラム
へ供給される。
第1A図および第1B図のこれらの総括操作効
率および資本減少は天然ガスを液化天然ガスに変
換するための分離および液化装置の改良された経
済的操作を与える。本発明では従来技術の方法よ
り改良されるので、本発明はLNGの同様な生産
能力に対する操作に必要な全体のコンプレツサー
馬力の減少により効率を3%以上増加させる。さ
らに、本発明の主熱交換器60の表面積は米国特
許第4065278号のような従来技術より41%減少さ
れる。かかる熱交換器の表面積はLNGプロセス
の装置を製作する費用に関して重要な要素であ
る。それ故、この表面積の減少により、第1図に
示した態様における本発明は先に述べた従来技術
より主交換器のコストを47%減少させる。
先に述べた第2の態様は4137〜7585kPa(600〜
1100psia)のような中位の圧力供給に対して適当
である。しかしながら、天然ガス流は6895〜
13790kPa(1000〜2000psia)で入手づきそしてこ
こでは第1A図の第1の態様を処理するのに述べ
られたもののように高圧流と称される。これらの
流れはそのような圧力で入手できるので中位の圧
力系を通して流れを処理するためには高い圧力の
固有エネルギーを失なうよりもむしろその圧力で
流れを処理する方が有利である。それ故、本発明
の第2の態様の別の説明を第2図について述べ
る。第2図の装置は高圧供給流およびNGL回収
すなわち6895〜13790kPa(1000〜2000psia)にお
ける流れ好ましくは11032kPa(1600psia)におけ
る流れと回収されるべき重質炭化水素に対して特
に工夫されたものである。これらの高圧では、装
置の圧力が供給原料の臨界圧以上であるのでスク
ラブカラムへ分割供給物を与えるために相分離は
不可能である。メタン含有供給原料例えば天然ガ
スを7.7℃(46〓)の温度および11197kPa
(1624psia)の圧力でライン200へ導入する。
75%メタン、11.5%エタン、8.5%プロパン、2
%ブタン、1%イソブタンおよび残量の他のC5
〜C7炭化水素からなる流の流れは毎時11213Kgモ
ル(24720ポンドモル)の速度である。最初にラ
イン200における供給流を蒸発式熱交換器20
2,204および206における単一成分冷媒を
用いて3段階の熱交換で冷却する。この最初の冷
却の間、供給流を−37℃(−34〓)まで温度を減
少させる。ライン208における冷却流をスクラ
ブ塔216からの塔頂流に対して冷却熱交換器2
10中でさらに冷却する。流れ同士の冷却は供給
流を−51℃(−59〓)の温度に減少させる。次
に、さらに冷却された流れはエキスパンダーター
ビン212に通して流れを膨脹させて減圧され、
さらに温度を−70℃(−94〓)に減少させそして
流れの圧力を4137kPa(600psia)に減少させる。
供給流れをその単一還流流れとしてスクラブ塔2
16に導入する。塔216は4137kPa(600psia)
で操作しそして通常NGLまたは天然ガス液体と
称される重質炭化水素から供給流のメタンに富ん
だ成分を分別する。NGL留分をライン218で
除去しここでNGLの一部は熱交換器220によ
つて再循環される。塔への供給物の約21.4%をラ
イン218で取り出し、一方供給物の78.6%を塔
頂流としてライン222でメタンに富んだ製品と
して取出す。
先に述べた塔頂流はそれが加温されている場合
冷却熱交換器に通して塔への供給物を冷却する。
熱交換器210で加温された後塔頂流はライン2
24では−40℃(−40〓)の温度にする。次に、
このメタンに富んだ流れをコンプレツサー226
中で圧縮する。コンプレツサー226は膨脹で生
じたエネルギーをメタンに富んだガス流の再圧縮
に効率的に利用するために膨脹機212と機械的
に結合している。メタンに富んだ気体流の圧縮に
よりその温度が−23℃(−10〓)まで上昇しそし
てその圧力が5151kPa(747psia)まで増大する。
次にライン228のメタンに富んだ気体流を蒸発
式熱交換器230における第1の冷却サイクルに
おいて単一成分冷媒に対してもう一度冷却する。
この際流れの温度は−37℃(−34〓)まで減少す
る。次に流れを主熱交換器232に導入し、ここ
でそれを冷却し、液化しそしてサブクールして液
化天然ガスまたはLNGを得る。
ライン228でメタンに富んだ流れを第1段階
の管束234における主熱交換器232に導入
し、ここでそれを第1の単一成分冷却サイクルの
ものから第2の別の冷却サイクルにおける第2の
多成分冷媒に対して−129℃(−200〓)まで冷却
し液化させる。次に液化流を2068kPa(300psia)
の圧力に膨脹させる弁に通して減圧した後、流れ
を第2の熱交換器の管束236に導入しここでメ
タンに富んだ流れを追加の多成分冷媒に対してサ
ブクールしそして主熱交換器232を−153℃
(−244〓)の温度と1862kPa(270psia)の圧力で
出る。次に、サブクールした流れをエキスパンダ
ー弁を通して124kPa(18psia)の圧力と−159℃
(−255〓)の温度まで減少させる。この膨脹によ
つて2相流れが得られそして相は相分離機容器2
38中で分離される。流れの約95%を容器238
の底部から液体生成物として取り出しそしてスト
レージ246に圧送されそしてLNGとして出荷
する。流れの5%をライン240における容器2
38からオーバーヘツド蒸気流として取り出す。
ライン240におけるこの蒸気流を冷却熱交換器
242における多成分冷媒に対して加温した後
LNGストレージ246からの残留メタン蒸気と
一緒にする。ストレージ246からのこの蒸気を
圧縮しそしてライン240における相分離蒸気と
一緒にライン248に移送しそしてコンプレツサ
ー244で圧縮して工場または他の隣接する施設
における燃料として使用する。
この変法の冷凍サイクルは第1の態様のそれと
似ているがいくつかの明瞭な差異点があり、以下
これについて述べる。主としてメタンおよびエタ
ンそしてより小量のプロパンおよび窒素からなる
多成分冷媒が熱交換器232中で天然ガスを液化
するのに使用されている。この多成分冷媒は再循
環されるが圧縮装置294中での初期圧縮の直前
に補充用冷媒の一部が加えられる。第1段の圧縮
後に冷媒は冷水に対して後冷却されそして更に圧
縮装置296中で圧縮されその間引続いて冷水に
対して後冷却されて12.8℃(55〓)において
4220kPa(612psia)の圧力に達する。この多成分
冷媒は一連のカスケード熱交換器260,276
および290においてライン298中の単一成分
冷媒と熱交換され、その際多成分冷媒は一部分液
化されそして−37℃(−34〓)の温度に冷却され
る。次いで冷媒は相分離容器300中で相分離さ
れ、冷媒の77%はライン302中の液体流として
除去されそして23%はライン316中で気相とし
て除去される。液状冷媒は束状管回路306中の
主熱交換器232に入りそこでそれは−129℃
(−200〓)に冷却されその後一部の冷媒は分けら
れそして残りの冷媒はライン308の弁中で膨脹
され、その後冷媒はライン308中のスプレイノ
ズルから熱交換器232の暖管束(第1段)上に
スプレーされる。分割された流れは膨脹されそし
て熱交換器310中でライン314の流れに冷凍
を与える。これは下流の装置(本発明部分ではな
い)におけるNGLの分別のための冷却をなすこ
とになる。今やライン312中にある多成分冷媒
は更に膨脹されそして熱交換器232のベースか
らの再循環冷媒と再び一緒になる。
ライン318中の相分離容器300からの蒸気
状冷媒の一部は主熱交換器232の全経路にわた
つて冷却され、他方ライン304中の相分離器3
00の頂部からの蒸気状冷媒の残部は冷却熱交換
器242中で蒸気状LNG生成物と熱交換して冷
却されその後膨脹されそしてライン318中の流
れと再び一緒になつて熱交換器232の頂部に導
入されそして主熱交換器の冷管束(第2段)上に
スプレイされる。
初めに供給流を冷却しそして更に蒸発交換器2
60,276および290中の第2の多成分冷媒
のための冷却の一部を供給する単一成分冷媒は3
段圧縮機からなる圧縮装置250で圧縮される。
好ましくはプロパンであるこの単一成分冷媒は今
や896kPa(130psia)の圧力および40.5℃(105〓)
の温度にある。この冷媒は後冷却されそして一連
の冷水熱交換器中で全体的に凝縮されそして貯蔵
タンク252に送られる。冷媒はタンク252か
ら取去られそして更に冷水熱交換器中で冷却され
その後で膨脹され且つ供給−吸引ドラム254に
送られる。液状冷媒はライン258でドラム25
4の底部から取出され、その一部はライン266
で第2の供給−吸引ドラム268に向けられる。
ライン258中の残りの冷媒は再び分れてその一
部は蒸発熱交換器202中で供給流200を冷却
するのに使用されその後で蒸気としてライン26
4でドラム254に戻される。ライン258の冷
媒の最後の部分は蒸発熱交換器260において第
2の多成分冷媒を冷却するのに使用され、その後
で蒸気としてライン262で戻されてライン26
4の気化された冷媒と混合され且つ一緒にドラム
254に戻される。次に、この蒸気はライン25
6で圧縮のために戻される。
同様に液体プロパン冷媒はドラム268の底部
から取り出されそして三つの流れに分けられる。
この場合、ライン280の冷媒は第3吸引供給ド
ラム282に供給され、一部は蒸発熱交換器20
4中で冷媒として使用されそしてライン278で
ドラム268に戻され、一方、ライン272に残
つている冷媒は蒸発熱交換器276中の第2多成
分冷媒を更に冷却させるためにライン274で導
かれその後で蒸気をライン278にそしてドラム
268に戻して集め、そして再圧縮するためにラ
イン270に導く。ライン280で吸引供給ドラ
ム282に供給された冷媒は、ライン286で蒸
発熱交換器206中の供給流の再圧縮と、蒸発熱
交換器290中の第2多成分冷媒の冷凍と、スク
ラブ塔216から分離されたメタン富化流を熱交
換器230でサブクールするのに使用される。こ
れら熱交換器から蒸発させた冷媒はライン292
で集められ、そしてドラム282に戻されるがこ
の場合、蒸気はドラムのオーバーヘツドから除去
されそして他のドラムからの他の蒸気流との再圧
縮のためにライン284を経て圧縮機に供給され
る。
本発明のこの第2の高圧例は従来技術に比べて
第1B図に示されており、そして中圧供給流に関
して前記に論じられている第2の具体例に対して
計算された効率と同様の改善された生産効率を与
える。この第2の高圧例は最も近似した従来技
術、例えば米国特許第4065278号明細書の主熱交
換器中の束数の減少と共に減少した資本コストの
利点を有している。本具体例は高圧供給物に関し
て操作されるが、一方最も近似した従来技術は中
圧供給物に関して操作されるという事実に対して
調整を実施するならばこの第2の高圧例は中圧従
来技術法に比べて減少した全体的コンプレツサー
馬力要求を有している。例えば第2図に説明され
ている系は米国特許第4065278号明細書のものに
比べて3.3%の効率を有している。主熱交換器成
形の資本コストの減少と組合されたこの馬力の減
少はMGL抽出および天然ガス流れ液化のための
従来技術法に対して本発明の方法は魅力ある利点
を提供する。
例えば前記第2図に説明されている高圧天然ガ
ス供給物の分離実施のためにそれに代る具体例は
第3図に示されている。このそれに代る具体例に
おいては単一成分冷媒による予備冷却は第2図中
に説明されている第2具体例中のものならびに主
熱交換器中の分離の下流の液化処理と同一であ
る。従つてこのそれに代る具体例は第2図からの
工程変形の存在するスクラブ塔316への供給に
おいてのみ示されている。
第3図に説明されているフロースキームにおい
ては高圧供給天然ガスを最初に第2図に示されて
いるような3カスケード蒸発熱交換器中で単一成
分冷媒と熱交換して冷却させる。ライン408中
の予冷却供給物は−37℃(−34〓)の温度および
11032kPa(1600psia)の圧力である。膨脹機41
2中での膨脹により供給物の圧力を減少させる。
この場合、温度は更に−64℃(−84〓)に下がり
そして圧力は4137kPa(600psia)に低下される。
この膨脹流れを次いで熱交換により冷却させる。
スクラブ塔からのオーバーヘツドは第2図に説明
されている流れスキームとは直接反対の配列であ
る。ライン414の膨脹した流れを冷却熱交換器
410中で熱交換により−67℃(−89〓)に冷却
させる。次いでこの流れをスクラブ塔416中に
導入するがこれは約4137kPa(600psia)で操作さ
れる。より重質の炭化水素、例えばエタン、ブタ
ンその他の多成分炭化水素はライン418で天然
ガス液として除去される。この流れの一部は再沸
騰熱交換器420を通して再循環のために除去さ
れる。メタン富化流れは95%メタン含有の、そし
て残余の部分がエタンおよびより少量のその他の
より重質の炭化水素であるようなオーバーヘツド
留分としてライン422でスクラブ塔416から
除去される。この流れ422をバルブ424によ
つて3103kPa(450psia)まで圧力低下させ、同時
に温度を−76℃(−105〓)まで低下させる。こ
の流れは冷却熱交換器410中で塔への進入供給
物に対して加温され、そしてこの交換器を−68℃
(−91〓)で出て行く。次いでメタン富化流れを
圧縮機426中で圧縮するがこれは膨脹機412
中での膨脹から導かれた機械的エネルギーを利用
している。次に、塔頂流422の圧力をこの圧縮
によつて4323kPa(627psia)まで高めた後これは
前記第2図のようにして液化天然ガスLNGへの
冷却、液化およびサブクールのために主熱交換器
に送られる。
第3図に示されているそれに代る具体例は従来
技術例えば米国特許第4065278号明細書のものと
比べた場合、同様のNGL分離および天然ガス液
化効率を達成する。この具体例は前記のように付
随する資本コスト減少をもつて同一の二次液化熱
交換器を利用する。第3図のサイクルはまたスク
ラブ塔のオーバーヘツドからのメタン富化流れの
より大なる冷却を達成しそして従つて第2図に示
されている蒸発熱交換器230を必要としない。
従つて第3図に示されている具体例中のメタン富
化流れの温度のこの大なる減少によつて第2図に
示されている流れ通路に比べて資本コストを節約
することができる。スクラブ塔への供給物の冷却
および膨頂の順序の変更と組合せたこの変形は第
2図および第3図に示されている本発明の二つの
高圧供給分の態様における唯一の差である。
第2および第3図に示されている改善された高
圧サイクルは、第1B図の中圧サイクル中に示さ
れているものと同一の冷却熱交換器より成る冷却
回収装置を包含している。この冷却回収は、エク
スパンダー排出物の一層の冷却(第3図)のため
に、またはエクスパンダー導入物の予冷却(第2
図)のために使用される。それがエクスパンダー
排出物の冷却に使用される場合には、スクラブ塔
オーバーヘツド422の圧を減少させて、熱交換
器410中での冷却回収のためにより低い温度お
よび正に冷却された最終温度差を与えなくてはな
らない。第2図でカラムオーバーヘツドがエクス
パンダー導入物を予冷却させる場合には、ライン
228中に得られる圧縮機排出物温度は幾分高い
ので、追加の蒸発熱交換器を用いてメタン富化供
給物を−37℃(−34〓)に再冷却させた後主熱交
換器に導入して液化される。この蒸発熱交換器2
30は第3図の系では要求されない。その理由
は、ライン428の圧縮機排出流は最低単一成分
冷媒温度より充分低い−45℃(−49〓)まで冷却
されているからである。
第1、2および3図に例示された本発明のすべ
てのサイクルは改善された方法を与える、これら
の方法ではC2以上の炭化水素回収のために蒸留
塔またはスクラブ塔を還流させるために等エント
ロピー膨脹供給ガスをより効果的に使用するの
で、高価な低レベル冷媒を使用して塔28を還流
させるのに第3の束36が必要である米国特許第
4065278号のような従来技術の場合のような蒸留
塔を操作させるのにより高価なより低温の混合冷
媒を使用する必要がない。
どのプロセススキームを使用すべきかの選択は
供給流の圧力とNGLとしての重質炭化水素を除
去する有効性および要求に依存する。しかし交換
条件が存在する。処理状況が変動するので、本発
明の種々の具体例のスクラブ塔は種々の圧力で操
作することができる。充分に高い圧力では塔から
のNGL回収は困難であり、そして実際にはより
少量のNGLしか分離されない。供給物を低い圧
力に膨脹させて塔の圧力を低下させるので、より
多量のNGL回収が可能である。この結果の1つ
は、塔からのメタンリツチオーバーヘツドは外的
エネルギー要求の使用なしには高い圧力に再圧縮
することができないということである。これによ
りプロセスの液化とサブクール段階でより大なる
動力要求が得られる。その理由は低圧流体の液化
のために追加の冷凍動力が要求されるからであ
る、NGL回収が要求されない場合にはメークア
ツプ冷媒に充分なC2およびC3のみを回収するよ
うにスクラブ塔を設計することができる。主交換
器中の冷凍を阻止するためにはベンゼンのような
重質炭化水素を除去しなくてはならないかもしれ
ない。冷媒の回収と重質成分の除去はスクラブ塔
にあまり負荷を課さない。その結果スクラブ塔は
NGL回収に対して要求されるよりも高い圧力と
温度で操作してもよい。より少量の重質成分しか
回収する必要がないので、スクラブ塔をより高圧
で操作できる結果、スクラブ塔のオーバーヘツド
を再圧縮させそしてより高圧で主交換器に戻して
液化することができる。ある個所では、スクラブ
塔の圧力を増大させてより少い重質炭化水素が回
収されるので、最高塔圧は流体の臨界圧に近い値
に達する。(通常、臨界圧の80%)。この点では、
重質成分回収が充分であるならば、エクスパンダ
ー供給物/オーバーヘツド相互変換器の能率をそ
れが除去されるまで低下させてもよい。
エクスパンダーからのメタン富化供給流のスク
ラブ塔頂部への直接供給と熱交換器コストの付随
的低下を伴う主液化熱交換器からの塔の還流要求
の除去は本発明の利点の一体化した部分である。
LNGプラントへのその様な適応化はここに参照
として包含されている、例えば米国特許第
3645106、同第4112700、同第4251247および同第
4274849号各明細書開示のその他の天然ガスまた
はメタン液化系に関して意図させることができ
る。
冷媒用または生成物としての重質炭化水素の回
収を伴うメタンリツチ供給原料の液化を行う従来
技術では液体供給物または重質炭化水素を除去す
るスクラブ塔への還流物の生成のために種々の冷
凍源が利用された後に供給物のメタンリツチ部分
の液化が行なわれている。最初に、そのようなス
クラブ塔の還流は高レベル冷媒との熱交換によつ
て発展される。高レベル冷媒は最初に供給物を冷
却した後分離または液化を行なう比較的に温かい
冷媒でありそして本発明の第1AおよびB図の圧
縮機92を通して循環される第1の冷媒により表
わされる。高レベル冷媒の負荷の増加は実質的に
冷凍サイクルのエネルギー要求を増大させる。次
いで、スクラブ塔の還流は高レベル冷媒と低レベ
ル冷媒の両者との熱交換によつて発展され、低レ
ベル冷媒は比較的冷たい温度の冷媒であつて本発
明の第1AおよびB図の圧縮機152および15
6を通して循環される第2の冷媒のようなメタン
リツチガスの液化およびサブクールを行う。この
低レベル冷媒の利用はその低温レベルの故に比較
的エネルギー集約的で高価である。スクラブ塔へ
の還流として液体供給物により与えられる冷凍負
荷を軽減するために、従来の米国特許第4065278
号の方法は直列の膨脹機と圧縮機ユニツト(続い
ての圧縮に膨脹エネルギーを使用するために機械
的に結合されている)と一緒に高レベルおよび低
レベル冷媒を利用して、スクラブ塔に冷凍力を与
えることを意図している。しかし高価な低レベル
冷媒の使用は依然として必要でありそしてその使
用はさらに主熱交換中で米国特許第4065278号の
36のような管状束に高価な資本的投資が必要と
される。
本発明の全ての態様では、塔供給物の冷却のた
めの低レベル冷媒回路から低レベル冷媒の必要性
がなくなりそして管状束を必要としないことによ
り主熱交換器のコストが低減される。これは高レ
ベル冷媒によつて予備冷却された供給物の膨脹と
それをスクラブ塔の頂部へ直接送つてメタン含有
供給流中のメタンから重質炭化水素の所望量を分
離するために塔に必要な全ての液体または還流を
与えることによつて達成される。この膨脹は効果
的なエネルギーである。その理由はこの膨脹によ
り与えられるエネルギーは圧縮機中で回収されメ
タンリツチオーバーヘツドを再圧縮して低レベル
冷媒を用いるメタンの液化を効果的にするからで
ある。上記の特許に記載されているいかなるメタ
ン液化方法も有利でありそして本発明を構成する
改良によりエネルギー効率がよくなることも意図
される。
本発明は第2図および第3図に示した別のフロ
ーシートにより明らかなように多数の変形に適応
できる。それ故、本発明の範囲は前記の特定の態
様によつて限定されるものではない。
【図面の簡単な説明】
第1A図は中圧天然ガス流に利用するための本
発明の第1の好適な態様を示す略図であり、第1
B図は中圧天然ガス流の利用のための本発明の第
2の態様を示す略図であり、第2図は高圧天然ガ
ス流で利用するための本発明の第2の態様の第2
の変形例を示す略図であり、そして第3図はスク
ラブ塔への別の供給と高圧天然ガス流のためのス
クラブ塔からの別の排出を示す第2図のフローシ
ートから取つた部分略図である。

Claims (1)

  1. 【特許請求の範囲】 1 天然ガスを最初に第1の高レベル冷媒と熱交
    換して冷却した後スクラブ塔に送つて少くとも若
    干の重質炭化水素を分離し次いで主熱交換器中の
    第2の低レベル冷媒と熱交換して冷却、液化およ
    びサブクールして重質炭化水素を分離回収する天
    然ガスの液化方法において、予め冷却した天然ガ
    ス供給物を機械的エネルギーを得ながら等エント
    ロピー膨脹させてスクラブ塔への液体還流とし、
    この膨脹された供給物を原料としておよびスクラ
    ブ塔へのすべての還流分としてスクラブ塔の頂部
    に送ると同時にスクラブ塔からメタンリツチの塔
    頂分を取り出しそしてそれを膨脹器により駆動さ
    れる圧縮機で再圧縮し、再圧縮されたメタンリツ
    チの塔頂流を直接主熱交換器に送つて生成物とし
    て液化することを特徴とする方法。 2 (a) 天然ガス供給流を4137〜13790kPa(600
    〜2000psia)の範囲の圧力で液化装置に導入す
    る工程、 (b) 前記供給流を閉冷凍系中の第1冷媒と間接熱
    交換して一連の熱交換器中で冷却させる工程、 (c) 機械的エネルギーを得ながら前記供給流を等
    エントロピー膨脹させて供給流の圧力を塔頂流
    および塔底流両方の臨界圧以下の圧力まで低下
    させる工程、 (d) 膨脹された供給流を供給分およびすべての還
    流分としてスクラブ塔へ導入してメタンリツチ
    の留分を塔頂流として分離する工程、 (e) 前記塔頂流を工程(c)の膨脹に由来する機械的
    エネルギーを利用する圧縮機で高圧に圧縮する
    工程、 (f) メタンリツチの流れを閉冷凍系中の第2の多
    成分冷媒と間接熱交換して熱交換器中で冷却、
    液化およびサブクールさせる工程、 (g) 前記の液化、サブクールされたメタンリツチ
    の流れをLNG生成物として取り出す工程、 からなる、塔頂流としてのメタンリツチの留分か
    ら塔底流としての重質炭化水素をスクラブ塔で分
    離することを包含する天然ガスの液化方法。 3 (a) 天然ガス供給流を4137〜13790kPa(600
    〜2000psia)の範囲の圧力で液化装置に導入す
    る工程、 (b) 前記供給流を閉冷凍系中の第1冷媒と間接熱
    交換して一連の熱交換器で冷却する工程、 (c) 機械的エネルギーを得ながら前記供給流を等
    エントロピー膨脹させそしてスクラブ塔からの
    メタンリツチの塔頂流と熱交換して前記供給流
    の少くとも1部を冷却させることによつて供給
    流の圧力を塔頂流および塔底流両方の臨界圧以
    下の圧力まで低下させる工程、 (d) 前記の冷却および膨脹された供給流を供給分
    およびすべての還流分としてスクラブ塔へ導入
    して塔頂流としてメタンリツチの留分をそして
    塔底流として重質炭化水素留分を分離する工
    程、 (e) 前記工程(c)の冷却用供給流と熱交換してメタ
    ンリツチの塔頂流を加温する工程、 (f) 加温された塔頂流を工程(c)の膨脹に由来する
    機械的エネルギーを利用する圧縮機で高い圧力
    まで圧縮する工程、 (g) メタンリツチの留分を閉冷凍系中の第2の多
    成分冷媒と間接熱交換により熱交換器で冷却、
    液化およびサブクールする工程、 (h) 前記の液化およびサブクールされたメタンリ
    ツチの流れをLNG生成物として取り出す工程、 からなる、塔頂流としてのメタンリツチの留分か
    ら塔底流としての重質炭化水素をスクラブ塔で分
    離することを包含する天然ガスの液化方法。 4 4137〜7585kPa(600〜1000psia)の中圧天然
    ガス供給流が処理されるものであり、初期冷却後
    供給物を相分離して液体塔底流と気体塔頂流とを
    取り出し、液体塔底流は中間供給分としてスクラ
    ブ塔へ導入されそして気体塔頂流はメタンリツチ
    の塔頂流と熱交換して冷却され且つ更に相分離さ
    れ、その際液相は再びスクラブ塔へ中間供給分と
    して導入されそして気相は還流分としてスクラブ
    塔へ導入される前に機械的エネルギーの生成を伴
    ないつつ等エントロピー膨脹され、そしてスクラ
    ブ塔からのメタンリツチの塔頂流は圧縮後に第1
    冷媒と間接熱交換により冷却された後第2冷媒と
    の熱交換によつてLNGに液化およびサブクール
    されることを特徴とする前記特許請求の範囲第3
    項記載の方法。 5 6895〜13790kPa(1000〜2000psia)の高圧天
    然ガス供給流が処理されるものであり、その際初
    期冷却後に前記供給物は機械的エネルギーの生成
    を伴ないつつ等エントロピー膨脹され次いでメタ
    ンリツチの塔頂流と熱交換して冷却された後前記
    供給物は還流分としてスクラブ塔へ導入されるこ
    とを特徴とする、前記特許請求の範囲第3項記載
    の方法。 6 6895〜13790kPa(1000〜2000psia)の高圧天
    然ガス供給流が処理されるものであり、その際初
    期冷却後に前記供給物をメタンリツチの塔頂流と
    熱交換して冷却した後等エントロピー膨脹させそ
    して前記のメタンリツチの塔頂流は圧縮後第1冷
    媒との間接熱交換により冷却された後第2冷媒と
    の熱交換によつて更に冷却、液化およびサブクー
    ルされることを特徴とする、前記特許請求の範囲
    第3項記載の方法。 7 工程(g)の液化生成物を相分離して液体塔底流
    と気体塔頂物を生成させ、液体塔底流は貯蔵用
    LNG製品として取り出され、気体塔頂物は第2
    の冷媒と間接熱交換して加温されて気体塔頂物か
    ら冷媒として価値ある物を回収した後前記塔頂物
    をプラント燃料として使用することを特徴とす
    る、前記特許請求の範囲第3〜6項のいずれか一
    つに記載の方法。
JP58158934A 1982-08-30 1983-08-30 メタンの液化方法 Granted JPS5981483A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US412686 1982-08-30
US06/412,686 US4445916A (en) 1982-08-30 1982-08-30 Process for liquefying methane

Publications (2)

Publication Number Publication Date
JPS5981483A JPS5981483A (ja) 1984-05-11
JPH049987B2 true JPH049987B2 (ja) 1992-02-21

Family

ID=23634028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58158934A Granted JPS5981483A (ja) 1982-08-30 1983-08-30 メタンの液化方法

Country Status (11)

Country Link
US (1) US4445916A (ja)
EP (1) EP0102087B1 (ja)
JP (1) JPS5981483A (ja)
AR (1) AR231349A1 (ja)
AU (1) AU553598B2 (ja)
CA (1) CA1200191A (ja)
DE (1) DE3368758D1 (ja)
ES (1) ES525205A0 (ja)
MX (1) MX163352A (ja)
MY (1) MY101002A (ja)
NO (1) NO160600C (ja)

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3531307A1 (de) * 1985-09-02 1987-03-05 Linde Ag Verfahren zur abtrennung von c(pfeil abwaerts)2(pfeil abwaerts)(pfeil abwaerts)+(pfeil abwaerts)-kohlenwasserstoffen aus erdgas
US4970867A (en) * 1989-08-21 1990-11-20 Air Products And Chemicals, Inc. Liquefaction of natural gas using process-loaded expanders
US5325673A (en) * 1993-02-23 1994-07-05 The M. W. Kellogg Company Natural gas liquefaction pretreatment process
FR2714722B1 (fr) * 1993-12-30 1997-11-21 Inst Francais Du Petrole Procédé et appareil de liquéfaction d'un gaz naturel.
DE69523437T2 (de) * 1994-12-09 2002-06-20 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Anlage und Verfahren zur Gasverflüssigung
TR199801906T2 (xx) * 1996-03-26 1999-01-18 Phillips Petroleum Company Metan bazl� bir besleme maddesinden kondensasyon ve s�y�rma sureti ile aromatik maddelerin ve/veya a��r maddelerin bertaraf edilmesi.
US5755114A (en) * 1997-01-06 1998-05-26 Abb Randall Corporation Use of a turboexpander cycle in liquefied natural gas process
TW366410B (en) * 1997-06-20 1999-08-11 Exxon Production Research Co Improved cascade refrigeration process for liquefaction of natural gas
TW368596B (en) * 1997-06-20 1999-09-01 Exxon Production Research Co Improved multi-component refrigeration process for liquefaction of natural gas
TW366411B (en) * 1997-06-20 1999-08-11 Exxon Production Research Co Improved process for liquefaction of natural gas
TW366409B (en) * 1997-07-01 1999-08-11 Exxon Production Research Co Process for liquefying a natural gas stream containing at least one freezable component
FR2772896B1 (fr) * 1997-12-22 2000-01-28 Inst Francais Du Petrole Procede de liquefaction d'un gaz notamment un gaz naturel ou air comportant une purge a moyenne pression et son application
GB9911021D0 (en) * 1999-05-13 1999-07-14 Kvaerner Oil & Gas As Process for treating and liquefying gaseous mixtures as natural gases
US6347532B1 (en) 1999-10-12 2002-02-19 Air Products And Chemicals, Inc. Gas liquefaction process with partial condensation of mixed refrigerant at intermediate temperatures
US6401486B1 (en) 2000-05-18 2002-06-11 Rong-Jwyn Lee Enhanced NGL recovery utilizing refrigeration and reflux from LNG plants
US6367286B1 (en) * 2000-11-01 2002-04-09 Black & Veatch Pritchard, Inc. System and process for liquefying high pressure natural gas
US7693557B2 (en) 2000-12-29 2010-04-06 Nokia Corporation Method of producing a telephone device
US7375973B2 (en) 2000-12-29 2008-05-20 Vertu Limited Casing for a communication device
US7830671B2 (en) 2000-12-29 2010-11-09 Vertu Limited Casing
US6526777B1 (en) * 2001-04-20 2003-03-04 Elcor Corporation LNG production in cryogenic natural gas processing plants
US6742358B2 (en) * 2001-06-08 2004-06-01 Elkcorp Natural gas liquefaction
UA76750C2 (uk) * 2001-06-08 2006-09-15 Елккорп Спосіб зрідження природного газу (варіанти)
EP1412682A1 (en) * 2001-06-29 2004-04-28 ExxonMobil Upstream Research Company Process for recovering ethane and heavier hydrocarbons from a methane-rich pressurized liquid mixture
US7078008B2 (en) * 2002-10-01 2006-07-18 Conocophillips Company Process for converting alkanes to carbon filaments
US6658890B1 (en) * 2002-11-13 2003-12-09 Conocophillips Company Enhanced methane flash system for natural gas liquefaction
AU2003900327A0 (en) * 2003-01-22 2003-02-06 Paul William Bridgwood Process for the production of liquefied natural gas
US6662589B1 (en) 2003-04-16 2003-12-16 Air Products And Chemicals, Inc. Integrated high pressure NGL recovery in the production of liquefied natural gas
US6925837B2 (en) * 2003-10-28 2005-08-09 Conocophillips Company Enhanced operation of LNG facility equipped with refluxed heavies removal column
BRPI0512744A (pt) * 2004-07-01 2008-04-08 Ortloff Engineers Ltd processamento de gás natural liquefeito
JP2008509374A (ja) * 2004-08-06 2008-03-27 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド 天然ガス液化方法
US7607310B2 (en) * 2004-08-26 2009-10-27 Seaone Maritime Corp. Storage of natural gas in liquid solvents and methods to absorb and segregate natural gas into and out of liquid solvents
AU2006215630B2 (en) * 2005-02-17 2009-04-23 Shell Internationale Research Maatschappij B.V. Plant and method for liquefying natural gas
US20090064712A1 (en) * 2005-04-12 2009-03-12 Cornelis Buijs Method and Apparatus for Liquefying a Natural Gas Stream
US20070157663A1 (en) * 2005-07-07 2007-07-12 Fluor Technologies Corporation Configurations and methods of integrated NGL recovery and LNG liquefaction
DE102006021620B4 (de) 2006-05-09 2019-04-11 Linde Ag Vorbehandlung eines zu verflüssigenden Erdgasstromes
US7631516B2 (en) * 2006-06-02 2009-12-15 Ortloff Engineers, Ltd. Liquefied natural gas processing
US20080016910A1 (en) * 2006-07-21 2008-01-24 Adam Adrian Brostow Integrated NGL recovery in the production of liquefied natural gas
AU2007285734B2 (en) * 2006-08-17 2010-07-08 Shell Internationale Research Maatschappij B.V. Method and apparatus for liquefying a hydrocarbon-containing feed stream
WO2008034875A2 (en) * 2006-09-22 2008-03-27 Shell Internationale Research Maatschappij B.V. Method and apparatus for liquefying a hydrocarbon stream
JP4942451B2 (ja) * 2006-10-25 2012-05-30 東芝テック株式会社 セルフチェックアウト端末
DE102007007097A1 (de) * 2007-02-13 2008-08-14 Linde Ag Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
DE102007010032A1 (de) * 2007-03-01 2008-09-04 Linde Ag Verfahren zum Abtrennen von Stickstoff aus verflüssigtem Erdgas
US9869510B2 (en) * 2007-05-17 2018-01-16 Ortloff Engineers, Ltd. Liquefied natural gas processing
NO329177B1 (no) * 2007-06-22 2010-09-06 Kanfa Aragon As Fremgangsmåte og system til dannelse av flytende LNG
US8020406B2 (en) 2007-11-05 2011-09-20 David Vandor Method and system for the small-scale production of liquified natural gas (LNG) from low-pressure gas
WO2009076357A1 (en) * 2007-12-10 2009-06-18 Conocophillps Company Optimized heavies removal system in an lng facility
US20090151391A1 (en) * 2007-12-12 2009-06-18 Conocophillips Company Lng facility employing a heavies enriching stream
US8534094B2 (en) * 2008-04-09 2013-09-17 Shell Oil Company Method and apparatus for liquefying a hydrocarbon stream
US20090282865A1 (en) 2008-05-16 2009-11-19 Ortloff Engineers, Ltd. Liquefied Natural Gas and Hydrocarbon Gas Processing
US20100147024A1 (en) * 2008-12-12 2010-06-17 Air Products And Chemicals, Inc. Alternative pre-cooling arrangement
US8434325B2 (en) 2009-05-15 2013-05-07 Ortloff Engineers, Ltd. Liquefied natural gas and hydrocarbon gas processing
US20100287982A1 (en) 2009-05-15 2010-11-18 Ortloff Engineers, Ltd. Liquefied Natural Gas and Hydrocarbon Gas Processing
EP2588822B1 (en) * 2010-06-30 2021-04-14 Shell Internationale Research Maatschappij B.V. Method of treating a hydrocarbon stream comprising methane, and an apparatus therefor
EP2742300A4 (en) 2011-08-10 2016-09-14 Conocophillips Co LIQUEFIED GAS PLANT WITH A SYSTEM FOR THE ETHYLENE-INDEPENDENT RECOVERY OF HEAVY FABRICS
WO2013096464A1 (en) * 2011-12-20 2013-06-27 Conocophillips Company Liquefying natural gas in a motion environment
EP2642228A1 (en) * 2012-03-20 2013-09-25 Shell Internationale Research Maatschappij B.V. Method of preparing a cooled hydrocarbon stream and an apparatus therefor.
JP6517251B2 (ja) * 2013-12-26 2019-05-22 千代田化工建設株式会社 天然ガスの液化システム及び液化方法
JP6225049B2 (ja) * 2013-12-26 2017-11-01 千代田化工建設株式会社 天然ガスの液化システム及び液化方法
US20160061517A1 (en) * 2014-08-29 2016-03-03 Black & Veatch Holding Company Dual mixed refrigerant system
DE102015002443A1 (de) * 2015-02-26 2016-09-01 Linde Aktiengesellschaft Verfahren zum Verflüssigen von Erdgas
TWI707115B (zh) * 2015-04-10 2020-10-11 美商圖表能源與化學有限公司 混合製冷劑液化系統和方法
US10619918B2 (en) 2015-04-10 2020-04-14 Chart Energy & Chemicals, Inc. System and method for removing freezing components from a feed gas
FR3039080B1 (fr) * 2015-07-23 2019-05-17 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Methode de purification d'un gaz riche en hydrocarbures
US10551118B2 (en) 2016-08-26 2020-02-04 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US10533794B2 (en) 2016-08-26 2020-01-14 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US10551119B2 (en) 2016-08-26 2020-02-04 Ortloff Engineers, Ltd. Hydrocarbon gas processing
CN106871576B (zh) * 2017-01-25 2019-08-09 北京三泰天洁气体净化技术有限公司 工业合成气低温前脱甲烷方法及系统
CN106679332A (zh) * 2017-02-17 2017-05-17 查都(上海)科技有限公司 一种提高甲烷深冷分离lng收率的系统
US11543180B2 (en) 2017-06-01 2023-01-03 Uop Llc Hydrocarbon gas processing
US11428465B2 (en) 2017-06-01 2022-08-30 Uop Llc Hydrocarbon gas processing
FR3086373B1 (fr) * 2018-09-20 2020-12-11 Air Liquide Installation et procede d'epuration et de liquefaction de gaz naturel
US20200386474A1 (en) * 2019-06-05 2020-12-10 Conocophillips Company Two-stage heavies removal in lng processing
JP7246285B2 (ja) * 2019-08-28 2023-03-27 東洋エンジニアリング株式会社 リーンlngの処理方法及び装置
WO2023288162A1 (en) 2021-07-16 2023-01-19 Exxonmobil Upstream Research Company Methods for operating hydrocarbon removal systems from natural gas streams

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5472203A (en) * 1977-11-21 1979-06-09 Air Prod & Chem Production of liquefied methane
JPS5632540A (en) * 1979-07-23 1981-04-02 Gen Electric Polymer blend

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3292380A (en) * 1964-04-28 1966-12-20 Coastal States Gas Producing C Method and equipment for treating hydrocarbon gases for pressure reduction and condensate recovery
US4004430A (en) * 1974-09-30 1977-01-25 The Lummus Company Process and apparatus for treating natural gas
CA1021254A (en) * 1974-10-22 1977-11-22 Ortloff Corporation (The) Natural gas processing
US4065278A (en) * 1976-04-02 1977-12-27 Air Products And Chemicals, Inc. Process for manufacturing liquefied methane
US4203741A (en) * 1978-06-14 1980-05-20 Phillips Petroleum Company Separate feed entry to separator-contactor in gas separation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5472203A (en) * 1977-11-21 1979-06-09 Air Prod & Chem Production of liquefied methane
JPS5632540A (en) * 1979-07-23 1981-04-02 Gen Electric Polymer blend

Also Published As

Publication number Publication date
EP0102087B1 (en) 1986-12-30
AR231349A1 (es) 1984-10-31
ES8507441A1 (es) 1985-09-01
ES525205A0 (es) 1985-09-01
NO833100L (no) 1984-03-01
AU1869283A (en) 1984-03-08
NO160600B (no) 1989-01-23
NO160600C (no) 1989-05-03
EP0102087A2 (en) 1984-03-07
AU553598B2 (en) 1986-07-24
JPS5981483A (ja) 1984-05-11
MX163352A (es) 1992-04-28
CA1200191A (en) 1986-02-04
DE3368758D1 (en) 1987-02-05
EP0102087A3 (en) 1985-01-16
US4445916A (en) 1984-05-01
MY101002A (en) 1991-06-29

Similar Documents

Publication Publication Date Title
JPH049987B2 (ja)
US4065278A (en) Process for manufacturing liquefied methane
EP0143267B1 (en) Dual mixed refrigerant natural gas liquefaction
EP1373814B1 (en) Lng production using dual independent expander refrigeration cycles
US5036671A (en) Method of liquefying natural gas
AU2002210701B2 (en) A system and process for liquefying high pressure natural gas
US6250105B1 (en) Dual multi-component refrigeration cycles for liquefaction of natural gas
KR101568763B1 (ko) Lng를 생산하는 방법 및 시스템
AU755559B2 (en) A process for separating a multi-component pressurized feed stream using distillation
AU2001261633B2 (en) Enhanced NGL recovery utilizing refrigeration and reflux from LNG plants
RU2093765C1 (ru) Способ сжижения природного газа
CA2562907C (en) Natural gas liquefaction
KR101269914B1 (ko) 천연 가스 스트림의 액화 방법 및 장치
KR20020066331A (ko) 팽창 냉각에 의한 천연 가스의 액화방법
JPH0391593A (ja) 天燃ガスの液化法
EP3803241B1 (en) Pretreatment and pre-cooling of natural gas by high pressure compression and expansion
AU2002245599A1 (en) LNG production using dual independent expander refrigeration cycles
AU2001261633A1 (en) Enhanced NGL recovery utilizing refrigeration and reflux from LNG plants
MX2007015604A (es) Configuraciones y metodos integrados de recuperacion de liquidos de gas natural y de licuefaccion de gas natural licuado.
WO2001088447A1 (en) Enhanced ngl recovery utilizing refrigeration and reflux from lng plants
MXPA97003373A (es) Produccion de gas natural liquido en plantas deprocesamiento de gas natural criogenico