JPH0499752A - Production of omega-hydroxy fatty acid ester - Google Patents

Production of omega-hydroxy fatty acid ester

Info

Publication number
JPH0499752A
JPH0499752A JP2215929A JP21592990A JPH0499752A JP H0499752 A JPH0499752 A JP H0499752A JP 2215929 A JP2215929 A JP 2215929A JP 21592990 A JP21592990 A JP 21592990A JP H0499752 A JPH0499752 A JP H0499752A
Authority
JP
Japan
Prior art keywords
rhenium
raw material
ruthenium
reaction
fatty acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2215929A
Other languages
Japanese (ja)
Other versions
JP2868023B2 (en
Inventor
Fujio Mizukami
富士夫 水上
Shuichi Niwa
修一 丹羽
Atsushi Makita
淳 牧田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Eneos Corp
Original Assignee
Agency of Industrial Science and Technology
Nippon Mining Co Ltd
Nikko Kyodo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Nippon Mining Co Ltd, Nikko Kyodo Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP2215929A priority Critical patent/JP2868023B2/en
Publication of JPH0499752A publication Critical patent/JPH0499752A/en
Application granted granted Critical
Publication of JP2868023B2 publication Critical patent/JP2868023B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To produce the title compound useful as a raw material for macrocyclic lactone, polymer raw material, etc., in high selectivity and in high yield by bringing a readily obtainable long-chain diacid monoester as a raw material into contact with hydrogen in the presence of water and a solid catalyst under a mild reaction condition. CONSTITUTION:A long-chain diacid monoester (e.g. pentadecane diacid monomethyl ester) shown by formula I (R is alkyl; n is 8-16C integer) is brought into contact with hydrogen in the presence of water and a solid catalyst (especially ruthenium-based and/or rhenium-based catalyst, specially preferably ruthenium, tin or rhenium) to advantageously give an omega-hydroxy fatty acid ester (e.g. omega-hydroxypentadecanoic acid methyl ester) shown by formula II. The starting compound shown by formula I is readily obtained by esterifying an alkane diacid with an alcohol, then converting into a barium mono salt and replacing the salt with an acid. The omega-hydroxy fatty acid ester is useful as a starting raw material for drugs and perfume and a raw material for polymers.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は医薬品の原料あるいは香料等として用いられる
大環状ラクトンの合成原料として有用であり、史にはポ
リマー原料としての用途も広い、ω−ヒドロキシ脂肪酸
エステルを製造する方法に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention is useful as a raw material for the synthesis of macrocyclic lactones used as raw materials for pharmaceuticals or fragrances, etc., and has also been widely used as a raw material for polymers. The present invention relates to a method for producing hydroxy fatty acid ester.

[従来の技術] ω−ヒドロキシ脂肪酸の製造方法として、従来、ω−ヒ
ドロキシもしくは、ω−アシロキシアルキル−γ−ブチ
ロラクトンを、水添分解触媒の存在下、水素ガスの共存
下で接触反応せしめる方法(特公昭6i 3776号公
報)、あるいは13−オキサ−ビシクロ[10,4,0
1−へキサデセン[1(12)]をラクトンに転化し、
当該ラクトンをウォルフーキシナー法又は、ファンーミ
ンロン法によりラクトン環を開環する方法(特公昭el
−21474号公報)等が提案されている。
[Prior Art] A conventional method for producing ω-hydroxy fatty acids is a method in which ω-hydroxy or ω-acyloxyalkyl-γ-butyrolactone is subjected to a catalytic reaction in the presence of a hydrogen cracking catalyst in the coexistence of hydrogen gas. (Special Publication No. 3776), or 13-oxa-bicyclo[10,4,0
Converting 1-hexadecene [1(12)] to a lactone,
A method of opening the lactone ring by the Wolffukisiner method or the Huang Minlong method (Tokuko Showel
-21474) etc. have been proposed.

上記方法はいずれも複雑な化合物を出発原料とするため
、高価な原料を用いることになり、延いては製造コスト
が高くなるという問題を有していた。
Since all of the above methods use complex compounds as starting materials, they have had the problem of using expensive raw materials, which in turn increases production costs.

又、このほかにジカルボン酸モノアルキルエステルを銅
−クロム酸化物触媒(特開昭63=88154号)ある
いはコバルト系触媒(特開昭63301845号)の存
在下に水素と接触させる方法が提案されている。
In addition, a method has been proposed in which dicarboxylic acid monoalkyl ester is brought into contact with hydrogen in the presence of a copper-chromium oxide catalyst (Japanese Patent Application Laid-open No. 63301845) or a cobalt catalyst (Japanese Patent Application Laid-open No. 63301845). There is.

しかしながら、これらの方法は水素圧150kg/e1
2以上の比較的高圧を要する反応であるので、その高圧
に耐えられる装置を必要とすることと、金属酸化物とし
て5〜10重量%もの大量の触媒を必要とする反応であ
ることから経済的に不利であった。
However, these methods require a hydrogen pressure of 150 kg/e1
Since the reaction requires relatively high pressure of 2 or more, it requires equipment that can withstand the high pressure, and it is economical because it requires a large amount of catalyst of 5 to 10% by weight as a metal oxide. was disadvantageous.

又、特開昭63−301843号の方法において反応溶
媒が使用されているが、その使用目的は反応を円滑に実
施するためであり、反応に不活性な有機溶媒すなわちエ
ーテル、脂肪族炭化水素、脂環式炭化水素、芳香族炭化
水素又はそれらの混合物が挙げられていた。
Furthermore, although a reaction solvent is used in the method of JP-A No. 63-301843, the purpose of its use is to carry out the reaction smoothly, and organic solvents inert to the reaction, such as ether, aliphatic hydrocarbon, Cycloaliphatic hydrocarbons, aromatic hydrocarbons or mixtures thereof were mentioned.

[発明が解決しようとする課題] 本発明は前記の方法の欠点を解決したもので、本発明の
目的は、医薬品の原料あるいは香料等として用いられる
大環状ラクトンの合成原料として有用であり、更にはポ
リマー原料としての用途も広い、ω−ヒドロキシ脂肪酸
エステルを有利に製造する方法を提供することにある。
[Problems to be Solved by the Invention] The present invention solves the drawbacks of the above-mentioned methods, and an object of the present invention is to provide a method useful as a raw material for the synthesis of macrocyclic lactones used as raw materials for pharmaceuticals or fragrances, etc. The object of the present invention is to provide a method for advantageously producing ω-hydroxy fatty acid esters, which have a wide range of uses as polymer raw materials.

[課題を解決するための手段] 本発明者はかかる問題を解決すべく鋭意検討した結果、
特定の触媒の存在下温和な反応条件でω−ヒドロキシ脂
肪酸エステルを高選択率かつ高収率に製造できることを
見出した。
[Means for Solving the Problems] As a result of intensive studies to solve the problems, the present inventor has found that
We have discovered that ω-hydroxy fatty acid esters can be produced with high selectivity and yield under mild reaction conditions in the presence of a specific catalyst.

すなわち、本発明は下記の一般式(1)%式%(1) (式中Rはアルキル基を示し、nは8〜16の整数を示
す)で表される長鎖二酸モノエステルを水の共存下に、
固体触媒を用いて水素と接触させることを特徴とする次
の一般式(II)R−〇−C+Cl12 +、CHzO
H(II)(式はR,nは式(1)のものと同じ)で表
されるω−ヒドロキシ脂肪酸エステルの製造方法である
That is, the present invention relates to a long chain diacid monoester represented by the following general formula (1)% (1) (wherein R represents an alkyl group and n represents an integer of 8 to 16). Under the coexistence of
The following general formula (II) R-〇-C+Cl12+, CHzO, which is characterized by contacting with hydrogen using a solid catalyst
This is a method for producing an ω-hydroxy fatty acid ester represented by H(II) (formula is R, n is the same as in formula (1)).

本発明に用いられる原料の長鎖二酸モノエステルは、−
武威(1)で示される化合物であればいずれでもよい。
The raw material long chain diacid monoester used in the present invention is -
Any compound represented by Wuwei (1) may be used.

このモノエステルはアルカンニ酸をアルコールでエステ
ル化し、これを例えば水酸化バリウムを用いて、バリウ
ムのモノ塩とし、次いで当該バリウムを酸で置換するこ
とにより容品に得ることができる。
This monoester can be obtained in a package by esterifying an alkanniic acid with an alcohol, converting it into a monosalt of barium using, for example, barium hydroxide, and then replacing the barium with an acid.

上記エステル化のだめのアルコールは炭素数1〜4の低
級アルコールを用いることが、エステル化物の分Mu製
を容易にできるために好ましい。
It is preferable to use a lower alcohol having 1 to 4 carbon atoms as the alcohol for the esterification because the esterified product can be easily produced.

なお、アルカンニ酸は、相当する炭素数のアルカンを微
生物の存在下に酸化することにより比較的安価に生産さ
れている。
Note that alkaniic acid is produced relatively inexpensively by oxidizing an alkane having a corresponding number of carbon atoms in the presence of microorganisms.

本発明に用いられる固体触媒とは、例えば銅−クロム酸
化物触媒、亜鉛−クロム酸化物触媒、白金触奴等カルボ
ン酸及び/又はエステルの水素化還元に用いられるもの
であればいずれでもよいが、最も好ましく使用されるの
は、ルテニウム系あるいはレニウム系触媒である。
The solid catalyst used in the present invention may be any catalyst used for hydrogenation reduction of carboxylic acids and/or esters, such as copper-chromium oxide catalyst, zinc-chromium oxide catalyst, platinum catalyst, etc. Ruthenium-based or rhenium-based catalysts are most preferably used.

このレニウム系触媒とは、レニウム金属fit体もしく
はその化合物あるいはこれと他の金属触媒、例えば、す
ず、ルテニウム等との混合触媒をいうが、本発明に最も
好ましく使用されるのは、レニウム、すずを含有するレ
ニウム系触媒である。
The rhenium-based catalyst refers to a rhenium metal fit body, its compound, or a mixed catalyst of this and other metal catalysts such as tin, ruthenium, etc., but the most preferably used in the present invention are rhenium, tin, etc. It is a rhenium-based catalyst containing

又、本発明に用いられる前記のルテニウム系触媒とは、
ルテニウム金属単体もしくはその化合物あるいはこれと
他の金属触媒例えば、すず、レニウム等との混合触媒を
いうが、本発明に最も好ましく使用されるのはルテニウ
ム、すずを含有するルテニウム系触媒である。
Moreover, the above-mentioned ruthenium-based catalyst used in the present invention is
It refers to a catalyst containing ruthenium alone, a compound thereof, or a mixed catalyst of ruthenium and other metal catalysts such as tin, rhenium, etc., but the most preferably used in the present invention is a ruthenium-based catalyst containing ruthenium or tin.

上記のレニウム系及びルテニウム系触媒は含浸法や沈澱
法及びコロイドゾルを出発物質に用いる従来のゾル・ゲ
ル法等の従来法により調製しても良く、又、近年新たに
開発された化学混合法(又は改良ゾル−ゲル法)等によ
り調製してもよい。
The above rhenium-based and ruthenium-based catalysts may be prepared by conventional methods such as impregnation method, precipitation method, and conventional sol-gel method using colloidal sol as a starting material. or modified sol-gel method).

含浸法における触媒の調製では、ルテニウム、レニウム
及びすず化合物は水及び有機溶媒に溶解しやすいもので
あればいずれも使用可能である。ルテニウム化合物の例
としては、例えば三塩化ルテニウム水和物、トリスアセ
チルアセトナートルテニウム、四酸化ルテニウム、ルテ
ニウムカルボニル、塩化ルテニウムアンモニウム等を挙
げることができる。又、レニウム化合物の例としては、
例えば塩化レニウム、オキシ塩化レニウム、臭化レニウ
ム、オキシ臭化レニウム、七酸化ニレニウム、過レニウ
ム酸アンモニウム等を挙げることができる。
In preparing the catalyst using the impregnation method, any ruthenium, rhenium, or tin compound can be used as long as it is easily soluble in water and an organic solvent. Examples of the ruthenium compound include ruthenium trichloride hydrate, ruthenium trisacetylacetonate, ruthenium tetroxide, ruthenium carbonyl, and ruthenium ammonium chloride. In addition, examples of rhenium compounds include:
Examples include rhenium chloride, rhenium oxychloride, rhenium bromide, rhenium oxybromide, nyrhenium heptoxide, and ammonium perrhenate.

そしてすず化合物の例としては、例えば塩化第一すず、
塩化第二すず、臭化すず、酢酸すずを初めとする有機酸
すず、すずテトラエトキシドを初めとするすずアルコキ
シドなどを挙げることができるが、水及び有機溶媒に可
溶であればよく、これら例示した化合物に限定されるも
のではない。
Examples of tin compounds include stannous chloride,
Examples include tin chloride, tin bromide, organic acids such as tin acetate, and tin alkoxides such as tin tetraethoxide. It is not limited to the exemplified compounds.

又、担体としてはけいそう土、アルミナ、シリカゲル、
ジルコニア、チタニア等の公知のものがいずれも使用で
きる。
In addition, as a carrier, diatomaceous earth, alumina, silica gel,
Any known material such as zirconia or titania can be used.

化学混合法における触媒の調製では、ルテニウム化合物
、レニウム化合物及びすず化合物は有機溶媒に溶解し昌
いものやアルミニウム化合物、ケイ素化合物、チタニウ
ム化合物、ジルコニウム化合物あるいはニオビウム化合
物などと反応して有機溶媒に可溶となるものであればい
ずれも使用可能である。ルテニウム化合物の例としては
、例えば三塩化ルテニウム水和物、トリスアセチルアセ
トナートルテニウム、四酸化ルテニウム、ルテニウムカ
ルボニルなどを、レニウム化合物の例としては、例えば
塩化レニウム、オキシ塩化レニウム、臭化レニウム、オ
キシ臭化レニウム、七酸化ニレニウム、過レニウム酸ア
ンモニウムなどを、そしてすず化合物の例としては塩化
すず、臭化すず、酢酸すずを初めとする有機酸すず、す
ずテトラエトキシドを初めとするすずアルコキシドなど
をそれぞれ挙げることができるが、有機溶媒に可溶であ
ればよく、これら例示した化合物に限定されるものでは
ない。
In the preparation of catalysts using the chemical mixing method, ruthenium compounds, rhenium compounds, and tin compounds are dissolved in organic solvents and reacted with other substances such as aluminum compounds, silicon compounds, titanium compounds, zirconium compounds, or niobium compounds to form organic solvents. Any material that dissolves can be used. Examples of ruthenium compounds include ruthenium trichloride hydrate, ruthenium trisacetylacetonate, ruthenium tetroxide, and ruthenium carbonyl. Examples of rhenium compounds include rhenium chloride, rhenium oxychloride, rhenium bromide, and ruthenium oxychloride. Examples of tin compounds include tin chloride, tin bromide, organic acids such as tin acetate, and tin alkoxides such as tin tetraethoxide. However, the compound is not limited to these exemplified compounds as long as it is soluble in an organic solvent.

本発明に最も好ましく使用されるルテニウム又はレニウ
ム、及びすず含有固体触媒では触媒調製に用いるルテニ
ウム又はレニウム化合物、及びすず化合物の使用量は、
特に規定はしない。
In the case of the ruthenium- or rhenium- and tin-containing solid catalyst most preferably used in the present invention, the amounts of the ruthenium- or rhenium compound and the tin compound used for catalyst preparation are as follows:
There are no particular regulations.

しかし、使用量が余りにも少ないと最終的に得られる固
体触媒中のルテニウム又はレニウムやすずの含量が少な
くなり触媒の活性が落ちるし、又、多すぎると触媒は余
りにも高価となり実用的ではなくなるので、最終的に得
られる触媒においてルテニウム又はレニウム、及びすず
の含量がそれぞれを金属としてみたときに、ルテニウム
又はレニウムでは0.5vt%から30vt%、すずで
は0.5vt%からyowt%の範囲になるように使用
量を設定するのが好ましい。又、ルテニウム又はレニウ
ムとすずの相対含量については、原子比ですず/ルテニ
ウム又はレニウムが0.01からIOlより詳しくは0
.03から 3の間になるようにするのが好ましい。
However, if the amount used is too small, the content of ruthenium, rhenium, or tin in the final solid catalyst will decrease, reducing the activity of the catalyst, and if it is too large, the catalyst will become too expensive to be practical. In the final catalyst, the content of ruthenium or rhenium and tin is in the range of 0.5vt% to 30vt% for ruthenium or rhenium, and 0.5vt% to yowt% for tin, when each is considered as a metal. It is preferable to set the usage amount to . Regarding the relative content of ruthenium or rhenium and tin, the atomic ratio of tin/ruthenium or rhenium ranges from 0.01 to 0.
.. It is preferable to set the value between 03 and 3.

触媒は必要に応じ適宜、焼成や還元などの操作を施し、
使用する。
The catalyst is subjected to operations such as calcination and reduction as necessary.
use.

本発明において水の共存がω−ヒドロキシ脂肪酸エステ
ルを高選択率かっ高収率にもたらす理由については、い
まだ完全な理解がされたわけではないが、その理由の一
つとして、反応生成物のω−ヒドロキシ脂肪酸エステル
と未反応原料の長鎖二酸モノエステルとが脱水縮合する
のを防いでいることが考えられる。水の添加量は特に規
定はしないが、添加量が余りに少ないとその効果は小さ
いし、又、多すぎると本発明を実施する際の反応温度下
における水の蒸気圧に応じて反応系内の全圧を増加させ
、いたずらに装置コストの上昇をまねくために実用的で
はなくなるので、使用する原料の長鎖二酸モノエステル
に対して0.01〜50倍モルの範囲、より詳しくは0
.1〜lO倍モルの範囲になるように加えるのが好まし
い。
The reason why the coexistence of water in the present invention brings about high selectivity and high yield of ω-hydroxy fatty acid ester is still not fully understood, but one of the reasons is that the ω- It is thought that dehydration condensation between the hydroxy fatty acid ester and the unreacted raw material long-chain diacid monoester is prevented. The amount of water added is not particularly specified, but if the amount added is too small, the effect will be small, and if it is too large, the amount of water in the reaction system will be affected depending on the vapor pressure of water at the reaction temperature when carrying out the present invention. Since this increases the total pressure and unnecessarily increases the cost of the equipment, it is not practical, so the amount is in the range of 0.01 to 50 times the mole of the long-chain diacid monoester used as the raw material, more specifically, 0.
.. It is preferable to add it in an amount of 1 to 10 times the mole.

本発明は懸濁床、流動床、固定床のいずれの方法でも適
宜採用し得るが、その場合の触媒形状は各反応方法に適
した型に成型し用いる。
In the present invention, any of the suspended bed, fluidized bed, and fixed bed methods can be adopted as appropriate, and the catalyst shape in that case is molded into a mold suitable for each reaction method.

ω−ヒドロキシ脂肪酸エステルへの水素化還元方法は、
次のような反応条件で行われる。反応温度は150〜3
50℃が好ましいが、特に好ましいのは200〜300
℃である。反応圧力は水素圧10〜300kg/cm 
2が好ましいが、特に好ましいのは20〜150kg/
cm’である。還元反応は上記条件範囲内に限定される
ものではないが、水素圧を10kg/cm’以下、温度
を150℃以下とすると、還元反応速度かおそくなり、
反応時間が長びくために実用上望ましくない。反応温度
及び水素圧は高い方が反応速度が上昇するのでよいが、
反応温度が350℃を越えると原料及び生成物の分解を
生じ収率が低下するので好ましくない。
The hydrogenation reduction method to ω-hydroxy fatty acid ester is
The reaction is carried out under the following reaction conditions. The reaction temperature is 150-3
The temperature is preferably 50°C, particularly preferably 200 to 300°C.
It is ℃. Reaction pressure is hydrogen pressure 10-300kg/cm
2 is preferred, and particularly preferred is 20 to 150 kg/
cm'. Although the reduction reaction is not limited to the above condition range, if the hydrogen pressure is 10 kg/cm or less and the temperature is 150°C or less, the reduction reaction rate will be slow.
This is practically undesirable because the reaction time is prolonged. It is better to have a higher reaction temperature and hydrogen pressure because the reaction rate will increase.
If the reaction temperature exceeds 350°C, the raw materials and products will decompose and the yield will decrease, which is not preferable.

又、水素圧を300kg/c■2以上とした場合反応速
度の顕著な向上は期待できず、これ以上の水素圧は経済
性及び安全上の面から好ましくない。
Further, if the hydrogen pressure is set to 300 kg/c2 or higher, no significant improvement in the reaction rate can be expected, and higher hydrogen pressures are not preferred from the economical and safety standpoints.

このような反応条件は原料である長鎖二酸モノエステル
の種類、用いる触媒の活性、水の添加量、更には溶媒等
により適宜選定される。
Such reaction conditions are appropriately selected depending on the type of long-chain diacid monoester used as a raw material, the activity of the catalyst used, the amount of water added, the solvent, etc.

本発明方法は溶媒を用いずに実施することもできるが、
適当な溶媒を使用しても差しつかえない。反応に不活性
である限り使用する溶媒には、特に制限はなく、還元反
応で用いられる有機溶媒すなわちエーテル、脂肪族炭化
水素、脂環式炭化水素、又はそれらの混合物が使用でき
る。
Although the method of the present invention can also be carried out without using a solvent,
Any suitable solvent may be used. The solvent used is not particularly limited as long as it is inert to the reaction, and organic solvents used in reduction reactions, such as ethers, aliphatic hydrocarbons, alicyclic hydrocarbons, or mixtures thereof can be used.

原料の溶媒中における濃度は1〜80 w t 9oで
あるが好ましくは5〜50νt%である。
The concentration of the raw material in the solvent is 1 to 80 wt 9o, preferably 5 to 50 vt%.

反応時間は上記反応条件によって異なるか約10〜10
0時間程度で行うことができる。
The reaction time varies depending on the above reaction conditions.
This can be done in about 0 hours.

U実施例] 以下実施例により本発明方法を具体的に説明する。なお
本反応での生成物の同定及び定量はガスクロマトグラフ
ィーによって行ったが、反応終了物中にはポリエステル
か副生じているのでこれを常法により加水分解し、テト
ラメチルシラン銹導体とした後に分析を行った。
U Examples] The method of the present invention will be specifically explained below using Examples. The product in this reaction was identified and quantified by gas chromatography, but since polyester was produced as a by-product in the reaction product, this was hydrolyzed by a conventional method to form a tetramethylsilane rust conductor. Analysis was carried out.

実施例1 2.0gのトリスアセチルアセトナトルテニウム錯体を
151のエタノール水溶液に懸濁させ、これに27gの
濃硝酸を加え80〜90℃で1時間撹拌した。次に、史
に15gの濃硝酸を加えると共に、器壁に付着した錯体
をできる限り少量の酢酸で溶液中に洗い落とし、90〜
100℃で2時間暖めた。この間に酸化窒素ガスが発生
し、懸濁液は透明赤色溶液へと変化した。この溶液を乾
固し戸こ後、これ1こ74.17gのへキシレングリコ
ールと63.29gのアルミニウムイソプロポキシドを
加え、100℃で2時間撹拌した。更にこの溶液に1.
50gのテトラエトキシ錫を加え、同温度で4時間撹拌
した後、22.31gの水を加えた。生したゲルを同温
度で2時間暖め熟成し、減圧下160℃で乾燥した。
Example 1 2.0 g of trisacetylacetonateruthenium complex was suspended in an aqueous ethanol solution of 151, 27 g of concentrated nitric acid was added thereto, and the mixture was stirred at 80 to 90°C for 1 hour. Next, 15 g of concentrated nitric acid was added to the solution, and the complex adhering to the vessel wall was washed into the solution with as little acetic acid as possible.
It was heated at 100°C for 2 hours. During this time, nitrogen oxide gas was evolved and the suspension turned into a clear red solution. After drying this solution, 74.17 g of hexylene glycol and 63.29 g of aluminum isopropoxide were added to the solution, and the mixture was stirred at 100° C. for 2 hours. Furthermore, add 1. to this solution.
After adding 50 g of tetraethoxytin and stirring at the same temperature for 4 hours, 22.31 g of water was added. The resulting gel was warmed and aged at the same temperature for 2 hours, and dried at 160° C. under reduced pressure.

乾燥ゲル6、Ogを石英管中に取り、rA型環状炉を用
いて400℃で2時間焼成し室温まで冷却して後、水素
を流しなから401)℃て4時間加熱することによ−〕
で活性化した。
Dry gel 6, Og was placed in a quartz tube, fired at 400°C for 2 hours using an rA type annular furnace, cooled to room temperature, and then heated at 401)°C for 4 hours without flowing hydrogen. ]
was activated.

次にこれを50.0gのペンタデカンニ酸モノメチルエ
ステル、100.ogのデカヒドロナフタリン及び10
.0gの水と共に内容積5001のオートクレーブに仕
込み、容器内部を十分に水素ガスと置換した後加熱を開
始し、250℃となったところで容器内部圧を水素ガス
てHJ/cm’まで高め、反応を開始した。反応中、撹
拌は電磁誘導回転式を用い1500同転/分で行った。
Next, this was mixed with 50.0 g of pentadecanedioic acid monomethyl ester and 100.0 g of pentadecanedioic acid monomethyl ester. og of decahydronaphthalene and 10
.. The mixture was charged into an autoclave with an internal volume of 5,001 cm along with 0 g of water, and after the inside of the container was sufficiently replaced with hydrogen gas, heating was started. When the temperature reached 250°C, the internal pressure of the container was increased to HJ/cm' with hydrogen gas to stop the reaction. It started. During the reaction, stirring was performed using an electromagnetic induction rotation system at a rate of 1500 rotations/minute.

サンプリングをしなから反応を行い反応開始後、85.
0時間で水素ガスの供給を止め冷却し、反応を停J1し
た。収率72 、496でω−ヒドロキシペンタデカン
酸メチルエステルを得た。
After sampling and starting the reaction, 85.
At 0 hours, the supply of hydrogen gas was stopped, the reaction was cooled, and the reaction was stopped J1. ω-Hydroxypentadecanoic acid methyl ester was obtained with a yield of 72.496.

比較例1 実施例1で調製した乾燥ゲル6.0gを取り、水を加え
ないこと以外は実施例1と全く同様の操作で、ペンタデ
カンニ酸モノメチルエステルの水素化反応を開始した。
Comparative Example 1 6.0 g of the dry gel prepared in Example 1 was taken, and the hydrogenation reaction of pentadecanoic acid monomethyl ester was started in exactly the same manner as in Example 1 except that water was not added.

サンプリングをしながら反応を行い反応開始後、30.
0時間で実施例1と同様に反応を停止し内容物を分析し
た。
Perform the reaction while sampling, and after starting the reaction, 30.
At 0 hours, the reaction was stopped and the contents were analyzed in the same manner as in Example 1.

実施例1及び比較例1の分析結果を第1図にまとめた。The analysis results of Example 1 and Comparative Example 1 are summarized in FIG.

実施例2 実施例1で調製した乾燥ゲル9.Ogを取り、水の添加
量を2.5gとしたのと容器内部圧を水素ガスで100
kg/cs2まで高めた以外は実施例1と全く同様の操
作で、ペンタデカンニ酸モノメチルエステルの水素化反
応を開始した。反応開始後、14.0時間で実施例1と
同様に反応を停止し、内容物を分析した。
Example 2 Dry gel prepared in Example 19. The amount of water added was set to 2.5 g, and the internal pressure of the container was increased to 100 with hydrogen gas.
The hydrogenation reaction of pentadecanoic acid monomethyl ester was started in exactly the same manner as in Example 1 except that the hydrogenation rate was increased to kg/cs2. After 14.0 hours from the start of the reaction, the reaction was stopped in the same manner as in Example 1, and the contents were analyzed.

分析値 添加率 87.2% 選択率 69.8% 収率  60,9% 実施例3 1.00gの七酸化レニウムを67.69gのヘキシレ
ングリコール中に入れ、80〜100℃で撹拌し溶解し
た。この溶液に0.036gの塩化第二すず水和物を溶
かした2011のエタノール溶液を添加し、80℃で0
.5時間撹拌した後に、更に5111.49gのアルミ
ニウムイソプロポキシドを加え、同温で一夜撹拌した。
Analysis values Addition rate 87.2% Selectivity 69.8% Yield 60.9% Example 3 1.00g of rhenium heptoxide was placed in 67.69g of hexylene glycol and dissolved by stirring at 80-100°C. did. To this solution was added an ethanol solution of 2011 in which 0.036 g of stannic chloride hydrate was dissolved, and the temperature was 0.
.. After stirring for 5 hours, 5111.49 g of aluminum isopropoxide was further added and stirred overnight at the same temperature.

次にこの溶液に20.62gの水を加え、ゲル化させた
。ゲル中に81の抱水ヒドラジンを加えた後、80℃で
ゲルを熟成した後、減圧下140℃で乾燥した。
Next, 20.62 g of water was added to this solution to form a gel. After adding 81 hydrazine hydrate to the gel, the gel was aged at 80°C and then dried at 140°C under reduced pressure.

上記乾燥ゲル6.0gを石英管中に取り、横型環状炉を
用いて水素を流しながら200℃で4時間加熱すること
によって活性化した。
6.0 g of the dried gel was placed in a quartz tube and activated by heating at 200° C. for 4 hours while flowing hydrogen using a horizontal annular furnace.

次に、これを50.0gのペンタデカンニ酸モノメチル
エステル、100.0gのデカヒドロナフタリン及び5
.0gの水と共に内容積5001のオートクレーブに仕
込み、容器内部を十分に水素ガスと置換した後加熱を開
始し、250℃となったところで容器内部圧を水素ガス
て75kg/cm2まで高め、反応を開始した。反応中
、撹拌は電磁誘導回転式を用い1500回転/分で行っ
た。サンプリングをしながら反応を行い反応開始後、1
7.0時間で水素ガスの供給を止め冷却し、反応を停止
し、内容物を分析した。
Next, this was mixed with 50.0 g of pentadecanedioic acid monomethyl ester, 100.0 g of decahydronaphthalene and 5
.. Charge it with 0g of water into an autoclave with an internal volume of 5001cm, and after replacing the inside of the container with hydrogen gas, start heating.When the temperature reaches 250℃, increase the internal pressure of the container to 75kg/cm2 with hydrogen gas and start the reaction. did. During the reaction, stirring was performed at 1500 revolutions/minute using an electromagnetic induction rotation type. Perform the reaction while sampling, and after starting the reaction, 1
After 7.0 hours, the supply of hydrogen gas was stopped, the reaction was stopped, and the contents were analyzed.

比較例2 実施例3で調製した乾燥ゲル4.0gをり、水を加えな
いことと容器内部圧を水素ガスで65kg/el’まで
高めた以外は実施例3と全く同様の操作で、ベンタデカ
ンニ酸モノメチルエステルの水素化反応を開始した。サ
ンプリングをしながら反応を行い、反応開始後、20.
0時間で実施例3と同様に反応を停止し内容物を分析し
た。
Comparative Example 2 4.0 g of the dry gel prepared in Example 3 was taken, and bentadecanyl was prepared in exactly the same manner as in Example 3, except that no water was added and the internal pressure of the container was increased to 65 kg/el' with hydrogen gas. The hydrogenation reaction of the acid monomethyl ester was started. Perform the reaction while sampling, and after starting the reaction, 20.
At 0 hours, the reaction was stopped and the contents were analyzed in the same manner as in Example 3.

実施例3及び比較例2の分析結果を第2図にまとめた。The analysis results of Example 3 and Comparative Example 2 are summarized in FIG.

[発明の効果] 以上説明したように、本発明によれば、長鎖二酸モノエ
ステルを水の共存下に固体触媒を用いて水素還元するこ
とにより、高選択率、高収率てω−ヒドロキシ脂肪酸エ
ステルを製造することができる。
[Effects of the Invention] As explained above, according to the present invention, long-chain diacid monoester is hydrogen-reduced using a solid catalyst in the coexistence of water to produce ω- with high selectivity and high yield. Hydroxy fatty acid esters can be produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1と比較例1における収率と添加率との
関係を示す図、第2図は実施例3と比較例2における収
率と添加率との関係を示す図。
FIG. 1 is a diagram showing the relationship between yield and addition rate in Example 1 and Comparative Example 1, and FIG. 2 is a diagram showing the relationship between yield and addition rate in Example 3 and Comparative Example 2.

Claims (4)

【特許請求の範囲】[Claims] (1)下記の一般式( I ) ▲数式、化学式、表等があります▼( I ) (式中Rはアルキル基を示し、nは8〜16の整数を示
す)で表される長鎖二酸モノエステルを水の共存下に、
固体触媒を用いて水素と接触させることを特徴とする次
の一般式(II)▲数式、化学式、表等があります▼(I
I) (式はR、nは式( I )のものと同じ) で表されるω−ヒドロキシ脂肪酸エステルの製造方法。
(1) The following general formula (I) ▲Mathematical formulas, chemical formulas, tables, etc. are available▼(I) (In the formula, R represents an alkyl group, and n represents an integer from 8 to 16.) acid monoester in the presence of water,
The following general formula (II), which is characterized by contact with hydrogen using a solid catalyst ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I
I) (Formula is R, n is the same as that of formula (I)) A method for producing an ω-hydroxy fatty acid ester.
(2)固体触媒がルテニウム系及び/又はレニウム系触
媒である請求項(1)記載のω−ヒドロキシ脂肪酸エス
テルの製造方法。
(2) The method for producing an ω-hydroxy fatty acid ester according to claim (1), wherein the solid catalyst is a ruthenium-based and/or rhenium-based catalyst.
(3)ルテニウム系触媒がルテニウム、すずを含有する
ものである請求項(2)記載のω−ヒドロキシ脂肪酸エ
ステルの製造方法。
(3) The method for producing an ω-hydroxy fatty acid ester according to claim (2), wherein the ruthenium-based catalyst contains ruthenium and tin.
(4)レニウム系触媒がレニウム、すずを含有するもの
である請求項(2)記載のω−ヒドロキシ脂肪酸エステ
ルの製造方法。
(4) The method for producing an ω-hydroxy fatty acid ester according to claim (2), wherein the rhenium-based catalyst contains rhenium and tin.
JP2215929A 1990-08-17 1990-08-17 Method for producing ω-hydroxy fatty acid ester Expired - Lifetime JP2868023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2215929A JP2868023B2 (en) 1990-08-17 1990-08-17 Method for producing ω-hydroxy fatty acid ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2215929A JP2868023B2 (en) 1990-08-17 1990-08-17 Method for producing ω-hydroxy fatty acid ester

Publications (2)

Publication Number Publication Date
JPH0499752A true JPH0499752A (en) 1992-03-31
JP2868023B2 JP2868023B2 (en) 1999-03-10

Family

ID=16680600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2215929A Expired - Lifetime JP2868023B2 (en) 1990-08-17 1990-08-17 Method for producing ω-hydroxy fatty acid ester

Country Status (1)

Country Link
JP (1) JP2868023B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995024371A1 (en) * 1994-03-09 1995-09-14 Sagami Chemical Research Center Process for producing alcohol

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995024371A1 (en) * 1994-03-09 1995-09-14 Sagami Chemical Research Center Process for producing alcohol

Also Published As

Publication number Publication date
JP2868023B2 (en) 1999-03-10

Similar Documents

Publication Publication Date Title
CA1070711A (en) Process for preparing butanediol-(1.4)
JPH0474141A (en) Production of cycloolefin
CN102452869B (en) Method for catalytically oxidizing cyclic ketone
CN102452895B (en) Method for catalyzing cycloalkane by utilizing Sn-containing Ti-Si molecular sieve
US5973210A (en) Intermetallic ruthenium tin-catalyst for use in aldehyde synthesis
CN102453017A (en) Lactone production method
CN102452871B (en) Method for catalytic oxidation of cyclic ketone
CN102476975B (en) Method for catalytic oxidation of cycloketone in the presence of magnesium and aluminum modified titanosilicate molecular sieve
CN102452894B (en) Method for catalytic oxidation of cyclic ketone by nanometer Beta molecule sieve
JPH0499752A (en) Production of omega-hydroxy fatty acid ester
JP2891430B2 (en) Method for producing ω-hydroxy fatty acid ester
JP2651291B2 (en) Method for producing ω-hydroxy fatty acid
JPS6052136B2 (en) Alcohol manufacturing method
CN102452893B (en) Method for oxidizing cyclic ketone by utilizing zinc-supported Beta molecular sieve
CN112479171A (en) Metal phosphate, preparation method thereof and application thereof in catalytic esterification reaction
JPH0987217A (en) Production of ethanol
JP3744023B2 (en) Process for producing 1,4-butanediol and / or tetrahydrofuran
JP3132532B2 (en) Lactone production method
JP4219484B2 (en) Method for producing aliphatic nitrile
JP2013527835A (en) Method for producing lactone
US6444843B1 (en) Producing method of (hydroxyalkyl) alicyclic carboxylic acids and intermediates for producing the same and producing method of such intermediates
JP3054678B2 (en) Method for producing aromatic alcohol
JPH07118187A (en) Hydrogenation of organic carboxylic acid and/or carboxylic ester
JPH07213901A (en) Catalyst having carboxylic ester reducing capacity, its production and production of saturated alcohol compound
WO2021153586A1 (en) METHOD FOR PRODUCING trans, trans-MUCONIC ACID OR ALKYL ESTER THEREOF

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071225

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081225

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081225

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term