JPH0499256A - Production of zirconium alloy clad tube having superior resistance to stress corrosion cracking - Google Patents

Production of zirconium alloy clad tube having superior resistance to stress corrosion cracking

Info

Publication number
JPH0499256A
JPH0499256A JP2212642A JP21264290A JPH0499256A JP H0499256 A JPH0499256 A JP H0499256A JP 2212642 A JP2212642 A JP 2212642A JP 21264290 A JP21264290 A JP 21264290A JP H0499256 A JPH0499256 A JP H0499256A
Authority
JP
Japan
Prior art keywords
tube
zirconium alloy
pilger
stress corrosion
corrosion cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2212642A
Other languages
Japanese (ja)
Inventor
Yoshiharu Mae
前 義治
Takeshi Isobe
毅 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2212642A priority Critical patent/JPH0499256A/en
Publication of JPH0499256A publication Critical patent/JPH0499256A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B21/00Pilgrim-step tube-rolling, i.e. pilger mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Metal Extraction Processes (AREA)

Abstract

PURPOSE:To improve resistance to stress corrosion cracking by subjecting a blank tube obtd. by Pilger rolling, annealing and final Pilger rolling to tension working at a prescribed reduction of outside diameter and strain relief annealing. CONSTITUTION:A blank alloy tube is subjected once or plural times to Pilger rolling and recrystallization annealing and then final Pilger rolling is carried out. The resulting rolled blank tube is subjected to tension working at 1-15% reduction of outside diameter and strain relief annealing. A tube having improved resistance to stress corrosion cracking is obtd. When this tube is used in a nuclear power plant, operation over a long period of time is enabled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、原子炉燃料の被覆管として用いた場合に、
優れた耐応力腐食割れ性を示すジルコニウム(以下、Z
rで示す。)合金被覆管の製造法に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] When used as a cladding tube for nuclear reactor fuel, the present invention provides
Zirconium (hereinafter referred to as Z) exhibits excellent stress corrosion cracking resistance.
Indicated by r. ) relates to a method for manufacturing alloy clad tubes.

〔従来の技術〕[Conventional technology]

一般に、原子炉燃料の被覆管としてZr合金被覆管が用
いられることはよく知られている。上記Zr合金被覆管
を製造するための2「合金は、JIS規格のH4751
に規定されているジルカロイ2またはジルカロイ4が用
いられ、そのなかでも加圧水型原子炉の燃料用Zr合金
被覆管としては特にジルカロイ4が用いられている。
It is generally well known that Zr alloy cladding tubes are used as cladding tubes for nuclear reactor fuel. The 2" alloy for manufacturing the above Zr alloy cladding tube is H4751 of JIS standard.
Zircaloy 2 or Zircaloy 4 defined in the above is used, and among these, Zircaloy 4 is particularly used as a Zr alloy cladding tube for fuel of a pressurized water reactor.

上記Zr合金被覆管は、押出し成形して得られた肉厚の
Zr合金素管をピルガ−圧延および再結晶焼鈍をそれぞ
れ1回または複数回繰返し施したのち、最終ピルガ−圧
延および歪取り焼鈍することにより製造され、上記ピル
ガ−圧延は冷間圧延で行われ、上記再結晶焼鈍は真空雰
囲気中、温度530〜760℃で行われ、最後の歪取り
焼鈍は430〜490℃で行われる。
The above Zr alloy clad tube is produced by subjecting a thick Zr alloy tube obtained by extrusion to repeated pilger rolling and recrystallization annealing one or more times, and then final pilger rolling and strain relief annealing. The pilger rolling is performed by cold rolling, the recrystallization annealing is performed in a vacuum atmosphere at a temperature of 530 to 760°C, and the final strain relief annealing is performed at a temperature of 430 to 490°C.

このようにして得られたZr合金被覆管には、原子炉燃
料ベレットが充填され、原子炉燃料集合体に組立てられ
、炉心に挿入されて使用される〔これらの点については
、社団法人2日本金属学会編「改訂5版 金属便覧」平
成2年3月31日。
The Zr alloy cladding thus obtained is filled with reactor fuel pellets, assembled into a reactor fuel assembly, and inserted into the reactor core for use. “Revised 5th Edition Metals Handbook” edited by the Japan Institute of Metals, March 31, 1990.

丸善株式会社発行2812〜815参照〕。Published by Maruzen Co., Ltd., 2812-815].

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、最近、電力供給源として原子力発電の比重が高
まるにつれて原子力発電の高効率化が求められ、原子炉
燃料集合体の炉内滞在時間の長期化、原子炉燃料の高燃
焼度化、および原子炉の負荷追従運転等が実施され、そ
れに伴って、原子炉燃料ペレットとZr合金被覆管との
相互作用による被覆管の応力腐食割れを起す可能性が高
くなり、長期にわたって続けて運転操業すると事故につ
ながるなどの課題があった。
However, recently, as the importance of nuclear power generation as a power supply source has increased, there has been a demand for higher efficiency in nuclear power generation. As the reactor undergoes load following operation, the possibility of stress corrosion cracking of the cladding tube due to the interaction between the reactor fuel pellets and the Zr alloy cladding tube increases, and if the operation continues for a long period of time, an accident may occur. There were issues such as connecting to

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者らは、かかる課題を解決し、従来より
もさらに耐応力腐食割れ性に優れたZr合金被覆管を製
造すべ(研究を行った結果、上記ピルガ−圧延および再
結晶焼鈍をそれぞれ1回または複数回繰返し施したのち
、最終ピルガ−圧延して得られたZr合金ピルガ−圧延
素管に、さらに引張り加工を施すことにより、従来より
もさらに耐応力腐食割れ性に優れたZr合金被覆管を得
ることができるという知見を得たのである。
Therefore, the inventors of the present invention aimed to solve this problem and manufacture a Zr alloy clad tube with even better stress corrosion cracking resistance than conventional ones. After repeated application once or multiple times, the resulting Zr alloy pilger-rolled tube is further subjected to tensile processing to create a Zr alloy with even better stress corrosion cracking resistance than before. They found that it was possible to obtain cladding tubes.

この発明は、かかる知見に基づいて成されたものであっ
て、 Zr合金素管をピルガ−圧延および再結晶焼鈍をそれぞ
れ1回または複数回繰返し施したのち、最終ピルガ−圧
延して得られたZr合金ピルガ−圧延素管に、 (a)  外径減少率:1〜15%の引張り加工を施し
、ついで歪取り焼鈍する、 (b)  歪取り焼鈍を施し、ついで外径減少率:1〜
15%の引張り加工を施す、 (C)  歪取り焼鈍を施し、ついで外径減少率:1〜
1596の引張り加工を施したのち、さらに歪取り焼鈍
を施す、 (d)  再結晶焼鈍を施し、ついで外径減少率:1〜
30%の引張り加工を施す、 (e)  再結晶焼鈍を施し、ついで外径減少率=1〜
30%の引張り加工を施したのち、さらに歪取り焼鈍を
施す、 上記(a)〜(e)のうちいずれか1つの処理を施す耐
応力腐食割れ性に優れたZr合金被覆管の製造法に特徴
を有するものである。
This invention was made based on this knowledge, and the Zr alloy material tube is subjected to pilger rolling and recrystallization annealing one or more times, and then final pilger rolling is performed. A Zr alloy pilger-rolled raw tube is subjected to (a) tensile processing with an outer diameter reduction rate of 1 to 15%, and then strain relief annealing, (b) strain relief annealing, and then an outer diameter reduction rate of 1 to 15%.
15% tensile processing, (C) strain relief annealing, and then outer diameter reduction rate: 1~
After applying 1596 tensile processing, strain relief annealing is further applied. (d) Recrystallization annealing is applied, and then outer diameter reduction rate: 1 ~
30% tensile processing, (e) recrystallization annealing, and then outer diameter reduction rate = 1 ~
A method for manufacturing a Zr alloy cladding tube with excellent stress corrosion cracking resistance, which is subjected to any one of the above treatments (a) to (e), which involves applying 30% tensile processing and then further applying strain relief annealing. It has characteristics.

この発明の耐応力腐食割れ性に優れたZr合金被覆管の
製造法において、最終ピルガ−圧延して得られたZr合
金ピルガ−圧延素管を、直接または歪取り焼鈍したのち
引張り加工する場合の外径減少率は1〜15%であるこ
とか好ましく、一方、最終ピルガ−圧延して得られたZ
r合金ピルガ−圧延素管を、再結晶焼鈍したのち引張り
加工する場合の外径減少率は1〜30であることが好ま
しい。
In the method of manufacturing a Zr alloy clad tube with excellent stress corrosion cracking resistance according to the present invention, the Zr alloy pilger-rolled raw tube obtained by final pilger rolling is subjected to tensile processing directly or after stress relief annealing. The outer diameter reduction rate is preferably 1 to 15%, while the Z obtained by final pilger rolling
When the r-alloy pilger-rolled raw tube is recrystallized and annealed and then subjected to tension processing, the outer diameter reduction rate is preferably 1 to 30.

その理由は、最終ピルガ−圧延して得られたZr合金ピ
ルガ−圧延素管を外径減少率が1%未満の引張り加工を
施しても耐応力腐食割れ性向上に効果がなく、一方、最
終ピルガ−圧延して得られたZr合金ピルガ−圧延素管
を、直接または歪取り焼鈍した後に外径減少率:15%
を越える引張り加工を施すかまたは再結晶焼鈍したのち
に外径減少率が30%を越える引張り加工を施すと局部
変形を起こすので好ましくないことによるものである。
The reason for this is that even if the Zr alloy pilger-rolled tube obtained by final pilger rolling is subjected to tensile processing with an outer diameter reduction rate of less than 1%, it is not effective in improving stress corrosion cracking resistance. Outer diameter reduction rate: 15% after direct or strain relief annealing of the Zr alloy pilger rolled blank tube obtained by pilger rolling.
This is because it is undesirable to perform tensile processing in excess of 30%, or to perform tension processing in which the outer diameter reduction rate exceeds 30% after recrystallization annealing, as this will cause local deformation.

〔実 施 例〕〔Example〕

つぎに、この発明を、実施例にもとづいて具体的に説明
する。
Next, the present invention will be specifically explained based on examples.

外径:3.4インチ(86,4mm) 、肉厚=0.6
インチ(15,2mm)の寸法を有し、 Sn:1.5重量%、   Fe:0.2重量%、Cr
:0.1重量%、 を含有し、残りかZrおよび不可避不純物からなる組成
のZr合金押出し素管を用意し、上記押出し素管をピル
ガ−圧延したのち、真空雰囲気中で再結晶焼鈍すること
により、外径72.5インチ(63,5a+m) 、肉
厚+ 0.43インチ(10,9龍)の寸法を有する中
間素管を製造し、この中間素管を、さらに、ピルガ−圧
延および真空雰囲気中で再結晶焼鈍をそれぞれ3回づつ
繰返し施したのち、最終ピルガ−圧延して適宜サイズの
寸法を有するZr合金ピルガ−圧延素管を製造した。
Outer diameter: 3.4 inches (86.4 mm), wall thickness = 0.6
It has dimensions of inch (15.2mm), Sn: 1.5% by weight, Fe: 0.2% by weight, Cr
: 0.1% by weight, and the remainder consists of Zr and unavoidable impurities. Prepare an extruded Zr alloy tube, pilger-roll the extruded tube, and then recrystallize it in a vacuum atmosphere. An intermediate tube having an outer diameter of 72.5 inches (63.5a+m) and a wall thickness of +0.43 inches (10.9 mm) was manufactured using the above method, and this intermediate tube was further subjected to pilger rolling and After repeating recrystallization annealing three times each in a vacuum atmosphere, final pilger rolling was performed to produce a Zr alloy pilger rolled mother tube having an appropriate size.

実施例1〜5および比較例1〜2 上記Z「合金ピルガ−圧延素管を、第1表に示される外
径減少率となるように引張り加工を施したのち、真空雰
囲気中で歪取り焼鈍することにより実施例1〜5および
比較例1〜2のZr合金被覆管を製造した。これらZr
合金被覆管の製造工程も第1表に示す。
Examples 1 to 5 and Comparative Examples 1 to 2 The above-mentioned Z alloy pilger rolled blank tube was subjected to tensile processing so as to have the outer diameter reduction rate shown in Table 1, and then subjected to strain relief annealing in a vacuum atmosphere. Zr alloy clad tubes of Examples 1 to 5 and Comparative Examples 1 to 2 were manufactured by
The manufacturing process of the alloy clad tube is also shown in Table 1.

実施例6〜10および比較例3〜4 上記Zr合金ピルガー圧延素管を、真空雰囲気中で歪取
り焼鈍したのち、第1表に示される外径減少率となるよ
うに引張り加工を施すことにより実施例6〜10および
比較例3〜4のZr合金被覆管を製造した。これらZ「
合金被覆管の製造工程も第1表に示す。
Examples 6 to 10 and Comparative Examples 3 to 4 The above Zr alloy Pilger rolled blank tube was strain-relieved annealed in a vacuum atmosphere, and then subjected to tensile processing so as to have the outer diameter reduction rate shown in Table 1. Zr alloy clad tubes of Examples 6 to 10 and Comparative Examples 3 to 4 were manufactured. These Z'
The manufacturing process of the alloy clad tube is also shown in Table 1.

実施例11〜15および比較例5〜6 上記実施例6〜10および比較例3〜4で製造したZ「
合金被覆管を、さらに真空雰囲気中で歪取り焼鈍するこ
とにより実施例11〜15および比較例5〜6のZr合
金被覆管を製造した。これらZr合金被覆管の製造工程
も第1表に示す。
Examples 11 to 15 and Comparative Examples 5 to 6 Z' produced in Examples 6 to 10 and Comparative Examples 3 to 4 above
The Zr alloy clad tubes of Examples 11 to 15 and Comparative Examples 5 to 6 were manufactured by further subjecting the alloy clad tubes to strain relief annealing in a vacuum atmosphere. The manufacturing process of these Zr alloy clad tubes is also shown in Table 1.

実施例16〜20および比較例7〜8 上記Zr合金ピルガー圧延素管を、真空雰囲気中で再結
晶焼鈍を施したのち、さらに第1表に示される外径減少
率となるように引張り加工することにより実施例16〜
20および比較例7〜8のZr合金被覆管を製造した。
Examples 16 to 20 and Comparative Examples 7 to 8 The above Zr alloy Pilger rolled blank tubes are subjected to recrystallization annealing in a vacuum atmosphere, and then further subjected to tensile processing so as to have the outer diameter reduction rate shown in Table 1. Possibly Example 16~
Zr alloy clad tubes of No. 20 and Comparative Examples 7 to 8 were manufactured.

これらZr合金被覆管の製造工程も第1表に示す。The manufacturing process of these Zr alloy clad tubes is also shown in Table 1.

実施例21〜25および比較例9〜10上記実施例18
〜2Dおよび比較例7〜8で製造したZ「合金被覆管を
、さらに真空雰囲気中で歪取り焼鈍することにより実施
例21〜25および比較ρノ9〜10のZr合金被覆管
を製造した。これらZ「合金被覆管の製造工程も第1表
に示す。
Examples 21-25 and Comparative Examples 9-10 Above Example 18
The Zr alloy clad tubes manufactured in ~2D and Comparative Examples 7 and 8 were further subjected to strain relief annealing in a vacuum atmosphere to manufacture Zr alloy clad tubes of Examples 21 to 25 and Comparative Examples 9 to 10. The manufacturing process for these Z alloy clad tubes is also shown in Table 1.

従来例 上記Z「合金ピルガ−圧延素管を、真空雰囲気中、温度
=470℃、2時間保持の歪取り焼鈍することにより、
従来例のZr合金被覆管を製造した。
Conventional example Z "Alloy pilger rolled raw tube is strain-relieved annealed in a vacuum atmosphere at a temperature of 470°C for 2 hours.
A conventional Zr alloy clad tube was manufactured.

このZr合金被覆管の製造工程も第1表に示す。The manufacturing process for this Zr alloy clad tube is also shown in Table 1.

上記実施例1〜25、比較例1〜10および従来例の製
造方法で作製されたZr合金被覆管を360℃に保持し
、腐食性ガスとしてヨウ素ガスを濃度=8.0g/cd
となるように充填し、さらにアルゴンガスにより内側か
ら応カニ 2g、1kg/−で加圧した状態に保持し、
破損に至るまでの時間を測定する耐応力腐食割れ試験を
実施し、それらの測定結果をそれぞれ第1表に示した。
The Zr alloy clad tubes produced by the manufacturing methods of Examples 1 to 25, Comparative Examples 1 to 10, and conventional examples were maintained at 360°C, and iodine gas was used as a corrosive gas at a concentration of 8.0 g/cd.
Filled with argon gas and pressurized from the inside with 2g, 1kg/-
A stress corrosion cracking test was conducted to measure the time until failure, and the results are shown in Table 1.

なお、72時間を越えて破損に至らなかったZr合金被
覆管については、その時点で耐応力腐食割れ試験を中止
し、「破損せず」として第1表に示した。
For Zr alloy clad tubes that did not break after more than 72 hours, the stress corrosion cracking test was discontinued at that point, and they are listed in Table 1 as "no breakage."

第1表に示される結果から、実施例1〜25の製造方法
で作製されたZr合金被覆管は、いずれも従来例の製造
方法で作製されたZr合金被覆管と比べて、耐応力腐食
割れ性が優れており、またこの発明の条件から外れた条
件で行われる比較例1〜10の製造方法で作製されたZ
r合金被覆管(第1表において、この発明の条件から外
れた条件には、※印を付して示した。)は、耐応力腐食
割れ性の向上がみられず、また、加工性に問題が生じる
ことか分る。
From the results shown in Table 1, the Zr alloy clad tubes manufactured by the manufacturing methods of Examples 1 to 25 have better resistance to stress corrosion cracking than the Zr alloy clad tubes manufactured by the conventional manufacturing method. Z produced by the production methods of Comparative Examples 1 to 10, which have excellent properties and are carried out under conditions different from the conditions of this invention.
r-alloy clad tubes (in Table 1, conditions that deviate from the conditions of this invention are indicated with an asterisk) show no improvement in stress corrosion cracking resistance and poor workability. I know there will be problems.

〔発明の効果〕〔Effect of the invention〕

上述のように、この発明の製造方法によると、最近の原
子力発電の効率化による原子炉燃料集合体の炉内滞在時
間の長期化、原子炉燃料の高燃焼度化、および原子炉の
負荷追従運転等に対して、応力腐食割れを起す恐れがな
く、長期にわたって続けて運転操業できることができる
Zr合金被覆管を提供することができる。
As described above, according to the manufacturing method of the present invention, recent improvements in the efficiency of nuclear power generation have enabled the nuclear fuel assembly to stay in the reactor for a longer period of time, to increase the burnup of the reactor fuel, and to follow the load of the reactor. It is possible to provide a Zr alloy clad pipe that can be operated continuously for a long period of time without causing stress corrosion cracking during operation.

手  続  補  正  書 く自発)平成 2年10
月26日
(procedural amendment written voluntarily) October 1990
26th of the month

Claims (5)

【特許請求の範囲】[Claims] (1)ジルコニウム合金素管をピルガー圧延および再結
晶焼鈍をそれぞれ1回または複数回繰返し施したのち、
最終ピルガー圧延して得られたジルコニウム合金ピルガ
ー圧延素管に、外径減少率:1〜15%の引張り加工を
施し、ついで歪取り焼鈍することを特徴とする耐応力腐
食割れ性に優れたジルコニウム合金被覆管の製造法。
(1) After repeatedly subjecting the zirconium alloy tube to Pilger rolling and recrystallization annealing once or multiple times,
A zirconium alloy with excellent stress corrosion cracking resistance characterized by subjecting the zirconium alloy Pilger rolled tube obtained by final Pilger rolling to tensile processing with an outer diameter reduction rate of 1 to 15%, and then annealing to remove strain. Manufacturing method of alloy clad tube.
(2)ジルコニウム合金素管をピルガー圧延および再結
晶焼鈍をそれぞれ1回または複数回繰返し施したのち、
最終ピルガー圧延して得られたジルコニウム合金ピルガ
ー圧延素管に、歪取り焼鈍を施し、ついで外径減少率:
1〜15%の引張り加工を施すことを特徴とする耐応力
腐食割れ性に優れたジルコニウム合金被覆管の製造法。
(2) After repeatedly subjecting the zirconium alloy tube to Pilger rolling and recrystallization annealing once or multiple times,
The zirconium alloy Pilger rolled raw tube obtained by the final Pilger rolling is subjected to strain relief annealing, and then the outer diameter reduction rate:
A method for manufacturing a zirconium alloy cladding tube having excellent stress corrosion cracking resistance, characterized by subjecting it to tensile processing of 1 to 15%.
(3)ジルコニウム合金素管をピルガー圧延および再結
晶焼鈍をそれぞれ1回または複数回繰返し施したのち、
最終ピルガー圧延して得られたジルコニウム合金ピルガ
ー圧延素管に、歪取り焼鈍を施し、ついで外径減少率:
1〜15%の引張り加工を施したのち、さらに歪取り焼
鈍を施すことを特徴とする耐応力腐食割れ性に優れたジ
ルコニウム合金被覆管の製造法。
(3) After repeatedly subjecting the zirconium alloy tube to Pilger rolling and recrystallization annealing once or multiple times,
The zirconium alloy Pilger rolled raw tube obtained by the final Pilger rolling is subjected to strain relief annealing, and then the outer diameter reduction rate:
A method for producing a zirconium alloy cladding tube having excellent stress corrosion cracking resistance, which comprises subjecting the tube to tensile processing of 1 to 15% and then subjecting it to strain relief annealing.
(4)ジルコニウム合金素管をピルガー圧延および再結
晶焼鈍をそれぞれ1回または複数回繰返し施したのち、
最終ピルガー圧延して得られたジルコニウム合金ピルガ
ー圧延素管に、再結晶焼鈍を施し、ついで外径減少率:
1〜30%の引張り加工を施すことを特徴とする耐応力
腐食割れ性に優れたジルコニウム合金被覆管の製造法。
(4) After repeatedly subjecting the zirconium alloy tube to Pilger rolling and recrystallization annealing once or multiple times,
The zirconium alloy Pilger rolled raw tube obtained by the final Pilger rolling is subjected to recrystallization annealing, and then the outer diameter reduction rate:
A method for manufacturing a zirconium alloy cladding tube with excellent stress corrosion cracking resistance, characterized by subjecting it to tensile processing of 1 to 30%.
(5)ジルコニウム合金素管をピルガー圧延および再結
晶焼鈍をそれぞれ1回または複数回繰返し施したのち、
最終ピルガー圧延して得られたジルコニウム合金ピルガ
ー圧延素管に、再結晶焼鈍を施し、ついで外径減少率:
1〜30%の引張り加工を施したのち、さらに歪取り焼
鈍を施すことを特徴とする耐応力腐食割れ性に優れたジ
ルコニウム合金被覆管の製造法。
(5) After repeatedly subjecting the zirconium alloy tube to Pilger rolling and recrystallization annealing once or multiple times,
The zirconium alloy Pilger rolled raw tube obtained by the final Pilger rolling is subjected to recrystallization annealing, and then the outer diameter reduction rate:
A method for manufacturing a zirconium alloy cladding tube having excellent stress corrosion cracking resistance, which comprises subjecting the tube to tensile processing of 1 to 30% and then subjecting it to strain relief annealing.
JP2212642A 1990-08-10 1990-08-10 Production of zirconium alloy clad tube having superior resistance to stress corrosion cracking Pending JPH0499256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2212642A JPH0499256A (en) 1990-08-10 1990-08-10 Production of zirconium alloy clad tube having superior resistance to stress corrosion cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2212642A JPH0499256A (en) 1990-08-10 1990-08-10 Production of zirconium alloy clad tube having superior resistance to stress corrosion cracking

Publications (1)

Publication Number Publication Date
JPH0499256A true JPH0499256A (en) 1992-03-31

Family

ID=16626021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2212642A Pending JPH0499256A (en) 1990-08-10 1990-08-10 Production of zirconium alloy clad tube having superior resistance to stress corrosion cracking

Country Status (1)

Country Link
JP (1) JPH0499256A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8257518B2 (en) 2003-01-08 2012-09-04 Westinghouse Electric Sweden Ab Method, use and device relating to nuclear light water reactors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8257518B2 (en) 2003-01-08 2012-09-04 Westinghouse Electric Sweden Ab Method, use and device relating to nuclear light water reactors

Similar Documents

Publication Publication Date Title
JP2548773B2 (en) Zirconium-based alloy and method for producing the same
KR100441562B1 (en) Nuclear fuel cladding tube of zirconium alloys having excellent corrosion resistance and mechanical properties and process for manufacturing thereof
KR100364093B1 (en) A method of manufacturing a tube for a nuclear fuel assembly, and tubes obtained thereby
JPH0197897A (en) Zirconium base alloy pipe for covering reactor fuel element cover and making thereof
JPH11109072A (en) Nuclear fuel rod cladding tube and manufacture thereof, process for manufacturing zirconium alloy and structural part
JP2018514650A (en) Zirconium alloy having excellent corrosion resistance and creep resistance, and method for producing the same
JP2018514649A (en) Zirconium alloy for nuclear fuel cladding having excellent corrosion resistance and method for producing the same
US5854818A (en) Zirconium tin iron alloys for nuclear fuel rods and structural parts for high burnup
JP3086207B2 (en) Method for producing tube for cladding nuclear fuel rod, nuclear fuel cladding tube, method for producing zirconium alloy and method for producing structural member
JPH11101887A (en) Zirconium alloy for use in aqueous environment subject to high fluence, corrosion-resistant nuclear reactor component, structural nuclear fuel assembly parts, and nuclear reactor fuel rod cladding consisting of the alloy
JP5274463B2 (en) Water reactor fuel clad tube, method of manufacturing the same, water reactor fuel rod and water reactor fuel assembly having the same
JPS6234095A (en) Nuclear fuel coated tube
JPH07305153A (en) Covering pipe for nuclear fuel rod
JPH0499256A (en) Production of zirconium alloy clad tube having superior resistance to stress corrosion cracking
JPH0499254A (en) Production of zirconium alloy clad tube having superior resistance to stress corrosion cracking
JPH0499255A (en) Production of zirconium alloy clad tube having superior resistance to stress corrosion cracking
JPS6358223B2 (en)
JPH04154944A (en) Manufacture of zirconium alloy clad tube excellent in stress corrosion cracking resistance
KR20140118949A (en) Zirconium alloys for nuclear fuel cladding, having a superior oxidation resistance in a severe reactor operation conditions, and the preparation method of zirconium alloys nuclear fuel claddings using thereof
CN86101123A (en) Vessel of water reactor fuel
JPH04128687A (en) Covering tube for nuclear fuel and its manufacture
JP3208832B2 (en) Manufacturing method of texture adjusted zirconium alloy tube by pilger rolling
JPH04148893A (en) Manufacture of zirconium alloy clad tube superior in mechanical strength and resistance against stress, corrosion and cracking
JPH07173587A (en) Production of zirconium alloy welded member
JPH059688A (en) Manufacture of zr alloy rolled stock excellent in workability