JPH04148893A - Manufacture of zirconium alloy clad tube superior in mechanical strength and resistance against stress, corrosion and cracking - Google Patents

Manufacture of zirconium alloy clad tube superior in mechanical strength and resistance against stress, corrosion and cracking

Info

Publication number
JPH04148893A
JPH04148893A JP2274622A JP27462290A JPH04148893A JP H04148893 A JPH04148893 A JP H04148893A JP 2274622 A JP2274622 A JP 2274622A JP 27462290 A JP27462290 A JP 27462290A JP H04148893 A JPH04148893 A JP H04148893A
Authority
JP
Japan
Prior art keywords
alloy
tube
mechanical strength
inner diameter
zirconium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2274622A
Other languages
Japanese (ja)
Inventor
Tomokazu Kikukawa
菊川 朋一
Yoshitaka Suda
須田 佳孝
Takeshi Isobe
毅 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2274622A priority Critical patent/JPH04148893A/en
Publication of JPH04148893A publication Critical patent/JPH04148893A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To obtain zirconium clad with low possibility of stress corrosion cracking, superior mechanical strength and low cost by applying at least once a fabrication process to enlarge the inner diameter without changing the outer diameter of the zirconium alloy tube. CONSTITUTION:The Zr alloy tube 1 machine-worked in advance to insert a plug 6 at the tip end is inserted in a metal mold 2, and the plug 6 is inserted in the tip. After connecting a drawing rod 5 and fixing the tip of the Zr alloy 1 with an internal 4 and a chuck 3, the Zr alloy 1 is set in a fabrication machine. Then by drawing the drawing rod to the direction A, as shown in the figure, the inner diameter of the Zr alloy tube 1 can be enlarged without changing its outer diameter. This fabrication process to enlarge the inner diameter without changing the outer diameter can be applied to the raw Zr alloy tube 1 once or several times.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、優れた機械的強度および耐応力腐食割れ性
を示す原子炉燃料用ジルコニウム(以下、Zrと記す)
合金被覆管の製造法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to zirconium (hereinafter referred to as Zr) for nuclear reactor fuel, which exhibits excellent mechanical strength and stress corrosion cracking resistance.
This invention relates to a method for manufacturing alloy clad tubes.

〔従来の技術〕[Conventional technology]

一般に、原子炉燃料の被覆管としてZr合金被覆管が用
いられることはよく知られている。上記Zr合金被覆管
を製造するためのZr合金は、JIS規格のH4751
に規定されているジルカロイ2またはジルカロイ4が用
いられ、そのなかでも加圧水型原子炉の燃料用Z「合金
被覆管としては特にジルカロイ4が用いられている。
It is generally well known that Zr alloy cladding tubes are used as cladding tubes for nuclear reactor fuel. The Zr alloy for manufacturing the above Zr alloy clad tube is H4751 of JIS standard.
Zircaloy 2 or Zircaloy 4 as specified in the above is used, and among these, Zircaloy 4 is particularly used as the Z alloy clad tube for fuel of pressurized water reactors.

上記Zr合金被覆管は、押出し成形して得られた肉厚の
Zr合金素管をピルガ−圧延および再結晶焼鈍をそれぞ
れ1回または複数回繰返し施したのち、最終ピルガ−圧
延および歪取り焼鈍することにより製造され、」二記ピ
ルガー圧延は冷間圧延で行われ、上記再結晶焼鈍は真空
雰囲気中、温度530〜760°Cで行われ、最後の歪
取り焼鈍は430〜490°Cで行われる。
The above Zr alloy clad tube is produced by subjecting a thick Zr alloy tube obtained by extrusion to repeated pilger rolling and recrystallization annealing one or more times, and then final pilger rolling and strain relief annealing. The above-mentioned recrystallization annealing is performed at a temperature of 530 to 760°C in a vacuum atmosphere, and the final strain relief annealing is performed at a temperature of 430 to 490°C. be exposed.

このようにして得られたZr合金被覆管には、原子炉燃
料ペレットが充填され、原子炉燃料集合体に組立てられ
、炉心に挿入されて使用される〔これらの点については
、社団法人1日本金属学会編「改訂5版 金属便覧」平
成2年3月31日。
The Zr alloy cladding tube thus obtained is filled with reactor fuel pellets, assembled into a reactor fuel assembly, and inserted into the reactor core for use. “Revised 5th Edition Metals Handbook” edited by the Japan Institute of Metals, March 31, 1990.

丸善株式会社発行、812〜815参照〕。Published by Maruzen Co., Ltd., 812-815].

最近、電力供給源として原子力発電の比重が高まるにつ
れて原子力発電の高効率化が求められ、原子炉燃料集合
体の炉内滞在時間の長期化、原子炉燃料の高燃焼度化、
および原子炉の負荷追従運転等が実施され、それに伴っ
て、原子炉燃料ペレットとZr合金被覆管との相互作用
による被覆管の応力腐食割れを起す可能性が高くなり、
長期にわたって続けて運転操業すると事故につながる恐
れがあるなとの問題が生してきた。
Recently, as the importance of nuclear power generation as a power supply source has increased, higher efficiency of nuclear power generation has been required.
In addition, load following operation of the nuclear reactor is carried out, and as a result, the possibility of stress corrosion cracking of the cladding tube due to interaction between the reactor fuel pellet and the Zr alloy cladding tube increases.
The problem has arisen that continuous operation over a long period of time may lead to accidents.

そのため原子炉燃料ペレットとZr合金被覆管との相互
作用による応力腐食割れを起すことのないZr合金被覆
管を開発すべくいろいろな研究か成されており、例えば
、米国特許第4,765,1.74号明細書には、Zr
合金素管をピルガ−圧延したのぢ再結晶焼鈍することに
よりZr合金被覆管を製造する工程において、Zr合金
管の直径を5〜12%拡管させたのち、約676.7℃
で再結晶焼鈍する工程を、上記ジルコニウム合金被覆管
を製造する工程の中間段階において少なくとも1回施す
ことにより耐応力1g食割れ性に優れたZr合金被覆管
を製造する方法が提案されてる。上記Zr合金管の直径
を拡管前の直径の5〜12%拡管させたのち、約876
.7℃で再結晶焼鈍する工程を施すことによりZr合金
管の稠密六方晶のC軸がZr合金素管の半径方向に平行
に揃い、耐応力腐食割れ性が向上するとされている。
Therefore, various studies have been conducted to develop Zr alloy cladding tubes that do not cause stress corrosion cracking due to the interaction between reactor fuel pellets and Zr alloy cladding tubes. .74 specification states that Zr
In the process of manufacturing a Zr alloy clad tube by recrystallization annealing after pilger rolling an alloy raw tube, the diameter of the Zr alloy tube is expanded by 5 to 12%, and then heated to approximately 676.7°C.
A method has been proposed for manufacturing a Zr alloy clad tube with excellent stress resistance of 1 g and corrosion cracking resistance by carrying out the step of recrystallization annealing at least once in the intermediate stage of the process of manufacturing the zirconium alloy clad tube. After expanding the diameter of the above Zr alloy tube by 5 to 12% of the diameter before expansion, it became approximately 876 mm.
.. It is said that by performing a recrystallization annealing process at 7° C., the C-axes of the dense hexagonal crystal of the Zr alloy tube are aligned parallel to the radial direction of the Zr alloy tube, improving stress corrosion cracking resistance.

ところが、稠密六方晶のC軸がZr合金管の半径方向に
交差している方がZr合金管の機械的強度は優れている
ために、上記Z r合金管の厚さ全体にわたって稠密六
方晶のC軸が半径方向に平行に揃ったZ「合金管は、耐
応力腐食割れ性は向上するけれども機械的強度は従来よ
りも低下するという問題が生じてきた。
However, since the mechanical strength of the Zr alloy tube is better when the C axis of the dense hexagonal crystal crosses the radial direction of the Zr alloy tube, the dense hexagonal crystal is Z-alloy tubes in which the C-axis is aligned parallel to the radial direction have improved stress corrosion cracking resistance, but a problem has arisen in that the mechanical strength is lower than before.

そこで応力腐食割れ性および機械的強度が共に優れたZ
r合金管を製造する研究がなされ、Zr合金素管を中間
ピルガ−圧延したのち再結晶焼鈍する工程では下記のQ
値を2〜5に選んで内外径ともに同等割合いて軽減させ
、最終工程ではQ値を中間ピルガ−圧延時よりも小さい
値に選ぶとともに内径よりも外径を大きい割合いて軽減
させる方法を採用し、第3図に示されるような、稠密六
方晶のC軸かZr合金管内面部分では半径方向に平行に
揃うとともにZr合金管外面部分てはC軸がZr合金管
の半径方向に交差する集合組織を有するZr合金被覆管
を製造する方法も提案されてる(特開平1.−3907
11i号公報参照)。
Therefore, Z, which has excellent stress corrosion cracking resistance and mechanical strength,
Research has been conducted to manufacture r-alloy tubes, and the process of recrystallization annealing after intermediate pilger rolling of Zr-alloy tubes involves
By selecting a value between 2 and 5, both the inner and outer diameters are reduced by the same proportion, and in the final process, the Q value is selected to be a smaller value than during intermediate pilger rolling, and a method is adopted in which the outer diameter is reduced by a larger proportion than the inner diameter. , as shown in Fig. 3, the C axes of the dense hexagonal crystal are aligned parallel to the radial direction on the inner surface of the Zr alloy tube, and the C axes on the outer surface of the Zr alloy tube intersect with the radial direction of the Zr alloy tube. A method for manufacturing a Zr alloy cladding tube having a structure has also been proposed (Japanese Patent Application Laid-Open No. 1999-3907).
(See Publication No. 11i).

Q−((t  −t) /l  ) / [td。Q-((t-t)/l)/[td.

ただし、to :圧延前の管肉厚 t :圧延後の管肉厚 d)/do] do:圧延前の管平均径 d :圧延後の管平均径 〔発明が解決しようとする課題〕 しかし、」二記特開平1−390713号公報記載のZ
r合金被覆管の製造方法では、Zr合金管内面部分では
、稠密六方晶のC軸が半径方向に平行に揃い、同時にZ
r合金管外面部分ではC軸が半径方向に交差するような
組織を得ることは、ピルガ−圧延の制御方法が難しく、
困難であった。
However, to: Pipe wall thickness before rolling t: Pipe wall thickness after rolling d)/do] do: Pipe average diameter before rolling d: Pipe average diameter after rolling [Problem to be solved by the invention] However, "2, Z described in Japanese Patent Application Laid-open No. 1-390713
In the method for manufacturing r-alloy clad tubes, in the inner surface of the Zr-alloy tube, the C axes of the close-packed hexagonal crystal are aligned parallel to the radial direction, and at the same time the Z
It is difficult to obtain a structure in which the C-axis intersects in the radial direction on the outer surface of the r-alloy tube using the pilger rolling control method.
It was difficult.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者らは、かかる課題を解決すべく研究を
行った結果、 Zr合金素管を、外径を変化させずに内径を拡大させる
加工を施したのぢ再結晶焼鈍する工程を少なくとも1回
施すことにより機械的強度および耐応力腐食割れ性に優
れたZr合金被覆管を得ることができるという知見を得
たのである。
Therefore, the present inventors conducted research to solve this problem, and found that the Zr alloy tube was processed to enlarge the inner diameter without changing the outer diameter, and at least the process of recrystallization annealing was performed to enlarge the inner diameter without changing the outer diameter. They found that a Zr alloy clad tube with excellent mechanical strength and stress corrosion cracking resistance can be obtained by applying the method once.

この発明は、かかる知見に基づいて成されたものであっ
て、 Zr合金管をピルガ−圧延したのち再結晶焼鈍すること
によりZr合金被覆管を製造する工程において、外径を
変化させずに内径を拡大させる加工を施したのち再結晶
焼鈍する工程を少なくとも1回施す機械的強度および耐
応力腐食割れ性に優れたZr合金被覆管の製造法に特徴
を有するものである。
This invention was made based on this knowledge, and in the process of manufacturing a Zr alloy clad tube by pilger rolling a Zr alloy tube and recrystallization annealing, the inner diameter can be changed without changing the outer diameter. This method is characterized by a method for manufacturing a Zr alloy cladding tube having excellent mechanical strength and stress corrosion cracking resistance, in which a step of recrystallization annealing is performed at least once after processing to enlarge the Zr alloy.

上記外径を変化させずに内径を拡大さぜる加工をZr合
金管に施すと、Zr合金管の内面は最も加工率か大きく
、半径方向の歪も最大となるため、稠密六方晶のC軸か
Zr合金管の半径方向に揃った集合組織となり、耐応力
腐食割れ性が向上する。
When a Zr alloy tube is subjected to the process of enlarging the inner diameter without changing the outer diameter, the inner surface of the Zr alloy tube has the highest processing rate and the largest strain in the radial direction, so the close-packed hexagonal C The texture becomes uniform in the radial direction of the Zr alloy tube, improving stress corrosion cracking resistance.

一方、Zr合金管の肉厚中央部および外面は加工率が小
さく、半径方向の歪も小さいため、稠密六方晶のC軸が
Zr合金管の半径方向に交差する集合組織となり、管全
体としての機械的強度が維持される。このようにして得
られたZr合金被覆管は、内面か耐応力腐食割れ性に優
れかつ管全体としては機械的強度に優れたZr合金被覆
管となり、機械的強度および耐応力腐食割れ性がともに
優れたZr合金被覆管を製造することができるのである
。上記内面の耐応力腐食割れ性に優れたZr合金被覆管
は、原子炉燃料ペレットを被覆するZr合金被覆管とし
て十分に使用することができる。
On the other hand, since the processing rate is small and the strain in the radial direction is small in the thick central part and outer surface of the Zr alloy tube, the C-axis of the close-packed hexagonal crystal forms a texture that intersects with the radial direction of the Zr alloy tube, and the tube as a whole becomes Mechanical strength is maintained. The thus obtained Zr alloy clad tube has excellent stress corrosion cracking resistance on the inner surface and excellent mechanical strength as a whole, and has both mechanical strength and stress corrosion cracking resistance. This makes it possible to manufacture excellent Zr alloy clad tubes. The Zr alloy clad tube with the above-mentioned inner surface having excellent stress corrosion cracking resistance can be satisfactorily used as a Zr alloy clad tube for coating nuclear reactor fuel pellets.

上記外径を変化させずに内径を拡大させる加工をZr合
金管に施す時のZr合金管の肉厚の減少率は、2〜10
%か好ましい。その理由は、Zr合金管の肉厚の減少率
が2%未満では十分な加工率が得られず、】0%を越え
ると外面まで加工率が向上し、Zr合金管の肉厚全体に
亘って稠密六方晶のC軸が半径方向に揃った集合組織と
なるために、、Zr合金管の機械的強度が得られないこ
とによるものである。
When the Zr alloy tube is subjected to the process of enlarging the inner diameter without changing the outer diameter, the reduction rate of the wall thickness of the Zr alloy tube is 2 to 10%.
% is preferable. The reason for this is that if the reduction rate of the wall thickness of the Zr alloy tube is less than 2%, a sufficient machining rate cannot be obtained, and if it exceeds 0%, the machining rate improves to the outer surface, and the machining rate increases over the entire wall thickness of the Zr alloy tube. This is because the mechanical strength of the Zr alloy tube cannot be obtained because the C-axis of the dense hexagonal crystal is aligned in the radial direction.

この発明の上記外径を変化させずに内径を拡大させる加
工を図面にもとづいて具体的に説明する。
The process of enlarging the inner diameter without changing the outer diameter according to the present invention will be specifically explained based on the drawings.

第1図は、Zr合金素管にピルガ−圧延および再結晶焼
鈍を所定の回数繰返し施して得られたZ「合金管を、外
径を変化させずに内径を拡大させる加工装置にセットし
た状態を示す断面概略図である。あらかじめZr合金管
1の先端部をプラグ6か挿入できるように機械加工した
Zr合金管1を金型2に挿入し、先端部にプラグ6を挿
入したのち、引抜きロッド5をmMし、さらに、Zr合
金管]の先端部を中子4とチャック3で固定し、第1図
に示されるように、Zr合金管を加工装置にセットした
のち、第2図に示されるように引抜きロット5をA方向
に引張ると、Zr合金管の外径を変化させずに内径を拡
大させる加工を施すことができる。 この外径を変化さ
せずに内径を拡大させる加工は、Zr合金素管に1回ま
たは複数回施すことができる。また、Zr合金素管にピ
ルガ−圧延および再結晶焼鈍を所定の回数繰返し施す工
程と組合わせて適用してもよい。
Figure 1 shows a Zr alloy tube obtained by repeatedly subjecting a Zr alloy tube to pilger rolling and recrystallization annealing a predetermined number of times, set in a processing device that enlarges the inner diameter without changing the outer diameter. 2 is a cross-sectional schematic diagram showing the Zr alloy tube 1. The Zr alloy tube 1, which has been machined in advance so that the tip of the Zr alloy tube 1 can be inserted with the plug 6, is inserted into the mold 2, and after inserting the plug 6 into the tip, it is pulled out. After fixing the tip of the Zr alloy tube with the core 4 and the chuck 3, and setting the Zr alloy tube in the processing equipment as shown in FIG. By pulling the drawn rod 5 in the direction A as shown, it is possible to expand the inner diameter of the Zr alloy tube without changing its outer diameter. , can be applied to the Zr alloy raw tube once or multiple times.Furthermore, it may be applied in combination with the process of repeatedly subjecting the Zr alloy raw tube to pilger rolling and recrystallization annealing a predetermined number of times.

〔実 施 例〕〔Example〕

つぎに、この発明を実施例に基づいて具体的に説明する
Next, the present invention will be specifically explained based on examples.

外径:3.4インチ(l18.4mm) 、肉厚=0.
Bインチ(1,5,2mm)の寸法を有し、 Sn:1.5重量%、  Fe:0.2重量%、Cr:
O,1重量%、 を含有し、残りがZrおよび不i’i丁避不純物からな
る組成のZr合金押出し素管を用意した。
Outer diameter: 3.4 inches (18.4 mm), wall thickness = 0.
It has dimensions of B inches (1, 5, 2 mm), Sn: 1.5% by weight, Fe: 0.2% by weight, Cr:
A Zr alloy extruded blank tube containing 1% by weight of O, with the remainder consisting of Zr and unavoidable impurities was prepared.

上記Zr合金押出し素管を、ピルガ−圧延したのち引続
いて真空雰囲気中、温度: 680’C52時間保持の
条件で再結晶焼鈍する工程を3面繰返すことにより、 外径: 1.25インチ(31,75mn+)、内径:
 0.85インチ(21,59龍)、の寸法を有するZ
r合金管を製造した。
The above Zr alloy extruded raw tube was pilger rolled and then recrystallized annealed in a vacuum atmosphere at a temperature of 680'C for 52 hours by repeating the process on three sides to obtain an outer diameter of 1.25 inch ( 31,75mm+), inner diameter:
Z with dimensions of 0.85 inches (21,59 dragons)
An r-alloy tube was manufactured.

このZr合金管に第1図および第2図に示されるような
外径を変化させずに内径を拡大させる加工を施し、第1
表に示される内径とし、内径増加率を計算して第1表に
示した。かかる内径増加率となるような外径を変化させ
ずに内径を拡大させる加工を施したZ「合金管を、さら
に真空雰囲気中、温度二680℃、2時間保持の再結晶
焼鈍を施した。
This Zr alloy tube was processed to enlarge the inner diameter without changing the outer diameter as shown in Figs.
The inner diameter was set as shown in the table, and the inner diameter increase rate was calculated and shown in Table 1. The Z"alloy tube, which had been processed to enlarge the inner diameter without changing the outer diameter so as to achieve such an inner diameter increase rate, was further subjected to recrystallization annealing at a temperature of 2,680° C. for 2 hours in a vacuum atmosphere.

上記加工および再結晶焼鈍を施したZr合金管を、さら
にピルガ−圧延したのち引続いて真空雰囲気中、温度二
680℃、2時間保持の条件で再結晶焼鈍する工程を実
施したのち、最終ピルガ−圧延および真空雰囲気中、温
度+4.70’C12時間保持の歪取り焼鈍することに
より、外径、0.374インチ(9,5mm) 、肉厚
: 0.002インチ(0,57mm)の・」′法を有
する実施例1〜3および比較例1〜2のZr合金管を製
造した。
The Zr alloy tube that has undergone the above processing and recrystallization annealing is further pilger rolled and then recrystallized in a vacuum atmosphere at a temperature of 2,680°C for 2 hours, after which the final pilger is rolled. - By rolling and strain relief annealing at +4.70'C for 12 hours in a vacuum atmosphere, the outer diameter is 0.374 inch (9.5 mm) and the wall thickness is 0.002 inch (0.57 mm). Zr alloy tubes of Examples 1 to 3 and Comparative Examples 1 to 2 using the '' method were manufactured.

これらZr合金管を360℃に保持j7、腐食性ガスと
してヨウ素ガスを濃度:B、Omg/c♂となるように
充填し、さらにアルゴンガスにより内側がら応カニ 2
8.1kg/nuftで加圧した状態に保持し、破損に
至るまでの時間を測定する耐応力腐食割れ試験を実施し
、それらの測定結果をそれぞれ第1表に示した。
These Zr alloy tubes were held at 360°C, filled with iodine gas as a corrosive gas to a concentration of B, Omg/c♂, and further heated from the inside with argon gas.
A stress corrosion cracking test was carried out in which the specimens were held under pressure at 8.1 kg/nuft and the time until failure was measured, and the measurement results are shown in Table 1.

さらにZr合金管の機械的強度を評価するために、上記
Zr合金管に荷重をかけて押し潰し、zr合金管が偏重
化して亀裂が生じた時の高さ11を測定し、 偏甲率−(h。−h)/hoX100%、〔但し、ha
はZr合金管の外径+0.374インチ(9,5mm)
 ]を求め、それらの測定結果もそれぞれ第1表に示し
た。
Furthermore, in order to evaluate the mechanical strength of the Zr alloy tube, the Zr alloy tube was crushed by applying a load, and the height 11 when the Zr alloy tube became unbalanced and cracked was measured, and the uneven shell ratio - (h.-h)/hoX100%, [however, ha
is the outer diameter of the Zr alloy tube + 0.374 inch (9.5 mm)
], and the measurement results are also shown in Table 1.

第1表に示される結果から、実施例1〜3の製造方法で
作製されたZ「合金管は、機械的強度および耐応力腐食
割れ性が共に優れているに対し、この発明の条件から外
れた条件で作製された比較例1〜2のZr合金管(第1
表において、この発明の条件から外れた条件には、※印
を付して示した。)に比べて、機械的強度または耐応力
腐食割れ性のうちいずれかが劣ることがわかる。
From the results shown in Table 1, the Z alloy tubes produced by the manufacturing methods of Examples 1 to 3 have excellent mechanical strength and stress corrosion cracking resistance, but they do not meet the conditions of the present invention. Zr alloy tubes of Comparative Examples 1 and 2 manufactured under the same conditions (first
In the table, conditions that deviate from the conditions of this invention are marked with *. ) is inferior in either mechanical strength or stress corrosion cracking resistance.

〔発明の効果〕〔Effect of the invention〕

」二連のように、この発明によると、最近の原子力発電
の効率化による原子炉燃料集合体の炉内滞在時間の長期
化、原子炉燃料の高燃焼度化、および原子炉の負荷追従
運転等に対して、応力腐食割れを起す恐れがなく、機械
的強度の優れたZr合金被覆管を簡単な製造方法により
低コストで提供することかでき、原子炉の運転コストも
下げることができるなどの産業上優れた効果を奏するも
のである。
'' According to this invention, the recent improvements in the efficiency of nuclear power generation have led to longer stay times of nuclear reactor fuel assemblies in the reactor, higher burnup of reactor fuel, and load-following operation of nuclear reactors. For example, Zr alloy cladding tubes with excellent mechanical strength and no risk of stress corrosion cracking can be provided at low cost using a simple manufacturing method, and the operating costs of nuclear reactors can also be lowered. It has excellent industrial effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、Zr合金素管にピルガ−圧延お
よび再結晶焼鈍を所定の回数繰返し施して得られたZr
合金管を、外径を変化させずに内径を拡大させる加工装
置にセットした状態を示す断面概略図、 第3図は、稠密大方品のC軸かZr合金管内面部分では
半径方向に平行に揃うとともにZr合金管外面部分では
C軸がZr合金管の半径方向に交差する集合組織を有す
るZr合金被覆管の説明図である。 1:Zr合金管     2:金 型 3:チヤツク      4:中 子 5:引抜きロッド    6:プラグ
Figures 1 and 2 show Zr alloy tubes obtained by repeatedly subjecting Zr alloy tubes to pilger rolling and recrystallization annealing a predetermined number of times.
Figure 3 is a schematic cross-sectional view showing the alloy tube set in a processing device that enlarges the inner diameter without changing the outer diameter. FIG. 2 is an explanatory diagram of a Zr alloy clad tube having a texture in which the C axes are aligned and intersect with the radial direction of the Zr alloy tube in the outer surface portion of the Zr alloy tube. 1: Zr alloy tube 2: Mold 3: Chuck 4: Core 5: Pulling rod 6: Plug

Claims (2)

【特許請求の範囲】[Claims] (1)ジルコニウム合金管に、ピルガー圧延および再結
晶焼鈍をそれぞれ1回または複数回繰返し施したのち、
最終ピルガー圧延および歪取り焼鈍することによりジル
コニウム合金被覆管を製造する工程において、 ジルコニウム合金管の外径を変化させずに内径を拡大さ
せる加工を施す工程を少なくとも1回施すことを特徴と
する機械的強度および耐応力腐食割れ性に優れたジルコ
ニウム合金被覆管の製造法。
(1) After repeatedly subjecting the zirconium alloy tube to Pilger rolling and recrystallization annealing once or multiple times,
A machine characterized in that, in the process of manufacturing a zirconium alloy clad tube by final pilger rolling and strain relief annealing, the process of enlarging the inner diameter of the zirconium alloy tube without changing its outer diameter is carried out at least once. A method for producing zirconium alloy cladding with excellent mechanical strength and stress corrosion cracking resistance.
(2)上記外径を変化させずに内径を拡大させる加工を
施すことによる内径の増加率は、2〜10%であること
を特徴とする請求項1記載の機械的強度および耐応力腐
食割れ性に優れたジルコニウム合金被覆管の製造法。
(2) Mechanical strength and stress corrosion cracking resistance according to claim 1, characterized in that the increase rate of the inner diameter by performing processing to enlarge the inner diameter without changing the outer diameter is 2 to 10%. A method for manufacturing zirconium alloy cladding with excellent properties.
JP2274622A 1990-10-12 1990-10-12 Manufacture of zirconium alloy clad tube superior in mechanical strength and resistance against stress, corrosion and cracking Pending JPH04148893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2274622A JPH04148893A (en) 1990-10-12 1990-10-12 Manufacture of zirconium alloy clad tube superior in mechanical strength and resistance against stress, corrosion and cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2274622A JPH04148893A (en) 1990-10-12 1990-10-12 Manufacture of zirconium alloy clad tube superior in mechanical strength and resistance against stress, corrosion and cracking

Publications (1)

Publication Number Publication Date
JPH04148893A true JPH04148893A (en) 1992-05-21

Family

ID=17544289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2274622A Pending JPH04148893A (en) 1990-10-12 1990-10-12 Manufacture of zirconium alloy clad tube superior in mechanical strength and resistance against stress, corrosion and cracking

Country Status (1)

Country Link
JP (1) JPH04148893A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009018347A (en) * 1997-02-12 2009-01-29 Cie Europeenne Du Zirconium-Cezus Method for manufacturing guide tube of nuclear reactor fuel assembly, mandrel for forming guide tube and guide tube obtained

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009018347A (en) * 1997-02-12 2009-01-29 Cie Europeenne Du Zirconium-Cezus Method for manufacturing guide tube of nuclear reactor fuel assembly, mandrel for forming guide tube and guide tube obtained
JP2012058258A (en) * 1997-02-12 2012-03-22 Cie Europeenne Du Zirconium-Cezus Method for manufacturing guide tube of nuclear reactor fuel assembly, mandrel for forming guide tube and guide tube obtained

Similar Documents

Publication Publication Date Title
JP2548773B2 (en) Zirconium-based alloy and method for producing the same
EP0622470B1 (en) Method of fabricating zircaloy tubing having high resistance to crack propagation
US5383228A (en) Method for making fuel cladding having zirconium barrier layers and inner liners
JPH04358048A (en) Method of treatment of zirconium alloy material
EP0198570B1 (en) Process for producing a thin-walled tubing from a zirconium-niobium alloy
JPH08239740A (en) Production of pipe for nuclear fuel aggregate,and pipe obtained thereby
JPH0197897A (en) Zirconium base alloy pipe for covering reactor fuel element cover and making thereof
US5618356A (en) Method of fabricating zircaloy tubing having high resistance to crack propagation
US4765174A (en) Texture enhancement of metallic tubing material having a hexagonal close-packed crystal structure
JPS6361989A (en) Manufacture of composite coated tube for nuclear fuel
JP5274463B2 (en) Water reactor fuel clad tube, method of manufacturing the same, water reactor fuel rod and water reactor fuel assembly having the same
JPS6234095A (en) Nuclear fuel coated tube
CA2019955C (en) Single peak radial texture zircaloy tubing
JPH11148990A (en) Production of tube cladding nuclear fuel rod, nuclear fuel cladding, production of zirconium alloy and production of structure member
US4452648A (en) Low in reactor creep ZR-base alloy tubes
JPH04148893A (en) Manufacture of zirconium alloy clad tube superior in mechanical strength and resistance against stress, corrosion and cracking
JP2006519310A (en) Method for producing a zirconium alloy semi-finished product and its use for producing an elongated product
JPS6358223B2 (en)
JP3208832B2 (en) Manufacturing method of texture adjusted zirconium alloy tube by pilger rolling
JP2830420B2 (en) Manufacturing method of zirconium alloy cladding tube excellent in stress corrosion cracking resistance
JPH04154944A (en) Manufacture of zirconium alloy clad tube excellent in stress corrosion cracking resistance
EP0195154A1 (en) Water reactor fuel cladding tubes
JPH0499256A (en) Production of zirconium alloy clad tube having superior resistance to stress corrosion cracking
JPH0499255A (en) Production of zirconium alloy clad tube having superior resistance to stress corrosion cracking
JPH04154943A (en) Manufacture of zr alloy clad tube excellent in stress corrosion cracking resistance